Publications from The Sainsbury Laboratory
65.5K views | +1 today
Follow
Publications from The Sainsbury Laboratory
Your new post is loading...
Your new post is loading...
Scooped by The Sainsbury Lab
June 5, 2014 6:28 AM
Scoop.it!

Journal of Cell Biology: Identification of unique SUN-interacting nuclear envelope proteins with diverse functions in plants (2014)

Journal of Cell Biology: Identification of unique SUN-interacting nuclear envelope proteins with diverse functions in plants (2014) | Publications from The Sainsbury Laboratory | Scoop.it
The Sainsbury Lab's insight:

Although a plethora of nuclear envelope (NE) transmembrane proteins (NETs) have been identified in opisthokonts, plant NETs are largely unknown. The only known NET homologues in plants are Sad1/UNC-84 (SUN) proteins, which bind Klarsicht/ANC-1/Syne-1 homology (KASH) proteins. Therefore, de novo identification of plant NETs is necessary. Based on similarities between opisthokont KASH proteins and the only known plant KASH proteins, WPP domain–interacting proteins, we used a computational method to identify the KASH subset of plant NETs. Ten potential plant KASH protein families were identified, and five candidates from four of these families were verified for their NE localization, depending on SUN domain interaction. Of those, Arabidopsis thaliana SINE1 is involved in actin-dependent nuclear positioning in guard cells, whereas its paralogue SINE2 contributes to innate immunity against an oomycete pathogen. This study dramatically expands our knowledge of plant KASH proteins and suggests that plants and opisthokonts have recruited different KASH proteins to perform NE regulatory functions.

No comment yet.
Scooped by The Sainsbury Lab
May 7, 2014 8:10 AM
Scoop.it!

BMC Plant Biology: Defining the full tomato NB-LRR resistance gene repertoire using genomic and cDNA RenSeq (2014)

BMC Plant Biology: Defining the full tomato NB-LRR resistance gene repertoire using genomic and cDNA RenSeq (2014) | Publications from The Sainsbury Laboratory | Scoop.it
The Sainsbury Lab's insight:

The availability of draft crop plant genomes allows the prediction of the full complement of genes that encode NB-LRR resistance gene homologs, enabling a more targeted breeding for disease resistance. Recently, we developed the RenSeq method to reannotate the full NB-LRR gene complement in potato and to identify novel sequences that were not picked up by the automated gene prediction software. Here, we established RenSeq on the reference genome of tomato (Solanum lycopersicum) Heinz 1706, using 260 previously identified NB-LRR genes in an updated Solanaceae RenSeq bait library.

Result: Using 250-bp MiSeq reads after RenSeq on genomic DNA of Heinz 1706, we identified 105 novel NB-LRR sequences. Reannotation included the splitting of gene models, combination of partial genes to a longer sequence and closing of assembly gaps. Within the draft S. pimpinellifolium LA1589 genome, RenSeq enabled the annotation of 355 NB-LRR genes. The majority of these are however fragmented, with 5[prime]- and 3[prime]-end located on the edges of separate contigs. Phylogenetic analyses show a high conservation of all NB-LRR classes between Heinz 1706, LA1589 and the potato clone DM, suggesting that all sub-families were already present in the last common ancestor. A phylogenetic comparison to the Arabidopsis thaliana NB-LRR complement verifies the high conservation of the more ancient CCRPW8-type NB-LRRs. Use of RenSeq on cDNA from uninfected and late blight-infected tomato leaves allows the avoidance of sequence analysis of non-expressed paralogues.

No comment yet.
Rescooped by The Sainsbury Lab from Plants and Microbes
April 28, 2014 12:16 PM
Scoop.it!

Mol Cell: Plant PRRs and the Activation of Innate Immune Signaling (2014)

Mol Cell: Plant PRRs and the Activation of Innate Immune Signaling (2014) | Publications from The Sainsbury Laboratory | Scoop.it

Despite being sessile organisms constantly exposed to potential pathogens and pests, plants are surprisingly resilient to infections. Plants can detect invaders via the recognition of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs). Plant PRRs are surface-localized receptor-like kinases, which comprise a ligand-binding ectodomain and an intracellular kinase domain, or receptor-like proteins, which do not exhibit any known intracellular signaling domain. In this review, we summarize recent discoveries that shed light on the molecular mechanisms underlying ligand perception and subsequent activation of plant PRRs. Notably, plant PRRs appear as central components of multiprotein complexes at the plasma membrane that contain additional transmembrane and cytosolic kinases required for the initiation and specificity of immune signaling. PRR complexes are under tight control by protein phosphatases, E3 ligases, and other regulatory proteins, illustrating the exquisite and complex regulation of these molecular machines whose proper activation underlines a crucial layer of plant immunity.


