Publications from The Sainsbury Laboratory
65.5K views | +0 today
Follow
Publications from The Sainsbury Laboratory
Your new post is loading...
Your new post is loading...
Scooped by The Sainsbury Lab
March 31, 2015 6:14 AM
Scoop.it!

PLOS Pathogens: Transgenic Expression of the Dicotyledonous Pattern Recognition Receptor EFR in Rice Leads to Ligand-Dependent Activation of Defense Responses (2015)

PLOS Pathogens: Transgenic Expression of the Dicotyledonous Pattern Recognition Receptor EFR in Rice Leads to Ligand-Dependent Activation of Defense Responses (2015) | Publications from The Sainsbury Laboratory | Scoop.it
Author Summary Plants possess multi-layered immune recognition systems. Early in the infection process, plants use receptor proteins to recognize pathogen molecules. Some of these receptors are present in only in a subset of plant species. Transfer of these taxonomically restricted immune receptors between plant species by genetic engineering is a promising approach for boosting the plant immune system. Here we show the successful transfer of an immune receptor from a species in the mustard family, called EFR, to rice. Rice plants expressing EFR are able to sense the bacterial ligand of EFR and elicit an immune response. We show that the EFR receptor is able to use components of the rice immune signaling pathway for its function. Under laboratory conditions, this leads to an enhanced resistance response to two weakly virulent isolates of an economically important bacterial disease of rice.
No comment yet.
Scooped by The Sainsbury Lab
March 25, 2015 7:13 AM
Scoop.it!

New Phytologist: Plants, fungi and oomycetes: a 400-million year affair that shapes the biosphere (2015)

New Phytologist: Plants, fungi and oomycetes: a 400-million year affair that shapes the biosphere (2015) | Publications from The Sainsbury Laboratory | Scoop.it
The Sainsbury Lab's insight:

In a rare gathering, genomics met palaeontology at the 10th New Phytologist Workshop on the ‘Origin and evolution of plants and their interactions with fungi’. An eclectic group of 17 experts met at The Natural History Museum (London, UK) on 9–10 September 2014 to discuss the latest findings on plant interactions with fungi (Eumycota) and oomycetes (Oomycota = Peronosporomycota), with topics ranging from the fossil record and comparative genomics to symbiosis and phytopathology. The discussions were largely disseminated via social media (Box 1). Highly diverse plant–fungal interactions have formed the backbone of land ecosystems and biogeochemical cycles since the Palaeozoic (see Fig. 1 for geological timeframe). As summarized by Christine Strullu-Derrien and Paul Kenrick (The Natural History Museum, London, UK) the first land plants arose c. 470 million years (Myr) ago (Kenrick et al., 2012; Edwards et al., 2014), at which time fungi and oomycetes had already colonized terrestrial ecosystems. Following their terrestrialization, these microbes began to abound within plant fossils (Taylor et al., 2014, and references therein). Ultimately, biological interactions sculpted the genomes of plants, fungi and oomycetes (e.g. Schmidt & Panstruga, 2011; Kohler et al., 2015). Here we illustrate the picture that has emerged from the discussions at the 10th New Phytologist Workshop, and point to some pending questions.

No comment yet.
Scooped by The Sainsbury Lab
March 20, 2015 7:44 AM
Scoop.it!

Nature Immunology - News and Views: A new receptor for LPS (2015)

Nature Immunology - News and Views: A new receptor for LPS (2015) | Publications from The Sainsbury Laboratory | Scoop.it
The Sainsbury Lab's insight:

The innate immune system’s ability to recognize infectious non-self molecules relies on the sensitive perception of conserved pathogen- associated molecular patterns (PAMPs) by host pattern-recognition receptors (PRRs). A stereotypical bacterial PAMP recognized by mammalian cells is lipopolysaccharide (LPS), the major constituent of the outer cell envelope of Gram-negative bacteria. Although plants are also able to perceive LPS and mount innate immune responses, no plant receptor for LPS was known until now. In this issue of Nature Immunology, Ranf et al. report the identification of a plasma-membrane receptor kinase that is required for respon- siveness to LPS in plants and define a type of domain potentially involved in the perception of LPS.

No comment yet.
Scooped by The Sainsbury Lab
March 17, 2015 6:04 AM
Scoop.it!

TAG: Mapping the ‘breaker’ element of the gametocidal locus proximal to a block of sub-telomeric heterochromatin on the long arm of chromosome 4Ssh of Aegilops sharonensis (2015)

TAG: Mapping the ‘breaker’ element of the gametocidal locus proximal to a block of sub-telomeric heterochromatin on the long arm of chromosome 4Ssh of Aegilops sharonensis (2015) | Publications from The Sainsbury Laboratory | Scoop.it
The Sainsbury Lab's insight:
Key message

The ‘breaker’ element ( GcB ) of the gametocidal locus derived from Aegilops sharonensishas been mapped to a region proximal to a block of sub-telomeric heterochromatin on chromosome 4S sh L.

