iBB
58.1K views | +2 today
Follow
iBB
Institute for Bioengineering and Biosciences
Curated by iBB
Your new post is loading...
Your new post is loading...
Scoop.it!

Exploring the Biological Function of Efflux Pumps for the Development of Superior Industrial Yeasts

Exploring the Biological Function of Efflux Pumps for the Development of Superior Industrial Yeasts | iBB | Scoop.it

The economic competitiveness of yeast-mediated bioprocesses in Chemical Biotechnology requires high tolerance of industrial strains to the multiple stresses that occur. Among the mechanisms used by yeast to overcome those deleterious effects is the activity of plasma membrane transporters involved in multidrug/multixenobiotic resistance (MDR/MXR). A new review article on these still poorly characterized transporters belonging to the MFS and the ABC Superfamily in yeasts of biotechnological relevance has just been published. The reported role of specific transporters in increasing the secretion of metabolites and other added-value bioproducts is also highlighted. The review article is co-authored by the BSRG-iBB researchers Isabel Sá-Correia and Cláudia P. Godinho and was published in the journal Current Opinion in Biotechnology (special Issue: Chemical Biotechnology 2022).

Scoop.it!

Today’s Pharma and Biotech Projects: A Phased Approach

Today’s Pharma and Biotech Projects: A Phased Approach | iBB | Scoop.it

The general outline of a pharma or biotech engineering project includes phases and tasks that typically span 2–3 years. The concept of phased engineering, procurement, and construction (EPC) is revisited in a paper co-authored by José Cardoso Menezes from BERG-iBB and colleagues and published in Pharmaceutical Engineering. The concept is further updated with risk-based considerations specifically regarding the commissioning, qualification, and validation (CQV) of general life-cycle principles for pharma and biotech projects.

No comment yet.
Scoop.it!

Magnetic Particles for the Purification of DNA Scaffolds for Biomanufacturing DNA-Origami Nanostructures

Magnetic Particles for the Purification of DNA Scaffolds for Biomanufacturing DNA-Origami Nanostructures | iBB | Scoop.it

Asymmetric PCR (aPCR) is often used to generate single-stranded DNA (ssDNA) scaffolds, which can then be assembled into nanoobjects by the DNA-origami technique. The scaffolds are usually purified by agarose gel extraction, a laborious, time consuming, limited, and non-scalable technique that presents low recovery yields, delivers low-quality products. To overcome such pitfalls, Ana Silva-Santos, Rui Silva, Sara Rosa and Miguel Prazeres from BERG-iBB, in collaboration with Pedro Paulo from CQE developed a simple, fast, and potentially scalable affinity-based method comprising magnetic particles. Specifically, scaffolds were synthesized by aPCR and purifed using magnetic particles functionalized with a 20 nt oligonucleotide complementary to the 3′ end of the target. The purified scaffolds were used to assemble 31 and 63 bp edge length tetrahedra with short oligonucleotides and thermal annealing, demonstrating the potential of affinity-based magnetic beads in the production of DNA-origami nanostructures. The work was published in ACS Applied Nanomaterials.

No comment yet.
Scoop.it!

Opportunities in Continuous Manufacturing of Large Molecules

Opportunities in Continuous Manufacturing of Large Molecules | iBB | Scoop.it

Continuous manufacturing has attracted significant interest over the past decade for small molecules formulated as drug products. The case for adopting continuous manufacturing platforms for manufacturing biologics (i.e., large proteins or biologic products such as vaccines) is made in a paper co-authored by José Cardoso Menezes from BERG-iBB and colleagues and published in Pharmaceutical Engineering. The article briefly reviews continuous biomanufacturing (CBM) at a time of very high and global demand for vaccines as well as increased demand for cell and gene therapy products.

No comment yet.
Scoop.it!

