Plant and Seed Biology
30.8K views | +5 today
Plant and Seed Biology
Your new post is loading...
Your new post is loading...
Scooped by Loïc Lepiniec!

A two-way molecular dialogue between embryo and endosperm is required for seed development | Science

A two-way molecular dialogue between embryo and endosperm is required for seed development | Science | Plant and Seed Biology |

The plant embryonic cuticle is a hydrophobic barrier deposited de novo by the embryo during seed development. At germination, it protects the seedling from water loss and is, thus, critical for survival. Embryonic cuticle formation is controlled by a signaling pathway involving the ABNORMAL LEAF SHAPE1 subtilase and the two GASSHO receptor-like kinases. We show that a sulfated peptide, TWISTED SEED1 (TWS1), acts as a GASSHO ligand. Cuticle surveillance depends on the action of the subtilase, which, unlike the TWS1 precursor and the GASSHO receptors, is not produced in the embryo but in the neighboring endosperm. Subtilase-mediated processing of the embryo-derived TWS1 precursor releases the active peptide, triggering GASSHO-dependent cuticle reinforcement in the embryo. Thus, a bidirectional molecular dialogue between embryo and endosperm safeguards cuticle integrity before germination.

No comment yet.
Rescooped by Loïc Lepiniec from Plant Sciences!

SPS - Saclay Plant Sciences - Happy New Year 2020

SPS - Saclay Plant Sciences - Happy New Year 2020 | Plant and Seed Biology |

The Saclay Plant Sciences network (SPS LabEx) and Graduate School of Research (SPS-GSR) gathers around 50 research teams specialized in plant sciences belonging to 5 institutes in the Paris area and represents almost 700 people. The current research activities of the SPS partners concern the genetic, molecular and cellular mechanisms that control plant physiology and development, as well as their interactions with fluctuating biotic or abiotic environments. These studies extend from the gene to the entire plant, and use the concepts and tools of biochemistry, biophysics, imaging, molecular biology, genetics, cell biology, modelling and bioinformatics.

Via Saclay Plant Sciences
No comment yet.
Scooped by Loïc Lepiniec!

Combinatorial interactions of the LEC1 transcription factor specify diverse developmental programs during soybean seed development

Combinatorial interactions of the LEC1 transcription factor specify diverse developmental programs during soybean seed development | Plant and Seed Biology |

LEC1 is a central, transcriptional regulator of seed development, because it regulates diverse developmental processes at different stages, including embryo morphogenesis, photosynthesis, hormone biosynthesis and signaling, and the massive accumulation of seed storage macromolecules. We show that LEC1 acts in combination with the seed transcription factors (TFs), AREB3, bZIP67, and ABI3, and that different TF combinations regulate distinct gene sets. We show further that TF binding sites are closely clustered in the genome and contain enriched DNA sequence motifs that are bound by TFs and that distinct DNA motif sets recruit different TF combinations to binding site clusters. Our findings provide insights into the gene regulatory networks that govern seed development.

No comment yet.
Scooped by Loïc Lepiniec!

Superglue plant and ‘miracle berry’ among 2019’s new finds | Environment | The Guardian

Superglue plant and ‘miracle berry’ among 2019’s new finds | Environment | The Guardian | Plant and Seed Biology |

A snowdrop discovered on Facebook, a miracle berry that tricks your tastebuds and a rubbery shrub that oozes its own superglue are among new plant species that were discovered in 2019.

Others identified by experts at the Royal Botanic Gardens, Kew, include a ylang-ylang tree of which just seven individuals are known to exist, a new candy-striped violet and a fungus with pink fruiting bodies that can fight cancer and viruses.

Discovering and giving scientific names to new species is the crucial first step to protecting them, the scientists said. Kew scientists officially named 102 plants and eight fungi in 2019, but many are already in danger of extinction. The major threats are the destruction of natural habitat for farmland, timber, dams and mining, as well as the impacts of the climate crisis.

Plants account for 82% of all life on Earth by weight – humans are just 0.01% – and they underpin all life, producing oxygen and food and providing shelter and medicines. There are almost 400,000 known species of plant, and about 2,000 new species are named every year.

No comment yet.
Rescooped by Loïc Lepiniec from lignocellulosic biomass!