Abstract

The production of alien chromosome addition lines allows the transfer of useful genetic variation into elite wheat varieties from related wild species. However, some wild relatives of wheat, particularly those within the Sitopsis section of the genus Aegilops, possess chromosomes that are transmitted preferentially to the offspring when addition lines are generated. Species within the Sitopsis group possess the S genome, and among these species, Aegilops sharonensis (2n = 14, SshSsh) carries the Ssh genome which is closely related to the D genome of hexaploid wheat. Some S genome chromosomes carry gametocidal loci, which induce severe chromosome breakage in gametes lacking the gametocidal chromosome, and hence, result in gamete abortion. The preferential transmission of gametocidal loci could be exploited in wheat breeding, because linking gametocidal loci with important agronomic traits in elite wheat varieties would ensure retention of these traits through successive generations. In this study, we have mapped the breaker element of the gametocidal locus derived from Ae. sharonensis to the region immediately proximal to a block of sub-telomeric heterochromatin on the long arm of chromosome 4Ssh.

No comment yet.
Scooped by The Sainsbury Lab
March 9, 2015 7:05 AM
Scoop.it!

Nature Biotech - News & Views: Engineering insect-free cereals (2015)

The Sainsbury Lab's insight:

Insect pests reduce yields of crops worldwide through direct damage and because they spread devastating viral diseases. In Asia, the brown planthopper (BPH) decimates rice (Oryza sativa) crops, causing the loss of billions of dollars annually1. In this issue, Liu et al.2 report the cloning of a rice genetic locus that confers broad-spectrum resistance to BPH and at least one other planthopper species (white back planthopper). Introducing this locus into plant genomes is likely to provide an effective means of combating insect pests of rice and of other cereals such as maize.

No comment yet.
Scooped by The Sainsbury Lab
March 6, 2015 4:17 AM
Scoop.it!

Scientific Reports: Autoimmunity conferred by chs3-2D relies on CSA1, its adjacent TNL-encoding neighbour (2015)

Scientific Reports: Autoimmunity conferred by chs3-2D relies on CSA1, its adjacent TNL-encoding neighbour (2015) | Publications from The Sainsbury Laboratory | Scoop.it
Plant innate immunity depends on the function of a large number of intracellular immune receptor proteins, the majority of which are structurally similar to mammalian nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) proteins. CHILLING SENSITIVE 3 (CHS3) encodes an atypical Toll/Interleukin 1 Receptor (TIR)-type NLR protein with an additional Lin-11, Isl-1 and Mec-3 (LIM) domain at its C-terminus. The gain-of-function mutant allele chs3-2D exhibits severe dwarfism and constitutively activated defense responses, including enhanced resistance to virulent pathogens, high defence marker gene expression, and salicylic acid accumulation. To search for novel regulators involved in CHS3-mediated immune signaling, we conducted suppressor screens in the chs3-2D and chs3-2D pad4-1 genetic backgrounds. Alleles of sag101 and eds1-90 were isolated as complete suppressors of chs3-2D, and alleles of sgt1b were isolated as partial suppressors of chs3-2D pad4-1. These mutants suggest that SAG101, EDS1-90, and SGT1b are all positive regulators of CHS3-mediated defense signaling. Additionally, the TIR-type NLR-encoding CSA1 locus located genomically adjacent to CHS3 was found to be fully required for chs3-2D-mediated autoimmunity. CSA1 is located 3.9[emsp14]kb upstream of CHS3 and is transcribed in the opposite direction. Altogether, these data illustrate the distinct genetic requirements for CHS3-mediated defense signaling.
No comment yet.
Rescooped by The Sainsbury Lab from Publications
March 2, 2015 9:36 AM
Scoop.it!

Frontiers in Plant Science: The “sensor domains” of plant NLR proteins: more than decoys? (2015)

Frontiers in Plant Science: The “sensor domains” of plant NLR proteins: more than decoys? (2015) | Publications from The Sainsbury Laboratory | Scoop.it

Our conceptual and mechanistic understanding of how plant nucleotide-binding leucine-rich repeat (NLR or NB-LRR) proteins perceive pathogens continues to advance. NLRs are intracellular multidomain proteins that recognize pathogen-derived effectors either directly or indirectly (Jones and Dangl, 2006; van der Hoorn and Kamoun, 2008; Dodds and Rathjen, 2010; Cesari et al., 2014). In the direct model, the NLR protein binds a pathogen effector or serves as a substrate for the effector’s enzymatic activity. In the indirect model, the NLR recognizes modifications of additional host protein(s) targeted by the effector. Such intermediate host protein(s) are often called effector targets (ETs). However, given that effectors can act on multiple host targets, the specific protein that mediates recognition by the NLR may not be the effector’s operative target and may have evolved to function as a decoy dedicated to pathogen detection. This “decoy” model contrasts with the “guard” model in which the NLR perceives the effector via its action on its operative target (van der Hoorn and Kamoun, 2008). 

