Nanoneedle start-ups are traversing the biotech valley of death — from fundamental university research into commercial development in advanced therapeutics and diagnostics. How can academics make the most of this opportunity?
In this study, a modified, HexaPro S protein subunit vaccine, delivered using a needle-free high-density microarray patch (HD-MAP), was investigated for its immunogenicity and virus-neutralizing abilities. Mice given two doses of the vaccine candidate generated potent antibody responses capable of neutralizing the parental SARS-CoV-2 virus as well as the variants of concern, Alpha and Delta. These results demonstrate that this alternative vaccination strategy has the potential to mitigate the effect of emerging viral variants.
Our findings demonstrate that immune-regulation by engineering localized skin neuroimmune networks can be used to treat cutaneous diseases that like CD, are caused by type-1 immunity.
Researchers and biotechnology company Vaxxas are studying if the new delivery technology, called a high-density microarray patch, can protect participants from diseases including measles and rubella. If successful, the needle-less technology could be used for a number of other vaccinations including influenza and COVID-19.
A need-based layered dissolving microneedle system loading tacrolimus (TAC) and diclofenac sodium (DIC) in different layers specifically delivers TAC and DIC to skin and articular cavity, simultaneously alleviating psoriatic skin and arthritic joint lesions.
3D printing offers customization, cost-efficiency, a rapid turnaround time between design iterations, and enhanced accessibility. Increasing the printing resolution, the accuracy of the features, and the accessibility of low-cost raw printing materials have empowered 3D printing to be utilized for the fabrication of microneedle platforms. The development of 3D-printed microneedles has enabled the evolution of pain-free controlled release drug delivery systems, devices for extracting fluids from the cutaneous tissue, biosignal acquisition, and point-of-care diagnostic devices in personalized medicine.
Researchers from the University of Kent and the University of Strathclyde have developed a novel device that combines 3D printing, microneedles, and microelectromechanical systems (MEMS) for controllable transdermal drug delivery.
3D printing offers customization, cost-efficiency, a rapid turnaround time between design iterations, and enhanced accessibility. Increasing the printing resolution, the accuracy of the features, and the accessibility of low-cost raw printing materials have empowered 3D printing to be utilized for the fabrication of microneedle platforms. The development of 3D-printed microneedles has enabled the evolution of pain-free controlled release drug delivery systems, devices for extracting fluids from the cutaneous tissue, biosignal acquisition, and point-of-care diagnostic devices in personalized medicine.
Microneedle (MN) technology is a rising star in the point-of-care (POC) field, which has gained increasing attention from scientists and clinics. MN-based POC devices show great potential for detecting various analytes of clinical interests and transdermal drug delivery in a minimally invasive manner owing to MNs’ micro-size sharp tips and ease of use. This review aims to go through the recent achievements in MN-based devices by investigating the selection of materials, fabrication techniques, classification, and application, respectively. We further highlight critical aspects of MN platforms for transdermal biofluids extraction, diagnosis, and drug delivery assisted disease therapy.
Microneedles are being widely explored for dermal delivery of macromolecules. They have the capability and the potential for entrapping enzymes such as lysozyme within a polymeric matrix that do not alter the protein integrity, enable a bolus or a sustained release.
OND are developing novel techniques and materials to produce low cost needle patches to deliver vaccines and drugs to the immune system http://www.oxfordnanodelivery.com
Barely visible needles, or “microneedles,” are poised to usher in an era of pain-free injections and blood testing. Whether attached to a syringe or a patch, microneedles prevent pain by avoiding contact with nerve endings. Typically 50 to 2,000 microns in length (about the depth of a sheet of paper) and one to 100 microns wide (about the width of human hair), they penetrate the dead, top layer of skin to reach into the second layer—the epidermis—consisting of viable cells and a liquid known as interstitial fluid.
Cutaneous vaccination of mice using these MNAs induces more potent antigen-specific cellular and humoral immune responses than those elicited by traditional intramuscular injection. Together, the unique geometric features of these undercut MNAs and the associated manufacturing strategy, which is compatible with diverse drugs and biologics, could enable a broad range of non-cutaneous and cutaneous drug delivery applications, including multicomponent vaccination.
