 Your new post is loading...
 Your new post is loading...
Mulungu, K., Ngoma, L.M., Mhembere, R., Manyanga, M., Simutowe, E., Thierfelder, C.L., Matin, Md. A. & Ngoma, H. 2025. Cogent Social Sciences. 11 (1). Article 2588017. https://doi.org/10.1080/23311886.2025.2588017
Mihu, G-D., Aostăcioaei, T.G., Ghelbere, C., Calistru, A-E., Topa, D.C. & Jităreanu, G. 2025. Agriculture (Switzerland). 15 (9) Article 981. https://doi.org/10.3390/agriculture15090981
Devi, Y.S. & Devi, M.P. 2024. In. Mohanty, S.R. & Kollah, B. (Eds). Greenhouse Gas Regulating Microorganisms in Soil Ecosystems: Perspectives for Climate Smart Agriculture. Pages 273-284. https://doi.org/10.1007/978-3-031-70569-4_16
Reicosky, D.C., Calegari, A., Rheinheimer dos Santos, D. & Tiecher, T. 2021. In. Cover Crops and and Sustainable Agriculture. Taylor and Francis Group, Boca Raton, Florida. pages 169-208. https://doi.org/10.1201/9781003187301-11
|
Aliyu, K.T., Kalala, K., Simutowe, E., Maclaren, C., Mhlanga, B., Ngoma, H., Silva, J.V. & Thierfelder, C. 2026. Field Crops Research. 336. Article 110221. https://doi.org/10.1016/j.fcr.2025.110221
Rathika, S., Ramesh, T., Mahajan, A., Udhaya, A., Kavitha, M.P., Subbulakshmi, S., Selvarani, A., Bhuvaneswari, J., Rajakumar, D., Natarajan, S.K., Jagadeesan, R., Sakthivel, K. & Siddique, A. 2025. Plant Science Today. 12, 1-12. https://doi.org/10.14719/pst.6268
Gomez-MacPherson, H. Gomez, J.A., Orgaz, F., Fereres, E. & Villalobos, F.J. 2024. In. Villabos, F.J. & Fereres, E. (Eds). Principles of Agronomy for Sustainable Agriculture. Pages 249-261. https://doi.org/10.1007/978-3-031-69150-8_18
Xiao, L., Zhao, K., Wang, Y., Zhao, R., Xie, Z. & Hu, Q. 2025. Agriculture, Ecosystems & Environment. 389. Article 109696. https://doi.org/10.1016/j.agee.2025.109696
Lori, M., Leitao, R., David, F., Imbert, C., Corti, A., Cunha, L., Symanczik, S., Buenemann, E.K., Creamer, R. & Vazquez, C. 2025. Soil Biology and Biochemistry. 207. Article 109815. https://doi.org/10.1016/j.soilbio.2025.109815
|
This paper from China assesses the balance between productivity and environmental impacts to find ways to reduce the threat of GHG emissions and climate change. They had 8 treatments that include 2 key components: the evaluation of economic and environmental parameters encompassing carbon footprint, energy consumption, and the carbon sustainability index. The results showed the benefits of no-till treatments (NT) coupled with introduction of soybeans in a rotation compared to conventional tillage (CT). However, the CT-MW treatment had the highest yield: combining conventional tillage with minimum tillage practices. Despite the higher cost to grow soybeans, their use increased net income. They conclude that the adoption of conservation agriculture optimizes the delicate equilibrium between environmental preservation and economic prosperity.