In a recent article, Cesari et al. (2014) elegantly synthesized the literature to propose a novel model of how NLRs recognise effectors termed the “integrated decoy” hypothesis. Based on new data from several pathosystems, it appears that some NLRs recognize pathogen effectors through extraneous domains that have evolved by duplication of an ET followed by fusion into the NLR. This NLR-integrated domain mimics the effector binding/substrate property of the original ET to enable pathogen detection. In addition, these “receptor” or “sensor” NLRs typically partner with NLR proteins with a classic architecture that function as signalling partners required for the resistance response (Eitas and Dangl, 2010; Cesari et al., 2013; Cesari et al., 2014; Williams et al., 2014).

Here, we expand on the Cesari et al. (2014) model and introduce the possibility that NLR-integrated domains do not have to be decoys (as in defective mimics) of the effector’s operative target. Indeed, in addition to binding effectors or serving as their substrates, operative targets carry a biochemical activity that is modulated by the effector. The perturbation of this activity by the effector leads to effector-triggered susceptibility, an activity often related to immunity (Boller and He, 2009; Dodds and Rathjen, 2010; Win et al., 2012). Clearly NLR-integrated domains must retain the “sensor” activity of the ancestral ET, but they could also retain their biochemical activity, continuing to function in the effector-targeted pathway even as an extraneous domain within a classic NLR architecture. At present, this possibility cannot be discounted given that the biochemical activities of the ancestral ETs and their NLR-integrated counterparts are generally unknown. Additionally, when NLR-fusions occurred recently, there may not have been enough time for the integrated ET to lose its original function and evolve into a decoy. We therefore propose to refer to the extraneous domains of classic NLR proteins described by Cesari et al. (2014) as sensor domains (SD), a term that is agnostic to any potential biochemical activities of the integrated module.

How to test whether or not SDs are decoys? We propose a straightforward genetic test that can reject the decoy hypothesis. Isogenic plants either carrying or lacking the NLR-SD can be challenged with a pathogen strain that lacks the matching avirulence effector (Figure 1). There are several possible outcomes. If the NLR-SD isogenic lines do not differ in their response to the pathogen without the matching effector, the result is inconclusive and the null decoy hypothesis cannot be rejected. If the presence of NLR-SD without the known matching effector shows higher levels of resistance, and there are no signs of typical effector-triggered immunity, then the SD is likely to have retained the ET biochemical activity and contributes to basal immunity in a manner analogous to the ancestral ET. An even more interesting result would be if in the absence of the matching effector, the NLR-SD line is more susceptible as has been shown for several ETs (van Schie and Takken, 2014). In this scenario, another (unrecognized) effector might still be targeting the original biochemical activity of the SD domain. It would be conceptually fascinating if an NLR that functions as a resistance (R) gene against certain strains of a pathogen becomes a susceptibility (S) gene when exposed to other strains. Once again, this concept emphasizes how the outcome of plant-pathogen interactions is so critically dependent on the genotypes of the interacting organisms – a gene that has a certain impact in a particular genetic combination can have the exact opposite effect in another (Jones and Dangl, 2006; van der Hoorn and Kamoun, 2008; Dodds and Rathjen, 2010; Win et al., 2012).

Our goal is not to engage in an exercise in semantics. However, we wish to avoid conceptually restrictive terminology and urge the plant-microbe interactions community to test a rich spectrum of models and hypotheses. The proposed sensor domain terminology would accommodate this breadth of ideas. Ultimately, it may very well turn out that the majority, if not all, of the NLR integrated domains have lost their biochemical activities and have evolved into decoys. Also, it is possible that the sensor domain has already evolved into a decoy prior to recombination into a NLR. Nonetheless, further genetic and biochemical experiments are required to determine whether sensor domains of NLR-SDs are decoys or biochemically functional duplicates of their ancestral ETs.


Via Kamoun Lab @ TSL
No comment yet.
Scooped by The Sainsbury Lab
March 2, 2015 6:56 AM
Scoop.it!

eLIFE: Evidence for suppression of immunity as a driver for genomic introgressions and host range expansion in races of Albugo candida, a generalist parasite (2015)

eLIFE: Evidence for suppression of immunity as a driver for genomic introgressions and host range expansion in races of Albugo candida, a generalist parasite (2015) | Publications from The Sainsbury Laboratory | Scoop.it
The Sainsbury Lab's insight:

How generalist parasites with wide host ranges can evolve is a central question in parasite evolution. Albugo candida is an obligate biotrophic parasite that consists of many physiological races that each specialize on distinct Brassicaceae host species. By analyzing genome sequence assemblies of five isolates, we show they represent three races that are genetically diverged by ~1%. Despite this divergence, their genomes are mosaic-like, with ~25% being introgressed from other races. Sequential infection experiments show that infection by adapted races enables subsequent infection of hosts by normally non-infecting races. This facilitates introgression and the exchange of effector repertoires, and may enable the evolution of novel races that can undergo clonal population expansion on new hosts. We discuss recent studies on hybridization in other eukaryotes such as yeast, Heliconius butterflies, Darwin's finches, sunflowers and cichlid fishes, and the implications of introgression for pathogen evolution in an agro-ecological environment. - See more at: http://elifesciences.org/content/early/2015/02/27/eLife.04550/article-data#.dpuf

No comment yet.
Scooped by The Sainsbury Lab
January 29, 2015 4:57 AM
Scoop.it!