Via Kamoun Lab @ TSL
No comment yet.
Rescooped by The Sainsbury Lab from Plant Pathogenomics
April 28, 2014 4:18 AM
Scoop.it!

bioRxiv: Crowdsourced analysis of ash and ash dieback through the Open Ash Dieback project: A year 1 report on datasets and analyses contributed by a self-organising community (2014)

bioRxiv: Crowdsourced analysis of ash and ash dieback through the Open Ash Dieback project: A year 1 report on datasets and analyses contributed by a self-organising community (2014) | Publications from The Sainsbury Laboratory | Scoop.it

Ash dieback is a fungal disease of ash trees caused by Hymenoscyphus pseudoalbidus that has swept across Europe in the last two decades and is a significant threat to the ash population. This emergent pathogen has been relatively poorly studied and little is known about its genetic make-up. In response to the arrival of this dangerous pathogen in the UK we took the unusual step of providing an open access database and initial sequence datasets to the scientific community for analysis prior to performing an analysis of our own. Our goal was to crowdsource genomic and other analyses and create a community analysing this pathogen. In this report on the evolution of the community and data and analysis obtained in the first year of this activity, we describe the nature and the volume of the contributions and reveal some preliminary insights into the genome and biology of H. pseudoalbidus that emerged. In particular our nascent community generated a first-pass genome assembly containing abundant collapsed AT-rich repeats indicating a typically complex genome structure. Our open science and crowdsourcing effort has brought a wealth of new knowledge about this emergent pathogen within a short time-frame. Our community endeavour highlights the positive impact that open, collaborative approaches can have on fast, responsive modern science.


Via Kamoun Lab @ TSL
No comment yet.
Rescooped by The Sainsbury Lab from Plants and Microbes
April 18, 2014 4:30 AM
Scoop.it!

Science: Structural Basis for Assembly and Function of a Heterodimeric Plant Immune Receptor (2014)

Science: Structural Basis for Assembly and Function of a Heterodimeric Plant Immune Receptor (2014) | Publications from The Sainsbury Laboratory | Scoop.it

Cytoplasmic plant immune receptors recognize specific pathogen effector proteins and initiate effector-triggered immunity. In Arabidopsis, the immune receptors RPS4 and RRS1 are both required to activate defense to three different pathogens. We show that RPS4 and RRS1 physically associate. Crystal structures of the N-terminal Toll–interleukin-1 receptor/resistance (TIR) domains of RPS4 and RRS1, individually and as a heterodimeric complex (respectively at 2.05, 1.75, and 2.65 angstrom resolution), reveal a conserved TIR/TIR interaction interface. We show that TIR domain heterodimerization is required to form a functional RRS1/RPS4 effector recognition complex. The RPS4 TIR domain activates effector-independent defense, which is inhibited by the RRS1 TIR domain through the heterodimerization interface. Thus, RPS4 and RRS1 function as a receptor complex in which the two components play distinct roles in recognition and signaling.


See also Perspective by Nishimura and Dangl http://www.sciencemag.org/content/344/6181/267.short


Via Kamoun Lab @ TSL
No comment yet.
Rescooped by The Sainsbury Lab from Publications
March 31, 2014 3:51 AM
Scoop.it!

MPMI: Single amino acid mutations in the potato immune receptor R3a expand response to Phytophthora effectors (2014)

MPMI: Single amino acid mutations in the potato immune receptor R3a expand response to Phytophthora effectors (2014) | Publications from The Sainsbury Laboratory | Scoop.it

Both plants and animals rely on nucleotide-binding domain and leucine-rich repeat-containing proteins (NB-LRRs or NLRs) to respond to invading pathogens and activate immune responses. How plant NB-LRR proteins respond to pathogens is poorly understood. We undertook a gain-of-function random mutagenesis screen of the potato NB-LRR immune receptor R3a to study how this protein responds to the effector protein AVR3a from the oomycete pathogen Phytophthora infestans. R3a response can be extended to the stealthy AVR3aEM isoform of the effector while retaining recognition of AVR3aKI. Each one of 8 single amino acid mutations is sufficient to expand the R3a response to AVR3aEM and other AVR3a variants. These mutations occur across the R3a protein, from the N-terminus to different regions of the LRR domain. Further characterization of these R3a mutants revealed that at least one of them was sensitized, exhibiting a stronger response than the wild-type R3a protein to AVR3aKI. Remarkably, the N336Y mutation, near the R3a nucleotide-binding pocket, conferred response to the effector protein PcAVR3a4 from the vegetable pathogen Phytophthora capsici. This work contributes to understanding how NB-LRR receptor specificity can be modulated. Together with knowledge of pathogen effector diversity, this strategy can be exploited to develop synthetic immune receptors.


Via Kamoun Lab @ TSL
Stephen Bolus's curator insight, March 30, 2014 2:09 AM

I just really love the idea of synthetic immune receptors!

Rescooped by The Sainsbury Lab from Plants and Microbes
March 16, 2014 5:24 PM
Scoop.it!