Sweet potato can warn neighbors of insect attacks

Sweet potato can warn neighbors of insect attacks | Plant and Seed Biology |
Breeding potatoes that produce chemical compound could provide an all-natural pest defense

Via Herman Höfte
No comment yet.
Rescooped by Loïc Lepiniec from Life Sciences Université Paris-Saclay!

Disparition de Hervé Daniel

Disparition de Hervé Daniel | Plant and Seed Biology |

Notre collègue Hervé Daniel est décédé le vendredi 22 Novembre après une longue lutte contre la maladie.


Hervé Daniel était professeur de neurosciences à l'Université Paris-Sud. Il enseignait les neurosciences à tous les niveaux. Il dirigeait l'équipe de pharmacologie et biochimie de la synapse à l'Institut des Neurosciences Paris-Saclay sur le campus d'Orsay. Ses travaux de recherche concernaient le cervelet, plus particulièrement les bases fondamentales de la transmission et de la plasticité synaptique et les interactions neurone-glie. Hervé Daniel était électrophysiologiste, en priorité par la technique du patch-clamp sur tranche de cervelet de rongeur. Son équipe a combiné le patch-clamp avec les mesures optiques de calcium cytosolique, la pharmacologie et, plus récemment avec des approches d'optogénétique et des nanobodies.


Hervé Daniel était cofondateur et coresponsable du master Signalisation Cellulaire et Neurosciences. Il était fortement impliqué dans la création du Master Biologie-Santé dès 2004. En tant que vice-président enseignement du département de biologie à la Faculté des Sciences de 2005 à 2016 il a eu un rôle majeur dans la construction de l'offre de formation en biologie, bien au-delà des neurosciences. Il était aussi très fortement impliqué dans l'Ecole doctorale Biosigne depuis 2004. Beaucoup d'étudiants, de doctorants et d'encadrants de l'ED Biosigne ont connu Hervé Daniel en tant qu'enseignant, membre de jury ou collègue chercheur. Il était un mentor inlassable pour certains.

Hervé Daniel s'est beaucoup investi dans la transformation de l'université et la construction de l'université Paris-Saclay. Il voyait l'opportunité mais aussi les dangers et les difficultés à faire converger les ambitions de cette nouvelle université avec la réalité des universités en France.


Hervé Daniel était entièrement dévoué à son métier. Il poursuivait ses activités d'enseignant, de chercheur et ses multiples responsabilités avec une grande intégrité et rigueur.

Via Life Sciences UPSaclay
No comment yet.
Scooped by Loïc Lepiniec!

Genetic strategies for improving crop yields

Genetic strategies for improving crop yields | Plant and Seed Biology |

The current trajectory for crop yields is insufficient to nourish the world’s population by 20501. Greater and more consistent crop production must be achieved against a backdrop of climatic stress that limits yields, owing to shifts in pests and pathogens, precipitation, heat-waves and other weather extremes. Here we consider the potential of plant sciences to address post-Green Revolution challenges in agriculture and explore emerging strategies for enhancing sustainable crop production and resilience in a changing climate. Accelerated crop improvement must leverage naturally evolved traits and transformative engineering driven by mechanistic understanding, to yield the resilient production systems that are needed to ensure future harvests.

Scooped by Loïc Lepiniec!

Initiation and regulation of vascular tissue identity in the Arabidopsis embryo - Preprint

Initiation and regulation of vascular tissue identity in the Arabidopsis embryo - Preprint | Plant and Seed Biology |

Authors: Margot Smit, Cristina Llavata-Peris, Mark Roosjen, Henriette van Beijnum, Daria Novikova, Victor Levitsky, Daniel Slane, Gerd Jurgens, Victoria Mironova, Siobhan Brady and Dolf Weijers.

bioRxiv (2019)

Abstract: "Development of plant vascular tissues involves tissue specification, growth, pattern formation and cell type differentiation. While later steps are understood in some detail, it is still largely unknown how the tissue is initially specified. We have used the early Arabidopsis embryo as a simple model to study this process. Using a large collection of marker genes, we find that vascular identity is established in the 16-cell embryo. After a transient precursor state however, there is no persistent uniform tissue identity. Auxin is intimately connected to vascular tissue development. We find that while AUXIN RESPONSE FACTOR5/MONOPTEROS/ (ARF5/MP)-dependent auxin response is required, it is not sufficient for tissue establishment. We therefore used a large-scale enhanced Yeast One Hybrid assay to identify potential regulators of vascular identity. Network and functional analysis of suggest that vascular identity is under robust, complex control. We found that one candidate regulator, the G-class bZIP transcription factor GBF2, modulates vascular gene expression, along with its homolog GBF1. Furthermore, GBFs bind to MP and modulate its activity. Our work uncovers components of a gene regulatory network that controls the initiation of vascular tissue identity, one of which involves the interaction of MP and GBF2 proteins."