PLoS Pathogens: The Phylogenetically-Related Pattern Recognition Receptors EFR and XA21 Recruit Similar Immune Signaling Components in Monocots and Dicots (2015)

PLoS Pathogens: The Phylogenetically-Related Pattern Recognition Receptors EFR and XA21 Recruit Similar Immune Signaling Components in Monocots and Dicots (2015) | Publications from The Sainsbury Laboratory | Scoop.it

Pests and diseases cause significant agricultural losses. Plants recognize pathogen-derived molecules via plasma membrane-localized immune receptors (called pattern recognition receptors or PRRs), resulting in pathogen resistance. In recent years, the transfer of PRRs across plant species has emerged as a promising biotechnological approach to improve crop disease resistance. Successful transfers of PRRs suggest that immune signaling components are conserved across plant species. In this study, we demonstrate that the PRR XA21 from the monocot plant rice is functional in the dicot plant Arabidopsis thaliana (Arabidopsis) and that it confers quantitatively enhanced resistance to bacteria. Furthermore, we show that the rice XA21 and the Arabidopsis EFR, which are evolutionary-distant but phylogenetically closely related, recruit similar signaling components for their function, revealing an overall conservation of immune pathways across monocots and dicots. These findings demonstrate evolutionary conservation of downstream signaling from PRRs and indicate that transfer of PRRs is possible between different plant families, but also between monocots and dicots.

No comment yet.
Scooped by The Sainsbury Lab
January 16, 2015 4:15 AM
Scoop.it!

Molecular Plant-Microbe Interactions: Journal - 0(ja): 14-3-3 proteins in plant-pathogen interactions (2015)

Molecular Plant-Microbe Interactions:  Journal - 0(ja): 14-3-3 proteins in plant-pathogen interactions (2015) | Publications from The Sainsbury Laboratory | Scoop.it
The Sainsbury Lab's insight:

14-3-3 proteins define a eukaryotic-specific protein family with a general role in signal transduction. Primarily, 14-3-3 proteins act as phospho-sensors, binding phosphorylated client proteins and modulating their functions. Since phosphorylation regulates a plethora of different physiological responses in plants, 14-3-3 proteins play roles in multiple signalling pathways, including those controlling metabolism, hormone signalling, cell division, and responses to abiotic and biotic stimuli. Increasing evidence supports a prominent role of 14-3-3 proteins in regulating plant immunity against pathogens at various levels. In this review, potential links between 14-3-3 function and the regulation of plant-pathogen interactions are discussed, with a special focus on the regulation of 14-3-3s in response to pathogen perception, interactions between 14-3-3s and defence-related proteins, and 14-3-3s as targets of pathogen effectors.

No comment yet.
Scooped by The Sainsbury Lab
December 8, 2014 5:30 AM
Scoop.it!

Frontiers in Plant Sci: Strategies for transferring resistance into wheat: from wide crosses to GM cassettes (2014)

Frontiers in Plant Sci: Strategies for transferring resistance into wheat: from wide crosses to GM cassettes (2014) | Publications from The Sainsbury Laboratory | Scoop.it
The domestication of wheat in the Fertile Crescent 10,000 years ago led to a genetic bottleneck. Modern agriculture has further narrowed the genetic base by introducing extreme levels of uniformity...
The Sainsbury Lab's insight:

The domestication of wheat in the Fertile Crescent 10,000 years ago led to a genetic bottleneck. Modern agriculture has further narrowed the genetic base by introducing extreme levels of uniformity on a vast spatial and temporal scale. This reduction in genetic complexity renders the crop vulnerable to new and emerging pests and pathogens. The wild relatives of wheat represent an important source of genetic variation for disease resistance. For nearly a century farmers, breeders, and cytogeneticists have sought to access this variation for crop improvement. Several barriers restricting interspecies hybridization and introgression have been overcome, providing the opportunity to tap an extensive reservoir of genetic diversity. Resistance has been introgressed into wheat from at least 52 species from 13 genera, demonstrating the remarkable plasticity of the wheat genome and the importance of such natural variation in wheat breeding. Two main problems hinder the effective deployment of introgressed resistance genes for crop improvement: (1) the simultaneous introduction of genetically linked deleterious traits and (2) the rapid breakdown of resistance when deployed individually. In this review, we discuss how recent advances in molecular genomics are providing new opportunities to overcome these problems.

Scooped by The Sainsbury Lab
November 29, 2014 5:46 AM
Scoop.it!