Science: A Bacterial Tyrosine Phosphatase Inhibits Plant Pattern Recognition Receptor Activation (2014)

Science: A Bacterial Tyrosine Phosphatase Inhibits Plant Pattern Recognition Receptor Activation (2014) | Publications from The Sainsbury Laboratory | Scoop.it

Innate immunity relies on the perception of pathogen-associated molecular patterns (PAMPs) by pattern-recognition receptors (PRRs) located on the host cell’s surface. Many plant PRRs are kinases. Here, we report that the Arabidopsis receptor kinase EF-TU RECEPTOR EFR, which perceives the elf18 peptide derived from bacterial elongation factor Tu, is activated upon ligand binding by phosphorylation on its tyrosine residues. Phosphorylation of a single tyrosine residue, Y836, is required for activation of EFR and downstream immunity to the phytopathogenic bacterium Pseudomonas syringae. A tyrosine phosphatase, HopAO1, secreted by P. syringae, reduces EFR phosphorylation and derails subsequent immune responses. Thus host and pathogen battle to take control of PRR tyrosine phosphorylation used to initiate anti-bacterial immunity.


Via Jim Alfano, Kamoun Lab @ TSL
Jim Alfano's curator insight, March 13, 2014 6:21 PM

Very interesting finding - A long sought target of the HopAO1 effector. HopAO1 also suppresses ETI - so additional targets remain undiscovered.

Scooped by The Sainsbury Lab
March 12, 2014 6:00 PM
Scoop.it!

Molecular Cell: Direct Regulation of the NADPH Oxidase RBOHD by the PRR-Associated Kinase BIK1 during Plant Immunity (2014)

Molecular Cell: Direct Regulation of the NADPH Oxidase RBOHD by the PRR-Associated Kinase BIK1 during Plant Immunity (2014) | Publications from The Sainsbury Laboratory | Scoop.it
The Sainsbury Lab's insight:

The rapid production of reactive oxygen species (ROS) burst is a conserved signaling output in immunity across kingdoms. In plants, perception of pathogen-associated molecular patterns (PAMPs) by surface-localized pattern recognition receptors (PRRs) activates the NADPH oxidase RBOHD by hitherto unknown mechanisms. Here, we show that RBOHD exists in complex with the receptor kinases EFR and FLS2, which are the PRRs for bacterial EF-Tu and flagellin, respectively. The plasma-membrane-associated kinase BIK1, which is a direct substrate of the PRR complex, directly interacts with and phosphorylates RBOHD upon PAMP perception. BIK1 phosphorylates different residues than calcium-dependent protein kinases, and both PAMP-induced BIK1 activation and BIK1-mediated phosphorylation of RBOHD are calcium independent. Importantly, phosphorylation of these residues is critical for the PAMP-induced ROS burst and antibacterial immunity. Our study reveals a rapid regulatory mechanism of a plant RBOH, which occurs in parallel with and is essential for its paradigmatic calcium-based regulation.

No comment yet.
Scooped by The Sainsbury Lab
March 3, 2014 5:50 AM
Scoop.it!

Molecular Plant-Microbe Interactions - Methods to Study PAMP-Triggered Immunity in Brassica Species (2014)

Molecular Plant-Microbe Interactions - Methods to Study PAMP-Triggered Immunity in Brassica Species (2014) | Publications from The Sainsbury Laboratory | Scoop.it
The Sainsbury Lab's insight:

The first layer of active defense in plants is based on the perception of pathogen-associated molecular patterns (PAMPs) leading to PAMP-triggered immunity (PTI). PTI is increasingly being investigated in crop plants, where it may have potential to provide durable disease resistance in the field. Limiting this work, however, is an absence of reliable bioassays to investigate PAMP responses in some species. Here, we present a series of methods to investigate PTI in Brassica napus. The assays allow measuring early responses such as the oxidative burst, mitogen-activated protein kinase phosphorylation, and PAMP-induced marker gene expression. Illumina-based RNA sequencing analysis produced a genome-wide survey of transcriptional changes upon PAMP treatment seen in both the A and C genomes of the allotetraploid B. napus. Later responses characterized include callose deposition and lignification at the cell wall, seedling growth inhibition, and PAMP-induced resistance to Pseudomonas syringae and Botrytis cinerea. Furthermore, using these assays, we demonstrated substantial variation in PAMP responses within a collection of diverse B. napus cultivars. The assays reported here could have widespread application in B. napus breeding and mapping programs to improve selection for broad-spectrum disease resistance.

No comment yet.
Rescooped by The Sainsbury Lab from Publications
February 27, 2014 7:34 AM
Scoop.it!