Scooped by Loïc Lepiniec!

Création officielle de l'Université Paris-Saclay !!! 

Création officielle de l'Université Paris-Saclay !!!  | Plant and Seed Biology |
Décret n° 2019-1131 du 5 novembre 2019 portant création de l'université Paris-Saclay et approbation de ses statuts

NOR: ESRS1927436D

Publics concernés : usagers et personnels de la communauté d'universités et établissements « Université Paris-Saclay », de l'université Paris-XI, de l'Institut des sciences et industries du vivant et de l'environnement (Agro Paris Tech), de CentraleSupélec, de l'Ecole normale supérieure Paris-Saclay, de l'Institut d'Optique Graduate School, de l'Institut des hautes études scientifiques ainsi que des universités Versailles-Saint-Quentin-en-Yvelines et Evry-Val-d'Essonne.
Objet : création de l'université Paris-Saclay, établissement public à caractère scientifique, culturel et professionnel.
Entrée en vigueur : les dispositions transitoires nécessaires à la mise en place des organes de gouvernance de l'université Paris-Saclay entrent en vigueur le lendemain de la publication du décret. Les articles 3, 5, 6, 7, 8 et 9, les 1° et 2° de l'article 15, les articles 16, 17 et 18 entrent en vigueur le 1er janvier 2020 .
Notice : le décret crée l'université Paris-Saclay, un établissement public à caractère scientifique, culturel et professionnel, au sens de l'ordonnance n° 2018-1131 du 12 décembre 2018, et approuve ses statuts.
A compter du 1er janvier 2020, l'université Paris-Saclay se substitue à l'université Paris-XI et à la communauté d'universités et établissements « Université Paris-Saclay » et intègre en tant qu'établissements-composantes qui conservent leur personnalité morale, dans les conditions précisées dans ses statuts, l'Institut des sciences et industries du vivant et de l'environnement (Agro Paris Tech), CentraleSupélec, l'Ecole normale supérieure Paris-Saclay et l'Institut d'Optique Graduate School.
Elle regroupe, en tant qu'universités membres-associées par convention, les universités de Versailles-Saint-Quentin-en-Yvelines et Evry-Val-d'Essonne qui participent à sa gouvernance dans une perspective de fusion.
Elle intègre également l'Institut des hautes études scientifiques, organisme de recherche - fondation reconnue d'utilité publique.
Le périmètre scientifique intègre les laboratoires des organismes nationaux de recherche sur le périmètre de l'université Paris-Saclay, listés par convention. Les organismes nationaux de recherche sont associés à la gouvernance de l'établissement.
Références : le décret peut être consulté sur le site Légifrance (

Le Premier ministre,

Rescooped by Loïc Lepiniec from lignocellulosic biomass!

A 3,000-year-old Egyptian emmer wheat genome reveals dispersal and domestication history

A 3,000-year-old Egyptian emmer wheat genome reveals dispersal and domestication history | Plant and Seed Biology |
Tetraploid emmer wheat (Triticum turgidum ssp. dicoccon) is a progenitor of the world’s most widely grown crop, hexaploid bread wheat (Triticum aestivum), as well as the direct ancestor of tetraploid durum wheat (T. turgidum subsp. turgidum). Emmer was one of the first cereals to be domesticated in the old world; it was cultivated from around 9700 bc in the Levant1,2 and subsequently in south-western Asia, northern Africa and Europe with the spread of Neolithic agriculture3,4. Here, we report a whole-genome sequence from a museum specimen of Egyptian emmer wheat chaff, 14C dated to the New Kingdom, 1130–1000 bc. Its genome shares haplotypes with modern domesticated emmer at loci that are associated with shattering, seed size and germination, as well as within other putative domestication loci, suggesting that these traits share a common origin before the introduction of emmer to Egypt. Its genome is otherwise unusual, carrying haplotypes that are absent from modern emmer. Genetic similarity with modern Arabian and Indian emmer landraces connects ancient Egyptian emmer with early south-eastern dispersals, whereas inferred gene flow with wild emmer from the Southern Levant signals a later connection. Our results show the importance of museum collections as sources of genetic data to uncover the history and diversity of ancient cereals. A study sequenced the genome of a museum specimen of Egyptian emmer wheat chaff dated back to 3,000 years ago. The genome reveals the unique genetic diversity contained in this ancient sample as well as the domestication and dispersal history of emmer wheat.