Antitumour and Antiproliferative Effect of Xanthohumol-loaded PLGA Nanoparticles on Melanoma

Antitumour and Antiproliferative Effect of Xanthohumol-loaded PLGA Nanoparticles on Melanoma | iBB | Scoop.it

Cutaneous melanoma is the deadliest type of skin cancer and current treatment is still inadequate, with low patient survival rates. The use of polyphenols loaded into nanoparticles could potentially address the lack of efficacy of current therapy. In a collaborative work published in a special issue of the journal Materials, with researchers from the University of Porto, Pedro Fonte and Ana Macedo from BERG-iBB assessed the potential of xanthohumol-loaded nanoparticles to treat melanoma. Nanoparticles had a size of about 300 nm and a PdI of 0.259, while achieving a xanthohumol loading of about 90%. The viability study showed similar cytoxicity between the xanthohumol and xanthohumol-loaded nanoparticles at 48 h with the IC50 established at 10 µM.  The ultimate anti-melanoma effect emerged from an association between the viability, migration and macrophagic phenotype modulation. These results display the remarkable antitumour effect of the xanthohumol-loaded nanoparticles and are the first advance towards the application of a nanoformulation to deliver xanthohumol to reduce adverse effects by currently employed chemotherapeutics.

No comment yet.
Scoop.it!

Exploring N.C.Yeastract to Study Gene and Genomic Regulation in Non Conventional Yeasts

Exploring N.C.Yeastract to Study Gene and Genomic Regulation in Non Conventional Yeasts | iBB | Scoop.it

Responding to the recent interest of the yeast research community in non-Saccharomyces cerevisiae species of biotechnological relevance, the N.C.Yeastract was associated to YEASTRACT+, a curated repository of known regulatory associations between transcription factors (TFs) and target genes in yeasts. A recent Minireview published in FEMS Yeast Research aims to advertise the update of the existing information since the release of N.C.Yeastract in 2019, and to raise awareness in the community about its potential to help the day-to-day work on non-Saccharomyces species, exploring all the information and bioinformatics tools available in YEASTRACT +. Using simple and widely used examples, a guided exploitation is offered. The usage potentialities of the new CommunityYeastract platform by the yeast community are also discussed. The Minireview is coauthored by a BSRG-iBB team coordinated by Isabel Sá-Correia and including Cláudia P. Godinho, Margarida Palma, Miguel C. Teixeira and the PhD students Miguel Antunes and Marta N. Mota, in collaboration with INESC-ID colleagues.

No comment yet.
Scoop.it!

Nutritional Composition, Bioactivity and Nanoencapsulation of Extracts from Wild Asparagus

Nutritional Composition, Bioactivity and Nanoencapsulation of Extracts from Wild Asparagus | iBB | Scoop.it

The nutritional composition and bioactive properties of roots and rhizomes of Asparagus stipularis were evaluated to demonstrate its potential in the food and pharmaceutical industries. HPLC-DAD-ESI/MS characterization of infusions allowed the identification and quantitation of 7 hydroxycinnamoyl derivatives, with caffeic acid as the most abundant. Roots infusion contained the highest amounts of these compounds. It also exhibited the highest antioxidant activity in all assays, with EC50 values of 0.44 ± 0.01, 0.98 ± 0.03 and 0.64 ± 0.01 mg/mL for DPPH, ABTS and FRAP assays, respectively, with no toxicity towards PLP2 primary cell cultures (GI50 > 400 μg/mL). The extract was encapsulated into PLGA nanoparticles obtaining a size of 260 nm and a polydispersity index around 0.1, with a zeta potential of -36 mV, as well as a good encapsulation efficiency of approximately 83%. The particles had a spherical morphology and smooth surface. FTIR and DSC assays confirmed the efficacy of the encapsulation methodology. This paper was published in Food Bioscience by Pedro Fonte from BERG-iBB in a transnational collaboration with researchers from Portugal, Spain, Italy and Tunisia. The developed systems will be used as delivery systems for bioactive compounds of A. stipularis and as an innovative dietary supplement.

No comment yet.
Scoop.it!