PLOS Biology: Unsolved Mystery - How Do Filamentous Pathogens Deliver Effector Proteins into Plant Cells? (2014)

PLOS Biology: Unsolved Mystery - How Do Filamentous Pathogens Deliver Effector Proteins into Plant Cells? (2014) | Publications from The Sainsbury Laboratory | Scoop.it

Fungal and oomycete plant parasites are among the most devastating pathogens of food crops. These microbes secrete effector proteins inside plant cells to manipulate host processes and facilitate colonization. How these effectors reach the host cytoplasm remains an unclear and debated area of plant research. In this article, we examine recent conflicting findings that have generated discussion in the field. We also highlight promising approaches based on studies of both parasite and host during infection. Ultimately, this knowledge may inform future broad spectrum strategies for protecting crops from such pathogens.


Via Kamoun Lab @ TSL
No comment yet.
Scooped by The Sainsbury Lab
February 17, 2014 4:15 AM
Scoop.it!

Elevating crop disease resistance with cloned genes

Elevating crop disease resistance with cloned genes | Publications from The Sainsbury Laboratory | Scoop.it
The Sainsbury Lab's insight:

Essentially all plant species exhibit heritable genetic variation for resistance to a variety of plant diseases caused by fungi, bacteria, oomycetes or viruses. Disease losses in crop monocultures are already significant, and would be greater but for applications of disease-controlling agrichemicals. For sustainable intensification of crop production, we argue that disease control should as far as possible be achieved using genetics rather than using costly recurrent chemical sprays. The latter imply CO2 emissions from diesel fuel and potential soil compaction from tractor journeys. Great progress has been made in the past 25 years in our understanding of the molecular basis of plant disease resistance mechanisms, and of how pathogens circumvent them. These insights can inform more sophisticated approaches to elevating disease resistance in crops that help us tip the evolutionary balance in favour of the crop and away from the pathogen. We illustrate this theme with an account of a genetically modified (GM) blight-resistant potato trial in Norwich, using the Rpi-vnt1.1 gene isolated from a wild relative of potato, Solanum venturii, and introduced by GM methods into the potato variety Desiree.

Ronaldo Dalio's curator insight, February 18, 2014 6:49 AM
The Sainsbury Lab's insight:

Essentially all plant species exhibit heritable genetic variation for resistance to a variety of plant diseases caused by fungi, bacteria, oomycetes or viruses. Disease losses in crop monocultures are already significant, and would be greater but for applications of disease-controlling agrichemicals. For sustainable intensification of crop production, we argue that disease control should as far as possible be achieved using genetics rather than using costly recurrent chemical sprays. The latter imply CO2 emissions from diesel fuel and potential soil compaction from tractor journeys. Great progress has been made in the past 25 years in our understanding of the molecular basis of plant disease resistance mechanisms, and of how pathogens circumvent them. These insights can inform more sophisticated approaches to elevating disease resistance in crops that help us tip the evolutionary balance in favour of the crop and away from the pathogen. We illustrate this theme with an account of a genetically modified (GM) blight-resistant potato trial in Norwich, using the Rpi-vnt1.1 gene isolated from a wild relative of potato, Solanum venturii, and introduced by GM methods into the potato variety Desiree.

Scooped by The Sainsbury Lab
January 15, 2014 10:18 AM
Scoop.it!

PLOS Genetics: Single Nucleus Genome Sequencing Reveals High Similarity among Nuclei of an Endomycorrhizal Fungus (2014)

PLOS Genetics: Single Nucleus Genome Sequencing Reveals High Similarity among Nuclei of an Endomycorrhizal Fungus (2014) | Publications from The Sainsbury Laboratory | Scoop.it
PLOS Genetics is an open-access
The Sainsbury Lab's insight:

Nuclei of arbuscular endomycorrhizal fungi have been described as highly diverse due to their asexual nature and absence of a single cell stage with only one nucleus. This has raised fundamental questions concerning speciation, selection and transmission of the genetic make-up to next generations. Although this concept has become textbook knowledge, it is only based on studying a few loci, including 45S rDNA. To provide a more comprehensive insight into the genetic makeup of arbuscular endomycorrhizal fungi, we applied de novo genome sequencing of individual nuclei of Rhizophagus irregularis. This revealed a surprisingly low level of polymorphism between nuclei. In contrast, within a nucleus, the 45S rDNA repeat unit turned out to be highly diverged. This finding demystifies a long-lasting hypothesis on the complex genetic makeup of arbuscular endomycorrhizal fungi. Subsequent genome assembly resulted in the first draft reference genome sequence of an arbuscular endomycorrhizal fungus. Its length is 141 Mbps, representing over 27,000 protein-coding gene models. We used the genomic sequence to reinvestigate the phylogenetic relationships of Rhizophagus irregulariswith other fungal phyla. This unambiguously demonstrated that Glomeromycota are more closely related to Mucoromycotina than to its postulated sister Dikarya.

