iBB
46.3K views | +0 today
Follow
iBB
Institute for Bioengineering and Biosciences
Curated by iBB
Your new post is loading...
Your new post is loading...
Scoop.it!

Transcriptomic Profiling of Human Pluripotent Stem Cell-Derived Cerebellar Organoids

Transcriptomic Profiling of Human Pluripotent Stem Cell-Derived Cerebellar Organoids | iBB | Scoop.it

 

Endogenous human brain tissue is not easily available for studying neurodevelopment and neurodegenerative diseases. However, human pluripotent stem cells (PSCs) have been used to generate a variety of glial and neuronal cells of the central nervous system. Still, reproducible protocols for generating in vitro models of the human cerebellum are scarce. In this context, Silva et al. describe the scalable production of human PSC-derived cerebellar organoids using single-use vertical-wheel bioreactors. The transcriptomic profile of cerebellar organoids derived under dynamic conditions demonstrates a faster cerebellar differentiation combined with significant enrichment of extracellular matrix and upregulation of transcripts involved in angiogenesis when compared with the static protocol. The authors anticipate that large-scale production of cerebellar organoids may help developing models for drug screening, toxicological tests and studying pathological pathways involved in cerebellar degeneration.

No comment yet.
Scoop.it!

Maturation of Human Pluripotent Stem Cell-Derived Cerebellar Neurons in the Absence of Co-Culture

Maturation of Human Pluripotent Stem Cell-Derived Cerebellar Neurons in the Absence of Co-Culture | iBB | Scoop.it

In a new paper published in Frontiers in Bioengineering and Biotechnology, SCERG-iBB researchers in collaboration with colleagues from the Institute of Molecular Medicine (iMM) describe a novel differentiation strategy that uses defined medium to generate Purkinje cells, granule cells, interneurons, and deep cerebellar nuclei projection neurons, that self-formed and matured into electrically active cells. This research is expected to result in better models for the study of cerebellar dysfunctions and represent an important advancement towards the development of autologous replacement strategies for treating cerebellar degenerative diseases.

No comment yet.
Scoop.it!

Expansion and Harvesting Of Human Induced Pluripotent Stem Cells on Dissolvable Microcarriers

Expansion and Harvesting Of Human Induced Pluripotent Stem Cells on Dissolvable Microcarriers | iBB | Scoop.it

Development of efficient bioprocesses for human induced pluripotent stem cells (hiPSC) is critical for their medical and biotechnological applications. Scalable expansion of hiPSC is often performed using polystyrene microcarriers, which have to be removed using a time-consuming separation step. At the Stem Cell Engineering Research Group, novel xeno-free dissolvable microcarriers were applied for the first time for the integrated expansion and harvesting of hiPSC. After expansion, microcarriers were dissolved inside the bioreactor, allowing the recovery of more than 90% of the cells, which represents a significantly higher cell yield when compared with microcarrier filtration (45%). These results represent a major improvement for the downstream processing of hiPSC. Find more on the paper on Biotechnology Journal.

No comment yet.
Scoop.it!

Scale-up of Cardiomyocyte Production

Scale-up of Cardiomyocyte Production | iBB | Scoop.it

The project "CardioWheel: Upscaling the Production of Human Pluripotent Stem Cell-derived Cardiomyocytes using Vertical-Wheel Bioreactors" has been recommended for funding by FCT (2017 Call for SR&TD Project Grants). The goal of CardioWheel is the application of bioreactor technology for human Pluripotent Stem Cell expansion and cardiomyocyte differentiation in a single process, culturing cells in suspension in the novel single-use Vertical-Wheel Bioreactors. These bioreactors will be characterized using computational fluid dynamics and this knowledge will be used to scale up the culture. The generated cells will be tested for functional and pharmacological activity to demonstrate their applicability in drug discovery and regenerative medicine. The project, which falls within the scientific area of Chemical Engineering, is headed by Carlos Rodrigues and Joaquim Cabral from SCERG-iBB.

No comment yet.
Scoop.it!

Stem cell Manufacturing and Artificial Intelligence-based Modeling

Stem cell Manufacturing and Artificial Intelligence-based Modeling | iBB | Scoop.it

The project "SMART:New technologies and strategies for Stem cell Manufacturing bioprocess monitoring and ARTificial intelligence-based modeling" has been recommended for funding by FCT (2020 Call for SR&TD Project Grants). The goal of SMART is to develop new monitoring and modeling strategies envisaging more efficient bioreactor-based processes for the manufacturing of human induced Pluripotent Stem Cell-derived cardiomyocytes for biomedical applications, using artificial intelligence to integrate bioprocess monitoring data with biological data. The project, which falls within the scientific area of Chemical Engineering, is headed by Carlos Rodrigues from SCERG-iBB.

No comment yet.
Scoop.it!

Microbial Degradation of Paraffin Wax

Microbial Degradation of Paraffin Wax | iBB | Scoop.it

During crude oil extraction, the reduction in temperature and pressure results in the precipitation of paraffin wax, which may accumulate inside production tubes, pipelines, and also in tankers during petroleum transportation. Few bacterial strains are able to degrade this type of solid substrates. In a paper, published  in Biotechnology Journal, Carlos Rodrigues and Carla CCR de Carvalho (BERG-iBB) evaluate the biodegradation of paraffin by Rhodococcus erythropolis cells. The cells could grow as a thick biofilm over the solid substrate and rapidly degrade paraffin when it was supplied in the form of microparticles. The phenotypic adaptations allowing the cells to degrade the 20-40 chain hydrocarbons are discussed in the paper.

Aptech Visa's comment, July 9, 2019 8:35 AM
Saskatchewan Express Entry - https://www.aptechvisa.com/sinp-saskatchewan-express-entry
Scoop.it!

Expansion of Human Induced Pluripotent Stem Cells in Vertical-Wheel Bioreactors

Expansion of Human Induced Pluripotent Stem Cells in Vertical-Wheel Bioreactors | iBB | Scoop.it

The successful use of Human induced Pluripotent Stem Cells (hiPSC) for disease modelling, drug discovery and, ultimately, for regenerative therapies depends on the development of robust bioprocesses capable of generating large numbers of hiPSC and derivatives. SCERG-iBB researchers developed a bioprocess for the scalable generation of hiPSC in a microcarrier-based system using, for the first time, single-use Vertical-Wheel bioreactors. hiPSC culture was performed in working volumes up to 300 mL, maintaining the pluripotency and genomic integrity of the cells, providing an important tool for the successful manufacturing of hiPSC-based products.  The work was published in the Journal of Chemical Technology and Biotechnology.

No comment yet.