Nanocarrier-Mediated Topical Insulin Delivery for Wound Healing

Nanocarrier-Mediated Topical Insulin Delivery for Wound Healing | iBB | Scoop.it

Wound care is clinically demanding due to treatment inefficiency and represents an economic burden for healthcare systems. A promising therapeutic strategy is the use of exogenous growth factors that are decreased at the wound site and hence limit recovery of the skin. Insulin is one of the cheapest growth factors in the market able to accelerate the re-epithelialization and stimulate angiogenesis and cell migration. However, the effectiveness of topical insulin in wound healing is hampered by the proteases in the wound bed. The encapsulation into nanoparticles improves its stability in the wound, providing adhesion to the mucosal surface and allowing its sustained release. In a paper published in Materials, Pedro Fonte from BERG-iBB in a collaboration with researchers from CCMAR, University of Algarve and LAQV, University of Porto performed a standing point about a promising strategy to treat different types of wounds by the topical delivery of insulin-loaded nanocarriers.

No comment yet.
Scoop.it!

Controlling Biofilm Establishment Since the First Touch

Controlling Biofilm Establishment Since the First Touch | iBB | Scoop.it

Candida glabrata’s ability to cause human infections is tightly linked to its impressive ability to form persistent biofilms. The molecular control of this process is far from being clarified, as it lacks many of the typical features displayed by other Candida species. In this study, a combination of genetic screening, RNA-seq based transcriptomics, and Single-Cell Force Spectroscopy (SCFS), enabled the observation that the transcription factor CgEfg1, but not CgTec1, is necessary for the initial interaction of C. glabrata cells with both abiotic surfaces used in medical devices and epithelial cells, while both transcription factors orchestrate biofilm maturation. The knowledge gathered through this study by former PhD student Mafalda Cavalheiro, and an international team led by Miguel Cacho Teixeira, BSRG-iBB, including Etienne Dague, LAAS-CNRS, Geraldine Butler, University College Dublin, and Arsénio Fialho, BSRG-iBB, and just published in Communications Biology, is expected to contribute to guide the design of more successful therapeutic approaches.

No comment yet.
Scoop.it!

Xylonic Acid Production from Xylose by Paraburkholderia sacchari

Xylonic Acid Production from Xylose by Paraburkholderia sacchari | iBB | Scoop.it

Paraburkholderia sacchari has the capacity to produce xylonic acid and xylitol, compounds ranked in the top 30 high-value chemicals from biomass. In a recent paper in Biochemical Engineering Journal, Maryna Bondar, Manuela Fonseca and Teresa Cesário from BERG-iBB reveal the outstanding ability of this bacterium to metabolize D-xylose to xylonic acid. D-xylonic acid is a five-carbon sugar acid that can replace gluconic acid in several applications. The biotechnological production of D-xylonic acid is advantageous over gluconic acid because it uses xylose as carbon source. Xylose is a very abundant sugar in nature and only few native bacterial strains can metabolize it. Fed-batch cultivations in a single bioreactor attained xylonic acid titers of 390 g L-1 and a productivity of 7.7 g L-1 h-1. This simplified process can significantly affect process economics, potentiating its translation to an industrial scale.

No comment yet.
Scoop.it!

Insights into the Cultured Bacterial Fraction of Corals

Insights into the Cultured Bacterial Fraction of Corals | iBB | Scoop.it

Bacteria associated with coral hosts are diverse and abundant, with recent studies suggesting involvement of these symbionts in host resilience to anthropogenic stress. Combining published and unpublished data, a new article featuring iBB researchers Tina Keller-Costa and Rodrigo Costa among the authors provides a comprehensive overview of the diversity and function of culturable bacteria isolated from tropical, temperate, and cold-water corals. The study, published in the journal mSystems, compiles a total of 3,055 coral-associated isolates described in 52 reports from various laboratories around the world. The work presents a comparative genomic analysis of 74 strains and identifies signatures of potentially beneficial bacterium-coral symbioses among them. Such a resource is an important step in the selection of probiotic candidates, which are being investigated for promoting coral resilience and can potentially be applied in novel reef restoration and rehabilitation efforts. This genome and culture collection is available to the wider research community through the web site http://isolates.reefgenomics.org/ with the hope that many scientists across the globe will ask for access to these resources for future studies.