No comment yet.
Scooped by The Sainsbury Lab
January 2, 2014 8:10 AM
Scoop.it!

eLIFE: The transcriptional regulator BZR1 mediates trade-off between plant innate immunity and growth (2013)

eLIFE: The transcriptional regulator BZR1 mediates trade-off between plant innate immunity and growth (2013) | Publications from The Sainsbury Laboratory | Scoop.it
The Sainsbury Lab's insight:

The molecular mechanisms underlying the trade-off between plant innate immunity and steroid-mediated growth are controversial. Here, we report that activation of the transcription factor BZR1 is required and sufficient for suppression of immune signaling by brassinosteroids (BR). BZR1 induces the expression of several WRKY transcription factors that negatively control early immune responses. In addition, BZR1 associates with WRKY40 to mediate the antagonism between BR and immune signaling. We reveal that BZR1-mediated inhibition of immunity is particularly relevant when plant fast growth is required, such as during etiolation. Thus, BZR1 acts as an important regulator mediating the trade-off between growth and immunity upon integration of environmental cues.

No comment yet.
Rescooped by The Sainsbury Lab from Plants and Microbes
May 13, 2014 3:49 AM
Scoop.it!

Plant Physiology: The plant membrane-associated REM1.3 remorin accumulates in discrete perihaustorial domains and enhances susceptibility to Phytophthora infestans (2014)

Plant Physiology: The plant membrane-associated REM1.3 remorin accumulates in discrete perihaustorial domains and enhances susceptibility to Phytophthora infestans (2014) | Publications from The Sainsbury Laboratory | Scoop.it

Filamentous pathogens such as the oomycete Phytophthora infestans infect plants by developing specialized structures termed haustoria inside the host cells. Haustoria are thought to enable secretion of effector proteins into the plant cells. Haustorium biogenesis is therefore critical for pathogen accommodation in the host tissue. Haustoria are enveloped by a specialized host-derived membrane, the extrahaustorial membrane (EHM), which is distinct from the plant plasma membrane. The mechanisms underlying the biogenesis of the EHM are unknown. Remarkably, several plasma membrane localised proteins are excluded from the EHM but the remorin REM1.3 accumulates around P. infestans haustoria. Here, we used overexpression, co-localization with reporter proteins, and super-resolution microscopy in cells infected by P. infestans to reveal discrete EHM domains labelled by REM1.3 and P. infestans effector AVRblb2. Moreover, SYT1 synaptotagmin, another previously identified perihaustorial protein, localized to subdomains which are mainly not labelled by REM1.3 and AVRblb2. Functional characterization of REM1.3 revealed that it is a susceptibility factor that promotes infection by P. infestans. This activity, and REM1.3 recruitment to the EHM, require REM1.3 membrane binding domain. Our results implicate REM1.3 membrane micro-domains in plant susceptibility to an oomycete pathogen.


Via Kamoun Lab @ TSL
Jean-Michel Ané's curator insight, May 14, 2014 4:17 PM

I know that it is not a symbiont but... some people will guess why I am scooping this :-)

Scooped by The Sainsbury Lab
May 7, 2014 8:05 AM
Scoop.it!

BMC Genomics: EXPRSS: an Illumina based high-throughput expression-profiling method to reveal transcriptional dynamics (2014)

BMC Genomics: EXPRSS: an Illumina based high-throughput expression-profiling method to reveal transcriptional dynamics (2014) | Publications from The Sainsbury Laboratory | Scoop.it
The Sainsbury Lab's insight:

EXpression Profiling through Randomly Sheared cDNA tag Sequencing (EXPRSS) employs adaptive focused acoustics to randomly shear cDNA and generate sequence tags at a relatively defined position (~150-200 bp) from the 3' end of each mRNA. EXPRSS is a strand specific and restriction enzyme independent tag sequencing method that does not require cDNA length-based data transformations, reveals alternative polyadenylation, polyadenylated antisense transcripts and is highly reproducible. It is high-throughput, cost-effective using barcoded multiplexing, avoids the biases of existing SAGE and derivative methods and can reveal polyadenylation position from paired-end sequencing. Implementation of the EXPRSS method was verified through comparative analysis of expression data generated from EXPRSS, NlaIII-DGE and Affymetrix microarray and through qPCR quantification of selected genes. Unlike array-based methods, it can be applied to genomes for which high-quality reference sequences are unavailable.

No comment yet.
Scooped by The Sainsbury Lab
April 28, 2014 4:20 AM
Scoop.it!

eLIFE: Illuminating traffic control for cell–division planes (2014)

eLIFE: Illuminating traffic control for cell–division planes (2014) | Publications from The Sainsbury Laboratory | Scoop.it
The Sainsbury Lab's insight:

When a plant cell divides, four related proteins control the trafficking of vesicles and ensure that cargo that is normally recycled to the plasma membrane is instead re-routed to the plane of cell division.

No comment yet.
Rescooped by The Sainsbury Lab from Plant Pathogenomics
April 25, 2014 4:16 AM
Scoop.it!