Light-based therapy is an emerging treatment for skin cancer, which has received increased attention due to its drug-free and non-invasive approach. However, the limitation of current light therapy methods is the inability for light to penetrate the skin and reach deep lesions. As such, we have developed a polylactic acid (PLA) microneedles array as a novel light transmission platform to perform in vitro evaluation regarding the effect of light therapy on skin cancer. For the first time, we designed and fabricated a microneedle array system with a height fixation device that can be installed in a cell culture dish and an LED array for blue light irradiation. The effect of the blue light combined with the microneedles on cell apoptosis was evaluated using B16F10 melanoma cells and analyzed by Hoechst staining. Our results demonstrate that blue light can be transmitted by microneedles to skin cells and effectively affect cell viability
Experiments using this groundbreaking invention on mice with cancers have shown that the animals’ immune responses were much better than those seen in conventional vaccination methods. The technology paves the way for developing an easy-to-use cell therapy and other therapeutics against cancers and other diseases. Made from a cryogenic solution, these icy microneedles are less than 1mm long and can deliver living mammalian cells into the skin. The device is like a skin patch and the microneedles can detach from the patch base, melt and then penetrate the skin.
Silk fibroin has been widely used as fundamental components for the construction of biocompatible flexible electronics, particularly for wearable and implantable devices. Furthermore, in recent years, more attention has been paid to the investigation of the functional characteristics of silk fibroin, such as the dielectric properties, piezoelectric properties, strong ability to lose electrons, and sensitivity to environmental variables. Here, this paper not only reviews the preparation technologies for various forms of silk fibroin and the recent progress in the use of silk fibroin as a fundamental material but also focuses on the recent advanced works in which silk fibroin serves as functional components. Additionally, the challenges and future development of silk fibroin-based flexible electronics are summarized.
Conclusion. Acupuncture is an effective and safe treatment for CPRD, and acupuncture combined with drug therapy is more effective than single-drug therapy. Nevertheless, the conclusions were limited due to the low quality and a small number of included studies.
Oftentimes, doctors use blood samples to check for biomarkers of disease: antibodies that signal a viral or bacterial infection, such as SARS-CoV-2, the virus responsible for COVID-19; or cytokines indicative of inflammation seen in conditions such as rheumatoid arthritis and sepsis.
Autoimmune-mediated inflammatory skin diseases, such as psoriasis, alopecia areata, and vitiligo, have been reported as the 4th leading cause of nonfatal disease burden worldwide. This is mainly related to the poor quality of life experienced by these patients. Although topical and systemic steroids represent the most common treatment, the variability in success rates and side effects often lead to treatment discontinuation.
The team at Swansea University in Wales is developing the first coronavirus vaccine in the form of a "smart patch." The device is disposable and administers the vaccine through microneedles, which simultaneously monitor its efficacy by measuring each individual's immune response.
A novel device for enhancing wound healing, the detachable hybrid microneedle depot. It is the first device to use a microneedle array to facilitate localized mesenchymal stem cell delivery with a minimal dose of cells.
Vascular endothelial growth factor (VEGF) is encapsulated in the micropores of CSMNA by temperature sensitive hydrogel. Therefore, the smart release of the drugs can be controllably realized via the temperature rising induced by the inflammation response at the site of wounds.
The microneedle patch avoids any painful injections, offering a significant enhancement from the perspective of patients. Extensive research has shown microneedle skin patches are almost painless, and could even be self-administered by patients at home. The patch is small, portable, and similar to a nicotine patch, which could be easily distributed to all people over the world for self-administration in the case of a pandemic such as the COVID-19 crisis to quickly create a pan-immunity at the global scale.
To get content containing either thought or leadership enter:
To get content containing both thought and leadership enter:
To get content containing the expression thought leadership enter:
You can enter several keywords and you can refine them whenever you want. Our suggestion engine uses more signals but entering a few keywords here will rapidly give you great content to curate.