Traffic: Rerouting of plant late endocytic trafficking towards a pathogen interface (2014)

Traffic: Rerouting of plant late endocytic trafficking towards a pathogen interface (2014) | Publications from The Sainsbury Laboratory | Scoop.it
The Sainsbury Lab's insight:

A number of plant pathogenic and symbiotic microbes produce specialized cellular structures that invade host cells where they remain enveloped by host-derived membranes. The mechanisms underlying the biogenesis and functions of host-microbe interfaces are poorly understood. Here, we show that plant late endocytic trafficking is diverted towards the extrahaustorial membrane; a host-pathogen interface that develops in plant cells invaded by Irish potato famine pathogen Phytophthora infestans. A late endosome and tonoplast marker protein Rab7

GTPase RabG3c, but not a tonoplast-localized sucrose transporter, is recruited to the extrahaustorial membrane suggesting specific rerouting of vacuole targeted late endosomes to a host pathogen interface. We revealed the dynamic nature of this process by showing that, upon activation, a cell surface immune receptor traffics towards the haustorial interface. Our work provides insight into the biogenesis of the extrahaustorial membrane and reveals dynamic processes that recruit membrane compartments and immune receptors to this host-pathogen interface.

No comment yet.
Scooped by The Sainsbury Lab
November 14, 2014 5:48 AM
Scoop.it!

Curr Opinion in Microbiology: Targeting of plant pattern recognition receptor-triggered immunity by bacterial type-III secretion system effectors (2014)

Curr Opinion in Microbiology: Targeting of plant pattern recognition receptor-triggered immunity by bacterial type-III secretion system effectors (2014) | Publications from The Sainsbury Laboratory | Scoop.it
The Sainsbury Lab's insight:

During infection, microbes are detected by surface-localized pattern recognition receptors (PRRs), leading to an innate immune response that prevents microbial ingress. Therefore, successful pathogens must evade or inhibit PRR-triggered immunity to cause disease. In the past decade, a number of type-III secretion system effector (T3Es) proteins from plant pathogenic bacteria have been shown to suppress this layer of innate immunity. More recently, the detailed mechanisms of action have been defined for several of these effectors. Interestingly, effectors display a wide array of virulence targets, being able to prevent activation of immune receptors and to hijack immune signaling pathways. Besides being a fascinating example of pathogen-host co-evolution, effectors have also emerged as valuable tools to dissect important biological processes in host cells.

No comment yet.
Rescooped by The Sainsbury Lab from Plants and Microbes
March 31, 2015 4:18 AM
Scoop.it!

Nature Plants: Elicitin recognition confers enhanced resistance to Phytophthora infestans in potato (2015)

Nature Plants: Elicitin recognition confers enhanced resistance to Phytophthora infestans in potato (2015) | Publications from The Sainsbury Laboratory | Scoop.it

Potato late blight, caused by the destructive Irish famine pathogen Phytophthora infestans, is a major threat to global food security1,2. All late blight resistance genes identified to date belong to the coiled-coil, nucleotide-binding, leucine-rich repeat class of intracellular immune receptors3. However, virulent races of the pathogen quickly evolved to evade recognition by these cytoplasmic immune receptors4. Here we demonstrate that the receptor-like protein ELR (elicitin response) from the wild potato Solanum microdontum mediates extracellular recognition of the elicitin domain, a molecular pattern that is conserved in Phytophthora species. ELR associates with the immune co-receptor BAK1/SERK3 and mediates broad-spectrum recognition of elicitin proteins from several Phytophthora species, including four diverse elicitins from P. infestans. Transfer of ELR into cultivated potato resulted in enhanced resistance to P. infestans. Pyramiding cell surface pattern recognition receptors with intracellular immune receptors could maximize the potential of generating a broader and potentially more durable resistance to this devastating plant pathogen.


Via Kamoun Lab @ TSL
No comment yet.
Scooped by The Sainsbury Lab
March 24, 2015 5:39 AM
Scoop.it!

Nature Biotechnology: MutMap accelerates breeding of a salt-tolerant rice cultivar (2015)

Nature Biotechnology: MutMap accelerates breeding of a salt-tolerant rice cultivar (2015) | Publications from The Sainsbury Laboratory | Scoop.it
The Sainsbury Lab's insight:

Following the 2011 earthquake and tsunami that affected Japan, >20,000 ha of rice paddy field was inundated with seawater, resulting in salt contamination of the land. As local rice landraces are not tolerant of high salt concentrations, we set out to develop a salt-tolerant rice cultivar. We screened 6,000 ethyl methanesulfonate (EMS) mutant lines of a local elite cultivar, 'Hitomebore', and identified a salt-tolerant mutant that we name hitomebore salt tolerant 1 (hst1). In this Correspondence, we report how we used our MutMap method to rapidly identify a loss-of-function mutation responsible for the salt tolerance of hst1 rice. The salt-tolerant hst1 mutant was used to breed a salt-tolerant variety named 'Kaijin', which differs from Hitomebore by only 201 single-nucleotide polymorphisms (SNPs). Field trials showed that it has the same growth and yield performance as the parental line under normal growth conditions. Notably, production of this salt-tolerant mutant line ready for delivery to farmers took only two years using our approach.

No comment yet.
Scooped by The Sainsbury Lab
March 19, 2015 7:41 AM
Scoop.it!

TiPS: Importance of tyrosine phosphorylation in receptor kinase complexes (2015)

TiPS: Importance of tyrosine phosphorylation in receptor kinase complexes (2015) | Publications from The Sainsbury Laboratory | Scoop.it
The Sainsbury Lab's insight:
Highlights

• Components of brassinosteroid and PAMP receptor complexes are phosphorylated on tyrosine residues.