PLOS Pathogens: Mining Herbaria for Plant Pathogen Genomes: Back to the Future (2014)

PLOS Pathogens: Mining Herbaria for Plant Pathogen Genomes: Back to the Future (2014) | Publications from The Sainsbury Laboratory | Scoop.it

Since the dawn of agriculture, plant pathogens and pests have been a scourge of humanity. Yet we have come a long way since the Romans attempted to mitigate the effects of plant disease by worshipping and honoring the god Robigus. Books in the Middle Ages by Islamic and European scholars described various plant diseases and even proposed particular disease management strategies. Surprisingly, the causes of plant diseases remained a matter of debate over a long period. It took Henri-Louis Duhamel du Monceau's elegant demonstration in his 1728 “Explication Physique” paper that a “contagious” fungus was responsible for a saffron crocus disease to usher in an era of documented scientific inquiry. Confusion and debate about the exact nature of the causal agents of plant diseases continued until the 19th century, which not only saw the first detailed analyses of plant pathogens but also provided much-needed insight into the mechanisms of plant disease. An example of this is Anton de Bary's demonstration that a “fungus” is a cause, not a consequence, of plant disease. This coming of age of plant pathology was timely. In the 19th century, severe plant disease epidemics hit Europe and caused economic and social upheaval. These epidemics were not only widely covered in the press but also recognized as serious political issues by governments. Many of the diseases, including late blight of potato, powdery and downy mildew of grapevine, as well as phylloxera, were due to exotic introductions from the Americas and elsewhere. These and subsequent epidemics motivated scientific investigations into crop breeding and plant disease management that developed into modern plant pathology science over the 20th century.

 

Nowadays, our understanding of plant pathogens and the diseases they cause greatly benefits from molecular genetics and genomics. All aspects of plant pathology, from population biology and epidemiology to mechanistic research, are impacted. The polymerase chain reaction (PCR) first enabled access to plant pathogen DNA sequences from historical specimens deposited in herbaria. Historical records in combination with herbarium specimens have turned out to provide powerful tools for understanding the course of past plant epidemics. Recently, thanks to new developments in DNA sequencing technology, it has become possible to reconstruct the genomes of plant pathogens in herbaria. In this article, we first summarize how whole genome analysis of ancient DNA has been recently used to reconstruct the 19th-century potato-blight epidemic that rapidly spread throughout Europe and triggered the Irish potato famine. We then discuss the exciting prospects offered by the emergence of the discipline of ancient plant pathogen genomics.


Via Kamoun Lab @ TSL
Mary Williams's curator insight, April 25, 2014 3:02 AM

Good overview for students - very accessible and interesting!

Freddy Monteiro's comment April 25, 2014 4:21 AM
This is a great source of teaching materials for potato late blight. Congrats on the work behind it.
Rescooped by The Sainsbury Lab from Publications
April 7, 2014 3:49 AM
Scoop.it!

Methods in Molecular Biology: Two-Dimensional Data Binning for the Analysis of Genome Architecture in Filamentous Plant Pathogens and Other Eukaryotes (2014)

Methods in Molecular Biology: Two-Dimensional Data Binning for the Analysis of Genome Architecture in Filamentous Plant Pathogens and Other Eukaryotes (2014) | Publications from The Sainsbury Laboratory | Scoop.it

Genome architecture often reflects an organism’s lifestyle and can therefore provide insights into gene function, regulation, and adaptation. In several lineages of plant pathogenic fungi and oomycetes, characteristic repeat-rich and gene-sparse regions harbor pathogenicity-related genes such as effectors. In these pathogens, analysis of genome architecture has assisted the mining for novel candidate effector genes and investigations into patterns of gene regulation and evolution at the whole genome level. Here we describe a two-dimensional data binning method in R with a heatmap-style graphical output to facilitate analysis and visualization of whole genome architecture. The method is flexible, combining whole genome architecture heatmaps with scatter plots of the genomic environment of selected gene sets. This enables analysis of specific values associated with genes such as gene expression and sequence polymorphisms, according to genome architecture. This method enables the investigation of whole genome architecture and reveals local properties of genomic neighborhoods in a clear and concise manner.


Via Kamoun Lab @ TSL
rougeforfire's curator insight, April 7, 2014 4:42 AM

This seems pretty interesting.. That's a nice gift idea

Rescooped by The Sainsbury Lab from Publications
March 28, 2014 5:55 AM
Scoop.it!

Frontiers Plant Science: The genome sequence and effector complement of the flax rust pathogen Melampsora lini (2014)

Frontiers Plant Science: The genome sequence and effector complement of the flax rust pathogen Melampsora lini (2014) | Publications from The Sainsbury Laboratory | Scoop.it