Via Herman Höfte
Scooped by Loïc Lepiniec!

Pierre Gadal, (1938-2019)

Pierre Gadal, (1938-2019) | Plant and Seed Biology |

A notre "Chef", professeur et collègue


C’est avec une grande tristesse que nous avons appris le décès de Pierre Gadal, survenu le 26 octobre 2019 à l’âge de quatre-vingt-un ans.


Après une thèse sur les galles et le métabolisme des tanins dans le laboratoire du Professeur Brunel à Toulouse, Pierre Gadal a été successivement assistant puis maitre-assistant à l’université Paul Sabatier, professeur à l’Université de Nancy I (1973-1981) et enfin professeur à l’Université de Paris-Sud jusqu’à la fin de sa carrière en 2003. Il a longtemps dirigé une équipe de recherche associée au CNRS (Physiologie végétale moléculaire) à Nancy puis à Orsay pour devenir enfin le premier directeur de l’Institut de biotechnologie des plantes (CNRS-Université Paris-Sud), dont il a été l’un des initiateurs. Cette structure a été très importante pour la recherche en biologie végétale sur le campus d’Orsay en région parisienne et a récemment contribué à la création d’une nouvelle unité de recherche sur les plantes (IPS2) au sein de Paris-Saclay.

Il serait trop long de lister toutes les responsabilités pédagogiques et administratives que Pierre Gadal a exercées, mais au-delà de la direction d’unité de recherche, il fut aussi président de la section CNU 66 (Conseil national des universités) et directeur de l’école doctorale sciences du végétal de l’Université Paris-Sud. Pierre Gadal a eu une très grande influence dans le domaine de la physiologie végétale française et a d’ailleurs été distingué en 1998 par un prix de l’Académie des sciences pour l’ensemble de sa carrière scientifique. Ses contributions scientifiques et celles de son équipe ont bénéficié d’une très forte reconnaissance internationale en particulier pour l’étude moléculaire de la régulation des enzymes clés du cycle de photosynthèse en C4 (PEP carboxylase, NADP-malate déshydrogénase), des systèmes de régulation redox chez les plantes et des enzymes impliquées dans l’assimilation et le métabolisme de l’azote (glutamine synthétase, GOGAT) ou  encore les relations carbone-azote chez les plantes (isocitrate déshydrogénase). Pierre Gadal et son groupe ont été leaders dans le domaine de la biochimie végétale, intégrant à l’aube des années 80 des approches techniques encore peu développées incluant en particulier le génie génétique et la biologie structurale.


Pierre Gadal s’est éteint en octobre 2019 au terme d’une difficile maladie. Les réactions à sa disparition ont été unanimes : c’est un acteur majeur dans le domaine du végétal qui disparait. Il laisse une forte empreinte sur tous ceux qui ont eu la chance de travailler à ses côtés, anciens étudiants et collègues, par son charisme et son enthousiasme, stimulant chacun à développer son esprit critique et à aller de l’avant, mais aussi par sa bienveillance envers l’ensemble des personnels de l’institut. Sa disparition est cruellement ressentie par tous.

No comment yet.
Rescooped by Loïc Lepiniec from Plant-Microbe Symbiosis!