• Tyrosine phosphorylation is an important mechanism for the activation of receptor kinase complexes.
• Phosphorylation of specific tyrosine residues could contribute to specific signaling outcomes.

 

Tyrosine phosphorylation is an important post-translational modification that is known to regulate receptor kinase (RK)-mediated signaling in animals. Plant RKs are annotated as serine/threonine kinases, but recent work has revealed that tyrosine phosphorylation is also crucial for the activation of RK-mediated signaling in plants. These initial observations have paved the way for subsequent detailed studies on the mechanism of activation of plant RKs and the biological relevance of tyrosine phosphorylation for plant growth and immunity. In this Opinion article we review recent reports on the contribution of RK tyrosine phosphorylation in plant growth and immunity; we propose that tyrosine phosphorylation plays a major regulatory role in the initiation and transduction of RK-mediated signaling in plants.

No comment yet.
Scooped by The Sainsbury Lab
March 12, 2015 5:48 AM
Scoop.it!

New Phytologist: Arabidopsis EF-Tu receptor enhances bacterial disease resistance in transgenic wheat (2015)

New Phytologist: Arabidopsis EF-Tu receptor enhances bacterial disease resistance in transgenic wheat (2015) | Publications from The Sainsbury Laboratory | Scoop.it
The Sainsbury Lab's insight:
Perception of pathogen (or microbe)-associated molecular patterns (PAMPs/MAMPs) by pattern recognition receptors (PRRs) is a key component of plant innate immunity. The Arabidopsis PRR EF-Tu receptor (EFR) recognizes the bacterial PAMP elongation factor Tu (EF-Tu) and its derived peptide elf18. Previous work revealed that transgenic expression of AtEFR in Solanaceae confers elf18 responsiveness and broad-spectrum bacterial disease resistance.In this study, we developed a set of bioassays to study the activation of PAMP-triggered immunity (PTI) in wheat. We generated transgenic wheat (Triticum aestivum) plants expressing AtEFR driven by the constitutive rice actin promoter and tested their response to elf18.We show that transgenic expression of AtEFR in wheat confers recognition of elf18, as measured by the induction of immune marker genes and callose deposition. When challenged with the cereal bacterial pathogen Pseudomonas syringae pv. oryzae, transgenic EFR wheat lines had reduced lesion size and bacterial multiplication.These results demonstrate that AtEFR can be transferred successfully from dicot to monocot species, further revealing that immune signalling pathways are conserved across these distant phyla. As novel PRRs are identified, their transfer between plant families represents a useful strategy for enhancing resistance to pathogens in crops.
No comment yet.
Scooped by The Sainsbury Lab
March 6, 2015 3:09 PM
Scoop.it!

Nature Comms: Two linked pairs of Arabidopsis TNL resistance genes independently confer recognition of bacterial effector ​AvrRps4 (2015)

Nature Comms: Two linked pairs of Arabidopsis TNL resistance genes independently confer recognition of bacterial effector ​AvrRps4 (2015) | Publications from The Sainsbury Laboratory | Scoop.it
The Sainsbury Lab's insight:

Plant immunity requires recognition of pathogen effectors by intracellular NB-LRR immune receptors encoded by Resistance (R) genes. Most R proteins recognize a specific effector, but some function in pairs that recognize multiple effectors. Arabidopsis thaliana TIR-NB-LRR proteins RRS1-R and RPS4together recognize two bacterial effectors, AvrRps4 from Pseudomonas syringae and PopP2 from Ralstonia solanacearum. However, AvrRps4, but not PopP2, is recognized in rrs1/rps4 mutants. We reveal an R gene pair that resembles and is linked to RRS1/RPS4, designated as RRS1B/RPS4B, which confers recognition of AvrRps4 but not PopP2. Like RRS1/RPS4, RRS1B/RPS4B proteins associate and activate defence genes upon AvrRps4 recognition. Inappropriate combinations (RRS1/RPS4B or RRS1B/RPS4) are non-functional and this specificity is not TIR domain dependent. Distinct putative orthologues of both pairs are maintained in the genomes of Arabidopsis thalianarelatives and are likely derived from a common ancestor pair. Our results provide novel insights into paired R gene function and evolution.

No comment yet.
Rescooped by The Sainsbury Lab from Publications
March 3, 2015 5:59 AM
Scoop.it!

bioRxiv: The NLR helper protein NRC3 but not NRC1 is required for Pto-mediated cell death in Nicotiana benthamiana (2015)

bioRxiv: The NLR helper protein NRC3 but not NRC1 is required for Pto-mediated cell death in Nicotiana benthamiana (2015) | Publications from The Sainsbury Laboratory | Scoop.it

Intracellular immune receptors of the nucleotide-binding leucine-rich repeat (NB-LRR or NLR) proteins often function in pairs, with "helper" proteins required for the activity of "sensors" that mediate pathogen recognition. The NLR helper NRC1 (NB-LRR protein required for HR-associated cell death 1) has been described as a signalling hub required for the cell death mediated by both cell surface and intracellular immune receptors in the model plant Nicotiana benthamiana. However, this work predates the availability of the N. benthamiana genome and whether NRC1 is indeed required for the reported phenotypes has not been confirmed. Here, we investigated the NRC family of solanaceous plants using a combination of genome annotation, phylogenetics, gene silencing and genetic complementation experiments. We discovered that a paralog of NRC1, we termed NRC3, is required for the hypersensitive cell death triggered by the disease resistance protein Pto but not Rx and Mi-1.2. NRC3 may also contribute to the hypersensitive cell death triggered by the receptor-like protein Cf-4. Our results highlight the importance of applying genetic complementation to validate gene function in RNA silencing experiments.