No comment yet.
Scoop.it!

Determination of Recombination Efficiency in Minicircle Production by Real-time PCR

Determination of Recombination Efficiency in Minicircle Production by Real-time PCR | iBB | Scoop.it

The determination of the recombination efficiency and the monitoring of parental plasmids (PP), minicircles (MC) and miniplasmid (MP) species during processing and in the final product are critical aspects of minicircle manufacturing. A paper published in Analytical Biochemistry by BERG-iBB researchers Cláudia Alves, Miguel Prazeres and Gabriel Monteiro describes a real-time PCR method for the specific identification of PP, MP or MC that uses sets of primers specific for each species. The results presented indicate that the method can be applied for the determination of recombination efficiency in pure DNA samples.

No comment yet.
Scoop.it!

Minicircle‐based Expression of VEGF in Mesenchymal Stromal Cells from Human Tissues

Minicircle‐based Expression of VEGF in Mesenchymal Stromal Cells from Human Tissues | iBB | Scoop.it

Mesenchymal stromal cells (MSC) have been exploited for the treatment of ischemic diseases given their angiogenic potential. A recent study published in the Journal of Gene Medicine by BERG and SCERG researchers compares the angiogenic potential of MSC obtained from bone marrow (BM), adipose tissue (AT) and umbilical cord matrix (UCM) that were genetically modified with VEGF‐encoding minicircle vectors. Transfected cells displayed higher in vitro angiogenic potential than non‐transfected controls, as demonstrated by functional in vitro assays, but no significant differences were observed among cells from different sources.

No comment yet.
Scoop.it!

Special Issue "Bioprocess Engineering: Sustainable Manufacturing for a Green Society"

Special Issue "Bioprocess Engineering: Sustainable Manufacturing for a Green Society" | iBB | Scoop.it

The mild operational conditions typically required by biobased production processes, together with the selective nature of biocatalysts, microbial diversity and tunability, and the century-long record of fermentation, clearly place bioprocesses as the primary contenders, by far, in achieving the generalized implementation of efficient, green manufacturing strategies. Moreover, by overlapping with the biorefinery approach, the foundations needed for bioprocesses to embrace the circular economy concept are set. In this Special Issue on “Bioprocess Engineering: Sustainable Manufacturing for a Green Society", guest edited by Pedro Fernandes and Carla de Carvalho (iBB-BERG) in Processes, the papers will discuss new bioproducts and concomitant bioengineering approaches to achieve a sustainable and environmentally friendly economy.

No comment yet.
Scoop.it!

Acyl-chain Saturation Regulates the Order of Phosphatidylinositol 4,5-bisphosphate Nanodomains

Acyl-chain Saturation Regulates the Order of Phosphatidylinositol 4,5-bisphosphate Nanodomains | iBB | Scoop.it

PI(4,5)P2 is a phospholipid found mostly in the plasma membrane of eukaryotic cells, where it plays a crucial role in processes like vesicle trafficking, cytoskeletal regulation, ion channel function, viral assembly and budding. While most phospholipids show considerable acyl-chain diversity, PI(4,5)P2 lipids are exceptionally enriched in specific acyl-chains, the most frequent composition in mammalian cells being 1-stearoyl-2-arachidonyl (18:0 20:4). The biological functions that call for this specific enrichment are still not fully clear. In a recent paper published in Communications Chemistry, a BSIRG-iBB team led by Fábio Fernandes together with the teams of Dr. Nuno Santos (IMM) and Dr. Manuel Melo (ITQB) identified a previously unreported increase in membrane order upon calcium-dependent PI(4,5)P2 clustering. Remarkably, the interaction of saturated PI(4,5)P2 with calcium culminated in the formation of gel nanodomains for fully saturated PI(4,5)P2, and the formation of these gel domains was abrogated in the presence of 18:0 20:4 polyunsaturated PI(4,5)P2. These results support a role of (18:0 20:4)PI(4,5)P2 in inhibiting the formation of highly ordered PI(4,5)P2 nanodomains in the plasma membrane.