One thousand plant transcriptomes and the phylogenomics of green plants

One thousand plant transcriptomes and the phylogenomics of green plants | Plant and Seed Biology |
Green plants (Viridiplantae) include around 450,000–500,000 species1,2 of great diversity and have important roles in terrestrial and aquatic ecosystems. Here, as part of the One Thousand Plant Transcriptomes Initiative, we sequenced the vegetative transcriptomes of 1,124 species that span the diversity of plants in a broad sense (Archaeplastida), including green plants (Viridiplantae), glaucophytes (Glaucophyta) and red algae (Rhodophyta). Our analysis provides a robust phylogenomic framework for examining the evolution of green plants. Most inferred species relationships are well supported across multiple species tree and supermatrix analyses, but discordance among plastid and nuclear gene trees at a few important nodes highlights the complexity of plant genome evolution, including polyploidy, periods of rapid speciation, and extinction. Incomplete sorting of ancestral variation, polyploidization and massive expansions of gene families punctuate the evolutionary history of green plants. Notably, we find that large expansions of gene families preceded the origins of green plants, land plants and vascular plants, whereas whole-genome duplications are inferred to have occurred repeatedly throughout the evolution of flowering plants and ferns. The increasing availability of high-quality plant genome sequences and advances in functional genomics are enabling research on genome evolution across the green tree of life.

Via Jean-Michel Ané
No comment yet.
Rescooped by Loïc Lepiniec from lignocellulosic biomass!

Widespread occurrence of natural genetic transformation of plants by Agrobacterium

Widespread occurrence of natural genetic transformation of plants by Agrobacterium | Plant and Seed Biology |
Key message Naturally transgenic plant species occur on an unexpectedly large scale.

Via Herman Höfte
No comment yet.
Rescooped by Loïc Lepiniec from Life Sciences Université Paris-Saclay!

Bonne année 2020 !

Bonne année 2020 ! | Plant and Seed Biology |

Le département SDV vous présente ses meilleurs vœux pour 2020 !

Via Life Sciences UPSaclay
No comment yet.
Scooped by Loïc Lepiniec!

China's GMO crops set to pass biosafety tests

China's GMO crops set to pass biosafety tests | Plant and Seed Biology |

BEIJING (China Daily/ANN): A total of 192 genetically modified plant species - including two corn species and a soybean species - are expected to pass biosafety evaluations by Ministry of Agriculture and Rural Affairs, opening the way to their commercial use in China.


The ministry released a list of the genetically modified organisms on Monday (Dec 30) to solicit public opinion until Jan 20, and will award biosafety certificates for them if no objections are raised during the period.



No comment yet.
Scooped by Loïc Lepiniec!

LEAFY COTYLEDONs: old genes with new roles beyond... 

Seed development is a complex process and consists of two phases: embryo morphogenesis and seed maturation. LEAFY COTYLEDON (LEC) transcription factors, first discovered in Arabidopsis thaliana several decades ago, are master regulators of seed development. Here, we first summarize molecular genetic mechanisms underlying the control of embryogenesis and seed maturation by LECs and then provide a brief review of recent findings in the role of LECs in embryonic resetting of the parental ‘memory of winter cold’ in Arabidopsis. In addition, we discuss various chromatin-based mechanisms underlying developmental silencing of LEC genes throughout the post-embryonic development to terminate the embryonic developmental program.

No comment yet.
Scooped by Loïc Lepiniec!

Philippines approves Golden Rice for direct use as food and feed, or for processing

Philippines approves Golden Rice for direct use as food and feed, or for processing | Plant and Seed Biology |
December 18, Philippines - After rigorous biosafety assessment, Golden Rice “has been found to be as safe as conventional rice" by the Philippine Department of Agriculture-Bureau of Plant Industry. The biosafety permit, addressed to the Department of Agriculture - Philippine Rice Research Institute (DA-PhilRice) and International Rice Research Institute (IRRI), details the approval of GR2E Golden Rice for direct use as food and feed, or for processing (FFP).

PhilRice Executive Director Dr. John de Leon welcomed the positive regulatory decision. “With this FFP approval, we bring forward a very accessible solution to our country’s problem on Vitamin A deficiency that’s affecting many of our pre-school children and pregnant women.” 

Despite the success of public health interventions like oral supplementation, complementary feeding, and nutrition education, Vitamin A deficiency (VAD) among children aged 6 months to 5 years increased from 15.2 percent in 2008 to 20.4 percent in 2013 in the Philippines. The beta-carotene content of Golden Rice aims to provide 30 to 50 percent of the estimated average requirement (EAR) of vitamin A for pregnant women and young children. 

“IRRI is pleased to partner with PhilRice to develop this nutrition-sensitive agricultural solution to address hidden hunger. This is the core of IRRI’s purpose: to tailor global solutions to local needs,” notes IRRI Director General Matthew Morrell. “The Philippines has long recognized the potential to harness biotechnology to help address food and nutrition security, environmental safety, as well as improve the livelihoods of farmers.”