Via Kamoun Lab @ TSL
Rescooped by The Sainsbury Lab from Plant Pathogenomics
March 2, 2015 6:59 AM
Scoop.it!

Genome Biology: Field pathogenomics reveals the emergence of a diverse wheat yellow rust population (2015)

Genome Biology: Field pathogenomics reveals the emergence of a diverse wheat yellow rust population (2015) | Publications from The Sainsbury Laboratory | Scoop.it

Background Emerging and re-emerging pathogens imperil public health and global food security. Responding to these threats requires improved surveillance and diagnostic systems. Despite their potential, genomic tools have not been readily applied to emerging or re-emerging plant pathogens such as the wheat yellow (stripe) rust pathogen Puccinia striiformis f. sp. tritici (PST). This is due largely to the obligate parasitic nature of PST, as culturing PST isolates for DNA extraction remains slow and tedious. Results To counteract the limitations associated with culturing PST, we developed and applied a field pathogenomics approach by transcriptome sequencing infected wheat leaves collected from the field in 2013. This enabled us to rapidly gain insights into this emerging pathogen population. We found that the PST population across the United Kingdom, UK, underwent a major shift in recent years. Population genetic structure analyses revealed four distinct lineages that correlated to the phenotypic groups determined through traditional pathology-based virulence assays. Furthermore, the genetic diversity between members of a single population cluster for all 2013 PST field samples was much higher than that displayed by historical UK isolates, revealing a more-diverse population of PST. Conclusions Our field pathogenomics approach uncovered a dramatic shift in the PST population in the UK, likely due to a recent introduction of a diverse set of exotic PST lineages. The methodology described herein accelerates genetic analysis of pathogen populations and circumvents the difficulties associated with obligate plant pathogens. In principle, this strategy can be widely applied to a variety of plant pathogens.


Via Kamoun Lab @ TSL
No comment yet.
Scooped by The Sainsbury Lab
February 5, 2015 7:23 AM
Scoop.it!

Molecular Plant-Microbe Interactions: Candidate Effector Proteins of the Rust Pathogen Melampsora Larici-Populina Target Diverse Plant Cell Compartments (2015)

Molecular Plant-Microbe Interactions: Candidate Effector Proteins of the Rust Pathogen Melampsora Larici-Populina Target Diverse Plant Cell Compartments (2015) | Publications from The Sainsbury Laboratory | Scoop.it
The Sainsbury Lab's insight:

Rust fungi are devastating crop pathogens that deliver effector proteins into infected tissues to modulate plant functions and promote parasitic growth. The genome of the poplar leaf rust fungus Melampsora larici-populina revealed a large catalogue of secreted proteins, some of which have been considered candidate effectors. Unravelling how these proteins function in host cells is key to understanding pathogenicity mechanisms and developing resistant plants. In this study, we used an effectoromics pipeline to select, clone, and express 20 candidate effectors in Nicotiana benthamiana leaf cells to determine their subcellular localisation and identify the plant proteins they interact with. Confocal microscopy revealed that six candidate effectors target the nucleus, nucleoli, chloroplasts, mitochondria and discrete cellular bodies. We also used coimmunoprecipitation and mass spectrometry to identify 606 N. benthamiana proteins that associate with the candidate effectors. Five candidate effectors specifically associated with a small set of plant proteins that may represent biologically relevant interactors. We confirmed the interaction between the candidate effector MLP124017 and the TOPLESS-Related Protein 4 from poplar by in planta coimmunoprecipitation. Altogether, our data enable us to validate effector proteins from M. larici-populina and reveal that these proteins may target multiple compartments and processes in plant cells. It also shows that N. benthamiana can be a powerful heterologous system to study effectors of obligate biotrophic pathogens.

No comment yet.
Scooped by The Sainsbury Lab
January 16, 2015 4:30 AM
Scoop.it!