No comment yet.
Scoop.it!

Quantitative FRET Microscopy Reveals a Crucial Role of Cytoskeleton in Promoting PI(4,5)P2 Confinement

Quantitative FRET Microscopy Reveals a Crucial Role of Cytoskeleton in Promoting PI(4,5)P2 Confinement | iBB | Scoop.it

Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is crucial to many cellular processes in eukaryotes, including membrane trafficking, signal transduction, ion channel function  and cytoskeleton dynamics. This function multiplicity is partially achieved through a dynamic spatiotemporal organization of PI(4,5)P2 within the membrane. In a recent paper published in IJMS, an IBB team (Maria J. Sarmento, Luís Borges-Araújo, Sandra N.Pinto, Nuno Bernardes, Joana Ricardo, Ana Coutinho, Manuel Prieto and Fábio Fernandes) was able to quantify PI(4,5)P2 confinement in living cells making use of FRET imaging measurements. PI(4,5)P2 was found to be significantly compartmentalized at the plasma membrane of HeLa cells. These PI(4,5)P2 enriched domains were shown to not depend on cholesterol content, ruling out an association with lipid rafts. On the other hand, upon inhibition of actin polymerization, compartmentalization of PI(4,5)P2 was almost entirely eliminated, confirming that the cytoskeleton network is the critical component responsible for the formation of nanoscale PI(4,5)P2 domains.

No comment yet.
Scoop.it!

Application of Perinatal Derivatives in Animal Models on Cutaneous Wound Healing

Application of Perinatal Derivatives in Animal Models on Cutaneous Wound Healing | iBB | Scoop.it

Many studies that apply PnD in pre-clinical cutaneous wound healing models show large variations in the choice of the animal species (e.g., large animals, rodents), the choice of diabetic or non-diabetic animals, the type of injury (full-thickness wounds, burns, radiation-induced wounds, skin flaps), the source and type of PnD (placenta, umbilical cord, fetal membranes, cells, secretomes, tissue extracts), the method of administration (topical application, intradermal/subcutaneous injection, intravenous or intraperitoneal injection, subcutaneous implantation), and the type of delivery systems (e.g., hydrogels, synthetic or natural biomaterials as carriers for transplanted cells, extracts or secretomes). In a collaborative work coordinated by Prof. Pedro Fonte under the COST Action SPRINT (CA17116), the Postdoc researcher Ana Macedo and Master student Francisca Mendes from BERG-iBB, provided a comprehensive and integrative overview of the application of PnD in wound healing to assess its efficacy in preclinical animal models. The review was published in Frontiers in Bioengineering and Biotechnology.

No comment yet.
Scoop.it!

The Azurin-Derived Peptide CT-p19LC Exhibits Membrane-Active Properties and Induces Cancer Cell Death

The Azurin-Derived Peptide CT-p19LC Exhibits Membrane-Active Properties and Induces Cancer Cell Death | iBB | Scoop.it

The bacterial protein azurin shows an unexpected therapeutic effect against various types of cancer. This property seems to result from its unique structural and surface features. A 28-residue peptide (named p28) derived from the middle part of azurin has been subjected to various studies and reached two clinical trials phase I in US. In a recent paper published in Biomedicines, a iBB team (Ana Rita Garizo, Lígia Coelho, Sandra Pinto, Tiago Dias, Fábio Fernandes, Nuno Bernardes and Arsénio M Fialho) were able to identified another anticancer bioactive peptide (CT-p19LC) derived from the C-terminal of azurin. CT-p19LC proved to interact preferentially with cancer cells, causing a significative inhibition of cell proliferation in a dose dependent manner. Moreover, it is proposed that the mode of action of CT-p19LC involves perturbation or disruption of cancer cell membranes. Overall this study highlights the relevance of azurin as a source of bioactive peptides with potential application in cancer therapies.