The FFP approval is the latest regulatory milestone in the journey to develop and deploy Golden Rice in the Philippines. With this approval, DA-PhilRice and IRRI will now proceed with sensory evaluations and finally answer the question that many Filipinos have been asking: What does Golden Rice taste like?

To complete the Philippine biosafety regulatory process, Golden Rice will require approval for commercial propagation before it can be made available to the public. This follows from the field trials harvested in Muñoz, Nueva Ecija and San Mateo, Isabela in September and October 2019.

The Philippines now joins a select group of countries that have affirmed the safety of Golden Rice. In 2018, Food Standards Australia New Zealand, Health Canada, and the United States Food and Drug Administration published positive food safety assessments for Golden Rice. A biosafety application was lodged in November 2017 and is currently undergoing review by the Biosafety Core Committee in Bangladesh.
No comment yet.
Rescooped by Loïc Lepiniec from Life Sciences Université Paris-Saclay!

Élection des conseils de l'Université Paris-Saclay 2020

Élection des conseils de l'Université Paris-Saclay 2020 | Plant and Seed Biology |

Les usagers et les personnels de l'Université Paris-Saclay, des établissements-composantes, des universités de Versailles-Saint-Quentin-en-Yvelines et Evry-Val-d’Essonne et des organismes nationaux de recherche des unités concernées, sont appelés à élire leurs représentants au conseil d’administration (CA), à la commission de la recherche (CR) et à la commission de la formation et de la vie universitaire (CFVU) de l’Université Paris-Saclay.Conformément aux statuts, les listes électorales seront établies à partir des informations fournies par les établissements.

Via Life Sciences UPSaclay
No comment yet.
Scooped by Loïc Lepiniec!

Transcriptional Activation of Arabidopsis Zygotes Is Required for Initial Cell Divisions

Transcriptional Activation of Arabidopsis Zygotes Is Required for Initial Cell Divisions | Plant and Seed Biology |
Commonly referred to as the maternal-to-zygotic transition, the shift of developmental control from maternal-to-zygotic genomes is a key event during animal and plant embryogenesis. Together with the degradation of parental gene products, the increased transcriptional activities of the zygotic genome remodels the early embryonic transcriptome during this transition. Although evidence from multiple flowering plants suggests that zygotes become transcriptionally active soon after fertilization, the timing and developmental requirements of zygotic genome activation in Arabidopsis thaliana (Arabidopsis) remained a matter of debate until recently. In this report, we optimized an expansion microscopy technique for robust immunostaining of Arabidopsis ovules and seeds. This enabled the detection of marks indicative of active transcription in zygotes before the first cell division. Moreover, we employed a live-imaging culture system together with transcriptional inhibitors to demonstrate that such active transcription is physiologically required in zygotes and early embryos. Our results indicate that zygotic genome activation occurs soon after fertilization and is required for the initial zygotic divisions in Arabidopsis.
Scooped by Loïc Lepiniec!

Sweet genes in melon and watermelon Two genetic studies uncover how domestication changed fruit quality traits in melon and watermelon. 

Sweet genes in melon and watermelon Two genetic studies uncover how domestication changed fruit quality traits in melon and watermelon.  | Plant and Seed Biology |

Editorial, Published: 01 November 2019
Sweet sequencing

Popular crop plants have been bred and selected for desirable taste and color traits. Genomic approaches are increasingly being used to provide insights into the origins, evolution and biology of our favorite foods. Large-scale sequencing efforts have brought agriculture genomics into the big-data era, leading to sweet rewards.

This month, we publish two melon genomics studies applying genetics and genomics methods to generate resources for future improvement of these economically important crops. Zhao et al. conduct a large genome re-sequencing study of more than 1,100 melon (Cucumis melo L.) accessions, analyzing global diversity and domestication patterns. They additionally perform genome-wide association studies for different fruit quality traits, identifying significant loci and potential candidate genes for desired traits. Guo et al. present genome re-sequencing of 414 watermelon accessions (Citrullus genus) and provide an improved, high-quality reference genome for this crop. They analyze patterns of speciation and domestication and identify loci that were under selection during these processes. In particular, they characterize the origins and evolution of flesh sweetness, implicating loci regulating raffinose pathways and sugar transport. These large sequencing resources can help lead to sweeter, higher-quality melons. See also the accompanying News & Views by Martin Mascher.

