Longevity science
87.1K views | +0 today
Follow
Longevity science
Live longer in good health and you will have a chance to extend your healthy life even further
Your new post is loading...
Your new post is loading...
Scooped by Ray and Terry's
Scoop.it!

Neurological implant accurately predicts likelihood of epileptic seizure

Neurological implant accurately predicts likelihood of epileptic seizure | Longevity science | Scoop.it

Epilepsy seizures can range from something as subtle as a passing localized numbness to something as noticeable and potentially dangerous as wild involuntary thrashing. While some people experience symptoms before a seizure that indicate one is about to occur, others have no warning at all.

 

A new device designed to be implanted between the skull and the brain surface has been found to accurately predict epilepsy seizures in humans and can indicate the risk of a seizure occurring in the coming hours.

 

 

No comment yet.
Rescooped by Ray and Terry's from Amazing Science
Scoop.it!

Epilepsy Cured in Mice Using A One-Time Transplantation Of MGE Brain Cells

Epilepsy Cured in Mice Using A One-Time Transplantation Of MGE Brain Cells | Longevity science | Scoop.it

UCSF scientists controlled seizures in epileptic mice with a one-time transplantation of medial ganglionic eminence (MGE) cells, which inhibit signaling in overactive nerve circuits, into the hippocampus, a brain region associated with seizures, as well as with learning and memory. Other researchers had previously used different cell types in rodent cell transplantation experiments and failed to stop seizures.

 

Cell therapy has become an active focus of epilepsy research, in part because current medications, even when effective, only control symptoms and not underlying causes of the disease, according to Scott C. Baraban, PhD, who holds the William K. Bowes Jr. Endowed Chair in Neuroscience Research at UCSF and led the new study. In many types of epilepsy, he said, current drugs have no therapeutic value at all.

 

"Our results are an encouraging step toward using inhibitory neurons for cell transplantation in adults with severe forms of epilepsy," Baraban said. "This procedure offers the possibility of controlling seizures and rescuing cognitive deficits in these patients."

 

In the UCSF study, the transplanted inhibitory cells quenched this synchronous, nerve-signaling firestorm, eliminating seizures in half of the treated mice and dramatically reducing the number of spontaneous seizures in the rest. Robert Hunt, PhD, a postdoctoral fellow in the Baraban lab, guided many of the key experiments.

 

he mouse model of disease that Baraban's lab team worked with is meant to resemble a severe and typically drug-resistant form of human epilepsy called mesial temporal lobe epilepsy, in which seizures are thought to arise in the hippocampus. In contrast to transplants into the hippocampus, transplants into the amygdala, a brain region involved in memory and emotion, failed to halt seizure activity in this same mouse model, the researcher found.

 

Temporal lobe epilepsy often develops in adolescence, in some cases long after a seizure episode triggered during early childhood by a high fever. A similar condition in mice can be induced with a chemical exposure, and in addition to seizures, this mouse model shares other pathological features with the human condition, such as loss of cells in the hippocampus, behavioral alterations and impaired problem solving.

 


Via Dr. Stefan Gruenwald
Biosciencia's curator insight, May 6, 2013 6:38 AM

Cell therapy has become an active focus of epilepsy research, in part because current medications, even when effective, only control symptoms and not underlying causes of the disease.