No comment yet.
Scoop.it!

Prediction of the Haa1-regulatory Network in the Oleaginous Yeast Rhodotorula toruloides

Prediction of the Haa1-regulatory Network in the Oleaginous Yeast Rhodotorula toruloides | iBB | Scoop.it

A new bioinformatics tool, developed by our computational biologist collaborators at INESC-ID, is described in a recent article published in BMC Bioinformatics. The BSRG-iBB team contributed to the application of the tool to predict the putative Haa1-regulon in the lipid producing yeast cell factory Rhodotorula toruloides. For this, genomic information on this species was collected and included in the CommunityYeastract to benefit from the access to all the comparative genomics queries offered in the YEASTRACT + portal. The transcription factor Haa1 is the main regulator of S. cerevisiae genomic response to acetic acid stress, regulating, directly or indirectly, the majority of acetic acid tolerance genes. The prediction of RtHaa1-regulon has an expected impact in the optimization of R. toruloides robustness for biorefinery processes using hydrolysates from lignocellulosic residues. The BSRG-iBB team involved in these studies included the PhD student Miguel Antunes, his supervisor Isabel Sá-Correia, and Cláudia P. Godinho and Miguel C. Teixeira. 

No comment yet.
Scoop.it!

Lipid Hydroperoxide Compromises the Membrane Structure Organization

Lipid Hydroperoxide Compromises the Membrane Structure Organization | iBB | Scoop.it

Lipid hydroperoxides have recently been recognized as key mediators of diseases (such as neurodegenerative disorders or Type II diabetes) and cell death. In a recent work, structural and dynamic perturbations induced by the hydroperoxidized POPC lipid (POPC-OOH) in fluid POPC membranes were addressed using advanced small-angle X-ray scattering (SAXS) and fluorescence methodologies. Notably, this multidisciplinary approach revealed that the hydroperoxide group located at the membrane interface, promotes a higher membrane hydration and microviscosity, with a strikingly lower order and bending rigidity, an unusual trend in membrane biophysics, which ultimately compromises membrane structure organization. This international work co-led by Ana M. Melo (BSIRG-iBB) and Rosangela Itri (Institute of Physics, University of São Paulo) was recently published in Langmuir and involved other BSIRG-iBB researchers (Ana Coutinho, Alexander Fedorov and Manuel Prieto).

No comment yet.
Scoop.it!

Gefitinib-Loaded p28-PLGA Nanoparticles Reduce Tumor Burden and Metastases in Lung Cancer

Gefitinib-Loaded p28-PLGA Nanoparticles Reduce Tumor Burden and Metastases in Lung Cancer | iBB | Scoop.it

p28 is a 28 amino acids peptide derived from the bacterial protein azurin. It possesses cell-penetrating capabilities showing preferential enter in cancer cells. Moreover it has been subject in US to two phase I clinical trials as a anticancer agent. In a recent paper published in Journal of Controlled Release, a iBB team (Garizo AR, Dias TP, Fernandes F, Bernardes N, Fialho AM) together with a i3S/UP team (Castro F, Martins C, Almeida A, Barrias CC, Sarmento B) were able for the first time to fabricate p28-functionalized PLGA nanoparticles (NPs) loaded with the EGFR tyrosine kinase inhibitor gefitinib. The results obtained indicate that these NPs interact preferentially with lung cancer cells due to their decoration with p28 peptide. In vitro cytotoxicity assays demonstrate biological activity of the NPs against lung cancer cancer cells. Finally, in vivo studies demonstrated a great potential of the p28-NPs in enhancing the therapeutic effects of gefitinib.

No comment yet.
Scoop.it!