Bioinformatics: NLR-parser: Rapid annotation of plant NLR complements (2015)

Bioinformatics: NLR-parser: Rapid annotation of plant NLR complements (2015) | Publications from The Sainsbury Laboratory | Scoop.it
The Sainsbury Lab's insight:

Motivation: The repetitive nature of plant disease resistance genes encoding for nucleotide-binding leucine-rich repeat (NLR) proteins hampers their prediction with standard gene annotation software. Mast has previously been reported as a tool to support annotation of NLR-encoding genes. However the decision if a motif combination represents an NLR protein was entirely manual.
Results: The NLR-parser pipeline is designed to use the MAST output from six-frame translated amino acid sequences and filters for predefined biologically curated motif compositions. Input reads can be derived from, for example, raw long read sequencing data or contigs and scaffolds coming from plant genome projects. The out- put is a tab-separated file with information on start and frame of the first NLR specific motif, whether the identified sequence is a TNL or CNL, potentially full or fragmented. In addition, the output of the NB- ARC domain sequence can directly be used for phylogenetic anal- yses. In comparison to other prediction software, the highly complex NB-ARC domain is described in detail using several individual mo- tifs.

No comment yet.
Scooped by The Sainsbury Lab
January 5, 2015 9:26 AM
Scoop.it!

Plant Methods: Mapping mutations in plant genomes with the user-friendly web application CandiSNP (2014)

Plant Methods: Mapping mutations in plant genomes with the user-friendly web application CandiSNP (2014) | Publications from The Sainsbury Laboratory | Scoop.it
The Sainsbury Lab's insight:

Analysis of mutants isolated from forward-genetic screens has revealed key components of several plant signalling pathways. Mapping mutations by position, either using classical methods or whole genome high-throughput sequencing (HTS), largely relies on the analysis of genome-wide polymorphisms in F2 recombinant populations. Combining bulk segregant analysis with HTS has accelerated the identification of causative mutations and has been widely adopted in many research programmes. A major advantage of HTS is the ability to perform bulk segregant analysis after back-crossing to the parental line rather than out-crossing to a polymorphic plant ecotype, which reduces genetic complexity and avoids issues with phenotype penetrance in different ecotypes. Plotting the positions of homozygous polymorphisms in a mutant genome identifies areas of low recombination and is an effective way to detect molecular linkage to a phenotype of interest.

No comment yet.
Rescooped by The Sainsbury Lab from Publications
November 29, 2014 5:49 AM
Scoop.it!

Current Opinion in Biotechnology: Editing plant genomes with CRISPR/Cas9 (2015)

Current Opinion in Biotechnology: Editing plant genomes with CRISPR/Cas9 (2015) | Publications from The Sainsbury Laboratory | Scoop.it

• Cas9 is an RNA-guided DNA endonuclease innate to prokaryotic immune systems.
• CRISPR/Cas9 has recently emerged as a powerful genome editing tool.
• CRISPR/Cas9 has been successfully applied in many organisms, including model and crop plants.
• CRISPR/Cas9 is a cheap, robust and easy to implement technology.

 

CRISPR/Cas9 is a rapidly developing genome editing technology that has been successfully applied in many organisms, including model and crop plants. Cas9, an RNA-guided DNA endonuclease, can be targeted to specific genomic sequences by engineering a separately encoded guide RNA with which it forms a complex. As only a short RNA sequence must be synthesized to confer recognition of a new target, CRISPR/Cas9 is a relatively cheap and easy to implement technology that has proven to be extremely versatile. Remarkably, in some plant species, homozygous knockout mutants can be produced in a single generation. Together with other sequence-specific nucleases, CRISPR/Cas9 is a game-changing technology that is poised to revolutionise basic research and plant breeding.


Via Kamoun Lab @ TSL
No comment yet.
Scooped by The Sainsbury Lab
November 22, 2014 4:43 AM
Scoop.it!

Front. Plant Sci.: Nonhost resistance to rust pathogens – a continuation of continua (2014)

Front. Plant Sci.: Nonhost resistance to rust pathogens – a continuation of continua (2014) | Publications from The Sainsbury Laboratory | Scoop.it
The Sainsbury Lab's insight:

The rust fungi (order: Pucciniales) are a group of widely distributed fungal plant pathogens, which can infect representatives of all vascular plant groups. Rust diseases significantly impact several crop species and considerable research focuses on understanding the basis of host specificity and nonhost resistance. Like many pathogens, rust fungi vary considerably in the number of hosts they can infect, such as wheat leaf rust (Puccinia triticina), which can only infect species in the genera Triticum and Aegilops, whereas Asian soybean rust (Phakopsora pachyrhizi) is known to infect over 95 species from over 42 genera. A greater understanding of the genetic basis determining host range has the potential to identify sources of durable resistance for agronomically important crops. Delimiting the boundary between host and nonhost has been complicated by the quantitative nature of phenotypes in the transition between these two states. Plant-pathogen interactions in this intermediate state are characterized either by (1) the majority of accessions of a species being resistant to the rust or (2) the rust only being able to partially complete key components of its life cycle. This leads to a continuum of disease phenotypes in the interaction with different plant species, observed as a range from compatibility (host) to complete immunity within a species (nonhost). In this review we will highlight how the quantitative nature of disease resistance in these intermediate interactions is caused by a continuum of defense barriers, which a pathogen needs to overcome for successfully establishing itself in the host. To illustrate continua as this underlying principle, we will discuss the advances that have been made in studying nonhost resistance towards rust pathogens, particularly cereal rust pathogens.

No comment yet.