Sequencing for sweetness is a generalized strategy. Just in this past year, the pineapple genome as well as the strawberry genome were published in Nature Genetics. These food plants, along with melons, are economically important and have enormous markets; they are eaten and enjoyed throughout the world. Taste, then, can be just as important a trait as yield or shelf life.

Agricultural genomics research has the goal of improving the quality and yield of the crops that we rely on as sources of nutrients and calories. Importantly, the United Nations Sustainable Development Goals, aiming to address global challenges surrounding health and equality, include ‘zero hunger’ as a critical objective. Although genomics methods can be used to obtain sweeter melons, crisper apples or redder tomatoes, they are also being used to produce heartier staple crops, such as drought-tolerant rice or disease-resistant wheat. Food provides both pleasure and sustenance, and crop genetics can facilitate both qualities.

Therefore, it seems appropriate to highlight the launch of a new journal within the Nature family, Nature Food , which is now open for submissions. This comprehensive journal will publish studies related to all aspects of food, from production to consumption, and as such, it will provide a dedicated perspective to food-related issues that will help put agricultural genetics research into a broader context. Look for the first publications in January 2020.

For even more delicious developments, later this month, Nature Genetics will attend our Nature Conference ‘Agricultural Genomics: Big Data for Better Agriculture’ in Shenzhen, China. We are eager to learn about the current genomic innovations being implemented for different crops across diverse environments, and to see how plant geneticists are harnessing big data to help improve crops and feed the world. We are sure that the fruits of their labor will be sweet.

No comment yet.
Rescooped by Loïc Lepiniec from Life Sciences Université Paris-Saclay!

Programme final - 5ème journée d’imagerie du RIC Paris-Saclay - "Imagerie et Signalisation"

Programme final - 5ème journée d’imagerie du RIC Paris-Saclay - "Imagerie et Signalisation" | Plant and Seed Biology |

- Objectif : Présenter les dernières avancées concernant certains mécanismes biologiques fondamentaux de la cellule en utilisant des approches d’imagerie sophistiquée.
- Date : jeudi 14 novembre 2019 – 9h à 16h
- Lieu : Faculté de médecine Paris-Sud - Amphithéâtre A
- Intervenants principaux : Maria Carmo Fonseca (IMM, Lisbonne, Portugal), Nicolas Demaurex (University of Geneva, Suisse), Laszlo Tora (IGBMC,Illkrich, France), Ana-Maria Gomez (Faculté de Pharmacie, Châtenay-Malabry, France)

- Participation des Écoles Doctorales :  Cancérologie-BMS (ED 582), Innovation Thérapeutique (ED 569), Biosigne (ED 568) et Structure/Dynamique des systèmes vivants (ED 577)
- Programme : ICI

Plan d'accès

Inscription gratuite mais obligatoire :

Via Life Sciences UPSaclay
No comment yet.
Scooped by Loïc Lepiniec!

Overexpression of zmm28 increases maize grain yield in the field 

Overexpression of zmm28 increases maize grain yield in the field  | Plant and Seed Biology |
Authors: Jingrui Wu, Shai J. Lawit, Ben Weers, Jindong Sun, Nick Mongar, John Van Hemert, Rosana Melo, Xin Meng, Mary Rupe, Joshua Clapp, Kristin Haug Collet, Libby Trecker, Keith Roesler, Layton Peddicord, Jill Thomas, Joanne Hunt, Wengang Zhou, Zhenglin Hou, Matthew Wimmer, Justin Jantes, Hua Mo, Lu Liu, Yiwei Wang, Carl Walker, Olga Danilevskaya, Renee H. Lafitte, Jeffrey R. Schussler, Bo Shen and Jeffrey E. Habben.

PNAS (2019)

Significance: In the approaching decades, food security will likely be more of an issue as there will be an increased demand for grain which will need to be met in an environmentally sustainable manner. To date, commercial transgenic maize has primarily targeted resistance to insects and herbicides. Here we describe a transgenic approach to improve the yield and yield stability of maize. We have demonstrated that increasing and extending the expression of a maize gene, zmm28, alters vegetative and reproductive growth parameters and significantly enhances yield in large-scale field trials conducted over multiple years. We conclude that alteration in expression of a native maize gene in maize can create a substantially positive change in a complex trait like grain yield.