Manufacture of Microfibers of Polyhydroxyalkanoate from Cassava Peel Waste by Electrospinning

Manufacture of Microfibers of Polyhydroxyalkanoate from Cassava Peel Waste by Electrospinning | iBB | Scoop.it

Cassava (Manihot esculenta) cultivation is of great importance in many economies, particularly in Colombia. About 630,000 tons of C-rich cassava waste is produced annually and applications to high value products, applying the circular economy concept, must be developed. A recent publication in Journal of Polymers and the Environment assesses the potential use of cassava peel for the production of polyhydroxyalkanoates (PHAs) by Cupriavidus necator. A copolymer of P3HB-3HV was produced and processed into electrospun meshes of random and aligned microfibers, allowing the development of structures that can be applied in the context of tissue engineering. This work involved Manuela Fonseca, Frederico Ferreita and Teresa Cesário form BERG-IBB and has been done in collaboration with researchers from the University of Antioquia, Medellin-Colombia.

No comment yet.
Scoop.it!

Increasing Yields of Cytochrome B5 in Bioreactors

Increasing Yields of Cytochrome B5 in Bioreactors | iBB | Scoop.it

The production of recombinant proteins is gaining increasing importance as several applications request high quality proteins. However, several process parameters affect both the growth of cells and product yields. In a paper recently published in the journal Molecules, Ricardo FS Pereira and Carla CCR de Carvalho (iBB-BERG) used high throughput systems and statistical methods to assess the influence of fermentation conditions in lab-scale bioreactors. Using partial least squares, it was found that the height-to-diameter ratio of the bioreactor, aeration rate, and PID controller parameters contributed significantly to the final biomass and cytochrome concentrations. This information was used to fine-tune the process parameters, which increased cytochrome production and yield several-fold.

No comment yet.
Scoop.it!

Adaptation to Acetic Acid Stress Involves Structural Alterations and Increased Stiffness of the Yeast Cell Wall

Adaptation to Acetic Acid Stress Involves Structural Alterations and Increased Stiffness of the Yeast Cell Wall | iBB | Scoop.it

The role of the cell wall in yeast response and tolerance to stress is frequently neglected. A BSRG-iBB research paper just published in Scientific Reports, provides, for the first time, a comprehensive view of the alterations occurring at the cell wall in a yeast population adapting to sub-lethal stress induced by acetic acid. The results reveal changes to the cell wall polysaccharide composition and nanomechanical properties, as well as alterations in the transcript levels of key cell wall biosynthetic genes. This paper reinforces the notion that the adaptive yeast response to acetic acid involves coordinated alterations of the cell wall at the biophysical and molecular levels. The gathered knowledge is important for the design of superior industrial strains and for the efficient control of the deleterious activity of spoilage yeasts, particularly in the Food Industry. This research work is first-authored by the PhD student of the PhD programme in Biotechnology and Biosciences Ricardo Ribeiro (FCT_DP AEM fellowship), performed under the supervision of Isabel Sá-Correia. This collaborative study with Fábio Fernandes (BSIRG-iBB) and Mário S. Rodrigues and his team (BioISI, Faculty of Sciences, ULisboa), is also coauthored by Cláudia Godinho (posdoc researcher) and the PhD student Nuno Bourbon-Melo (FCT_DP BIOTECnico) from the BSRG-iBB team.

No comment yet.
Scoop.it!

Functionalization of Cellulose Hydrogels with Carbohydrate-Binding Module Fusions

Functionalization of Cellulose Hydrogels with Carbohydrate-Binding Module Fusions | iBB | Scoop.it

Materials with novel and enhanced functionalities can be obtained by modifying cellulose with a range of biomolecules. In a recent paper published in Materials, Mariana Barbosa, Hélvio Simões and Miguel Prazeres from BERG-iBB describe the modification of cellulose hydrogels using bi-functional biomolecular constructs based on carbohydrate binding modules (CBMs). The binding of CBM fusions, the capture of antibodies and the grafting of oligonucleotides onto hydrogels was successfully demonstrated. The CBM-based platform could contribute significantly to the development of advanced medical diagnostic sensors or specialized biomaterials, among others. The work was funded by project CBM-X.

No comment yet.