Rust fungi cause serious yield reductions on crops, including wheat, barley, soybean, coffee, and represent real threats to global food security. Of these fungi, the flax rust pathogen Melampsora lini has been developed extensively over the past 80 years as a model to understand the molecular mechanisms that underpin pathogenesis. During infection, M. lini secretes virulence effectors to promote disease. The number of these effectors, their function and their degree of conservation across rust fungal species is unknown. To assess this, we sequenced and assembled de novo the genome of M. lini isolate CH5 into 21,130 scaffolds spanning 189 Mbp (scaffold N50 of 31 kbp). Global analysis of the DNA sequence revealed that repetitive elements, primarily retrotransposons, make up at least 45% of the genome. Using ab initio predictions, transcriptome data and homology searches, we identified 16,271 putative protein-coding genes. An analysis pipeline was then implemented to predict the effector complement of M. lini and compare it to that of the poplar rust, wheat stem rust and wheat stripe rust pathogens to identify conserved and species-specific effector candidates. Previous knowledge of four cloned M. lini avirulence effector proteins and two basidiomycete effectors was used to optimise parameters of the effector prediction pipeline. Markov clustering based on sequence similarity was performed to group effector candidates from all four rust pathogens. Clusters containing at least one member from M. lini were further analysed and prioritized based on features including expression in isolated haustoria and infected leaf tissue and conservation across rust species. Herein, we describe 200 of 940 clusters that ranked highest on our priority list, representing 725 flax rust candidate effectors. Our findings on this important model rust species provide insight into how effectors of rust fungi are conserved across species and how they may act to promote infection on their hosts.


Via Francis Martin, Kamoun Lab @ TSL
Francis Martin's curator insight, March 4, 2014 2:30 PM

A long awaited genome! More rust genomes needed.

Rescooped by The Sainsbury Lab from Publications
March 16, 2014 5:22 PM
Scoop.it!

Plant Cell: Phytophthora infestans RXLR Effector PexRD2 Interacts with Host MAPKKKε to Suppress Plant Immune Signaling (2014)

Plant Cell: Phytophthora infestans RXLR Effector PexRD2 Interacts with Host MAPKKKε to Suppress Plant Immune Signaling (2014) | Publications from The Sainsbury Laboratory | Scoop.it

Mitogen-activated protein kinase cascades are key players in plant immune signaling pathways, transducing the perception of invading pathogens into effective defense responses. Plant pathogenic oomycetes, such as the Irish potato famine pathogen Phytophthora infestans, deliver RXLR effector proteins to plant cells to modulate host immune signaling and promote colonization. Our understanding of the molecular mechanisms by which these effectors act in plant cells is limited. Here, we report that the P. infestans RXLR effector PexRD2 interacts with the kinase domain of MAPKKKε, a positive regulator of cell death associated with plant immunity. Expression of PexRD2 or silencing MAPKKKε inNicotiana benthamiana enhances susceptibility to P. infestans. We show that PexRD2 perturbs signaling pathways triggered by or dependent on MAPKKKε. By contrast, homologs of PexRD2 from P. infestans had reduced or no interaction with MAPKKKε and did not promote disease susceptibility. Structure-led mutagenesis identified PexRD2 variants that do not interact with MAPKKKε and fail to support enhanced pathogen growth or perturb MAPKKKε signaling pathways. Our findings provide evidence that P. infestans RXLR effector PexRD2 has evolved to interact with a specific host MAPKKK to perturb plant immunity–related signaling.


Via Suayib Üstün, Kamoun Lab @ TSL
Suayib Üstün's curator insight, March 14, 2014 3:52 PM

What a great week for effector biology!!

Freddy Monteiro's comment March 14, 2014 8:42 PM
Indeed! A crazy week. You guys belong to an excellent generation of scientists.
Scooped by The Sainsbury Lab
March 12, 2014 4:23 PM
Scoop.it!

Current Opinion in Plant Biology: DNA assembly for plant biology: techniques and tools (2014)

Current Opinion in Plant Biology: DNA assembly for plant biology: techniques and tools (2014) | Publications from The Sainsbury Laboratory | Scoop.it
The Sainsbury Lab's insight:

As the speed and accuracy of genome sequencing improves, there are ever-increasing resources available for the design and construction of synthetic DNA parts. These can be used to engineer plant genomes to produce new functions or to elucidate the function of endogenous sequences. Until recently the assembly of amplified or cloned sequences into large and complex designs was a limiting step in plant synthetic biology and biotechnology. A number of new methods for assembling DNA molecules have been developed in the last few years, several of which have been applied to the production of molecules used to modify plant genomes.

No comment yet.
Scooped by The Sainsbury Lab
March 3, 2014 5:31 AM
Scoop.it!