Abstract: "Increasing maize grain yield has been a major focus of both plant breeding and genetic engineering to meet the global demand for food, feed, and industrial uses. We report that increasing and extending expression of a maize MADS-box transcription factor gene, zmm28, under the control of a moderate-constitutive maize promoter, results in maize plants with increased plant growth, photosynthesis capacity, and nitrogen utilization. Molecular and biochemical characterization of zmm28 transgenic plants demonstrated that their enhanced agronomic traits are associated with elevated plant carbon assimilation, nitrogen utilization, and plant growth. Overall, these positive attributes are associated with a significant increase in grain yield relative to wild-type controls that is consistent across years, environments, and elite germplasm backgrounds."
No comment yet.
Scooped by Loïc Lepiniec!

"Patterns of nature are amazing! #FloweringPlants "

"Patterns of nature are amazing! #FloweringPlants " | Plant and Seed Biology |
November 3, 2019: Hashem Al-Ghaili posted on LinkedIn
Scooped by Loïc Lepiniec!

Food systems at risk New trends and challenges

Food systems at risk  New trends and challenges | Plant and Seed Biology |
Food systems at risk


The way food systems have evolved over past decades means that they now face major risks, which in turn threaten the future of food systems themselves. Food systems have seriously contributed to climate change, environmental destruction, overexploitation of natural resources and pollution of air, water and soils. Despite the global average improvement in calorie production and major development of the food and agricultural product markets, huge inequalities in food access and repartition of the added value have emerged, leading to new serious nutritional and social problems. Based on a review of the most recent scientific knowledge, this report emphasizes Low-Income and Lower Middle-Income countries where the population faces greater challenges than elsewhere. Different threats are adding up and there are few options to adapt or mitigate these combinations of risks. This is a call for all those - businesses, policy makers, consumers, funding agencies - who are engaged in food systems transformations to bear in mind their systemic aspects and their multiple outcomes and risks in order to be able to fashion more sustainable and equitable food systems.


This report was prepared and coordinated by the Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), and is a joint production with the Food and Agriculture Organization of the United Nations (FAO) and the European Commission’s Directorate-General for International Cooperation and Development (DG DEVCO). The scientific report hereunder takes stock of the current and future risks and challenges as regards to food systems.


Year of publication: 2019
Publisher: FAO/CIRAD/EU
Place of publication: Rome, Italy
Other Entities Involved: EU and CIRAD
Pages: #128
ISBN: 978-92-5-131732-7
Job Number: CA5724EN;
Author: Dury S., Bendjebbar P, Hainzelin E., Giordano T. and Bricas N. (eds)
SDG: 02. End hunger, achieve food security and improved nutrition and promote sustainable agriculture
No comment yet.
Scooped by Loïc Lepiniec!

New EU Commissioners Open Letter (17 September 2019 - 23 October 2019)

New EU Commissioners Open Letter (17 September 2019 - 23 October 2019) | Plant and Seed Biology |
Your Excellencies Presidents Sassoli, Dr. Juncker and Dr. von der Leyen,

The candidates for the new EU commissioners were presented last week (Web link to press release). In the new commission the areas of education and research are not explicitly represented anymore and instead are  subsumed under the "innovation and youth" title. This emphasizes economic exploitability (i.e. "innovation") over its foundation, which is education and research, and it reduces “education” to “youth” while being essential to all ages.

We, as members of the scientific community of Europe, wish to address this situation early on and emphasize both to the general public, as well as to relevant politicians on the national and European Union level, that without dedication to education and research there will neither exist a sound basis for innovation in Europe, nor can we fulfill the promise of a high standard of living for the citizens of Europe in a fierce global competition.

President von der Leyen, in her mission letter to commissioner Gabriel (Web link to Mandate Letter), has emphasized that “education, research and innovation will be key to our competitiveness”.

With this open letter we demand that the EU commission revises the title for commissioner Gabriel to “Education, Research, Innovation and Youth” reflecting Europe’s dedication to all of these crucial areas. We also call upon the European Parliament to request this change in name before confirming the nominees for commissioner.

Please support this letter by

signing up as a supporter via

NOTE: in order to avoid bots and spam we need you to sign up for an indico account on this UiS indico system. When you click on the registration link you will be transferred to a login page. Please create a new account if you do not already have one. See the image below on how the login page looks like:
No comment yet.