Plant Physiology: The leucine-rich repeat receptor-like kinase BAK1 and the cytochrome P450 PAD3 contribute to innate immunity to aphids in Arabidopsis (2014)

Plant Physiology: The leucine-rich repeat receptor-like kinase BAK1 and the cytochrome P450 PAD3 contribute to innate immunity to aphids in Arabidopsis (2014) | Publications from The Sainsbury Laboratory | Scoop.it
The Sainsbury Lab's insight:

The importance of pathogen-associated molecular patterns (PAMPs)-triggered immunity (PTI) against microbial pathogens has been recently demonstrated. However, it is currently unclear if this layer of immunity mediated by surface-localized pattern recognition receptors (PRRs) also plays a role in basal resistance to insects, such as aphids. Here we show that PTI is an important component of plant innate immunity to insects. Extract of the green peach aphid (GPA) Myzus persicae triggers responses characteristic of PTI in Arabidopsis. Two separate eliciting GPA-derived fractions trigger induced-resistance to GPA that is dependent on the leucine-rich repeat receptor like kinase (LRR-RLK) BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1/ SOMATIC-EMBRYOGENESIS RECEPTOR-LIKE KINASE3 (BAK1/AtSERK3), which is a key regulator of several LRR-containing PRRs. BAK1 is required for GPA elicitor-mediated induction of reactive oxygen species (ROS) and callose deposition. Arabidopsis bak1 mutant plants are also compromised in immunity to Acyrthosiphon pisum (pea aphid) for which Arabidopsis is normally a non-host. Aphid-derived elicitors induce expression of PHYTOALEXIN DEFICIENT 3 (PAD3), a key cytochrome P450 involved in the biosynthesis of camalexin, which is a major Arabidopsis phytoalexin that is toxic to GPA. PAD3 is also required for induced-resistance to GPA, independently of BAK1 and ROS production. Our results reveal that plant innate immunity to insects may involve early perception of elicitors by cell surface-localized PRRs leading to subsequent downstream immune signaling.

No comment yet.
Scooped by The Sainsbury Lab
February 21, 2014 6:13 AM
Scoop.it!

A Golden Gate Modular Cloning Toolbox for Plants - ACS Synthetic Biology (ACS Publications) (2014)

A Golden Gate Modular Cloning Toolbox for Plants - ACS Synthetic Biology (ACS Publications) (2014) | Publications from The Sainsbury Laboratory | Scoop.it
The Sainsbury Lab's insight:

Plant Synthetic Biology requires robust and efficient methods for assembling multigene constructs. Golden Gate cloning provides a precision module-based cloning technique for facile assembly of multiple genes in one construct. We present here a versatile resource for plant biologists comprising a set of cloning vectors and 96 standardized parts to enable Golden Gate construction of multigene constructs for plant transformation. Parts include promoters, untranslated sequences, reporters, antigenic tags, localization signals, selectable markers, and terminators. The comparative performance of parts in the model plantNicotiana benthamiana is discussed.

No comment yet.
Rescooped by The Sainsbury Lab from Publications
January 31, 2014 3:41 AM
Scoop.it!

Science: Effector Specialization in a Lineage of the Irish Potato Famine Pathogen (2014)

Science: Effector Specialization in a Lineage of the Irish Potato Famine Pathogen (2014) | Publications from The Sainsbury Laboratory | Scoop.it

Accelerated gene evolution is a hallmark of pathogen adaptation following a host jump. Here, we describe the biochemical basis of adaptation and specialization of a plant pathogen effector after its colonization of a new host. Orthologous protease inhibitor effectors from the Irish potato famine pathogen, Phytophthora infestans, and its sister species, Phytophthora mirabilis, which is responsible for infection of Mirabilis jalapa, are adapted to protease targets unique to their respective host plants. Amino acid polymorphisms in both the inhibitors and their target proteases underpin this biochemical specialization. Our results link effector specialization to diversification and speciation of this plant pathogen.


Via Kamoun Lab @ TSL
No comment yet.
Scooped by The Sainsbury Lab
January 6, 2014 4:55 AM
Scoop.it!

PLOS Genetics: ESCRT-I Mediates FLS2 Endosomal Sorting and Plant Immunity (2013)

PLOS Genetics: ESCRT-I Mediates FLS2 Endosomal Sorting and Plant Immunity (2013) | Publications from The Sainsbury Laboratory | Scoop.it
PLOS Genetics is an open-access
The Sainsbury Lab's insight:

The plant immune receptor FLAGELLIN SENSING 2 (FLS2) is present at the plasma membrane and is internalized following activation of its ligand flagellin (flg22). We show that ENDOSOMAL SORTING COMPLEX REQUIRED FOR TRANSPORT (ESCRT)-I subunits play roles in FLS2 endocytosis in Arabidopsis. VPS37-1 co-localizes with FLS2 at endosomes and immunoprecipitates with the receptor upon flg22 elicitation. Vps37-1 mutants are reduced in flg22-induced FLS2 endosomes but not in endosomes labeled by Rab5 GTPases suggesting a defect in FLS2 trafficking rather than formation of endosomes. FLS2 localizes to the lumen of multivesicular bodies, but this is altered in vps37-1 mutants indicating compromised endosomal sorting of FLS2 by ESCRT-I loss-of-function. VPS37-1 and VPS28-2 are critical for immunity against bacterial infection through a role in stomatal closure. Our findings identify that VPS37-1, and likewise VPS28-2, regulate late FLS2 endosomal sorting and reveals that ESCRT-I is critical for flg22-activated stomatal defenses involved in plant immunity.

No comment yet.