healthcare technology
147.6K views | +8 today
Follow
healthcare technology
The ways in which technology benefits healthcare
Curated by nrip
Your new post is loading...
Your new post is loading...
Scooped by nrip
Scoop.it!

Using the human body as a medium for energy transmission

Using the human body as a medium for energy transmission | healthcare technology | Scoop.it

Wearables that have weaved their way into everyday life include smart watches and wireless earphones, while in the healthcare setting, common devices include wearable injectors, electrocardiogram (ECG) monitoring patches, listening aids, and more.

 

A major pain point facing the use of these wearables is the issue of keeping these devices properly and conveniently powered. As the number of wearables one uses increases, the need to charge multiple batteries rises in tandem, consuming huge amounts of electricity.

 

A research team, led by Associate Professor Jerald Yoo from the Department of Electrical and Computer Engineering and the N.1 Institute for Health at the National University of Singapore (NUS), has developed a technology that enables a single device, such as a mobile phone placed in the pocket, to wirelessly power other wearable devices on a user's body, using the human body as a medium for power transmission.

 

The team's novel system has an added advantage—it can harvest unused energy from electronics in a typical home or office environment to power the wearables.

 

The NUS team designed a receiver and transmitter system that uses the human body as a medium for power transmission and energy harvesting. Each receiver and transmitter contains a chip that is used as a springboard to extend coverage over the entire body.

A user just needs to place the transmitter on a single power source, such as the smart watch on a user's wrist, while multiple receivers can be placed anywhere on the person's body. The system then harnesses energy from the source to power multiple wearables on the user's body via a process termed as body-coupled power transmission. In this way, the user will only need to charge one device, and the rest of the gadgets that are worn can simultaneously be powered up from that single source. The team's experiments showed that their system allows a single power source that is fully charged to power up to 10 wearable devices on the body, for a duration of over 10 hours.

 

As a complementary source of power, the NUS team also looked into harvesting energy from the environment. Their research found that typical office and home environments have parasitic electromagnetic (EM) waves that people are exposed to all the time, for instance, from a running laptop. The team's novel receiver scavenges the EM waves from the ambient environment, and through a process referred to as body-coupled powering, the human body is able to harvest this energy to power the wearable devices, regardless of their locations around the body.

 

This paves the way for smaller, battery-free wearables

 

read the paper in Nature at http://dx.doi.org/10.1038/s41928-021-00592-y

 

read the original unedited article https://techxplore.com/news/2021-06-approach-wirelessly-power-wearable-devices.html

 

nrip's insight:

A part of me smiled and a part of me felt a little scared reading this. Are we looking at the future of us being turned into batteries as shown in the Matrix?

 

Jokes apart, this is path breaking and can lead to a very sustainable mechanism for the future of wearables, monitoring and diagnostics.

 

No comment yet.
Scooped by nrip
Scoop.it!

How to Build an Artificial Heart

How to Build an Artificial Heart | healthcare technology | Scoop.it

Millions of hearts fail each year. Why can’t we replace them?

 

The Bivacor heart contains a single titanium chamber with a rotor that spins at its center, sending blood out to the body

 

Bivacor is in a transitional stage. It has never sold a product and is still run entirely on venture capital, angel investment, and government grants. Its hearts have been implanted in sheep and calves, which have survived for months, occasionally jogging on treadmills; it’s preparing to submit an application to the Food and Drug Administration for permission to perform human implantations.

 

To cross the animal-human threshold is to enter a harsh regulatory environment. In the early days of artificial-heart research, a team could implant a device in a dying person on an emergency basis—as a last-ditch effort to save his life—and see how it functioned.

 

Ethicists were uneasy, but progress was swift. Today, such experimentation is prohibited: a heart’s design must be locked in place and approved before a clinical trial can begin; the trial may take years, and, if it reveals that the heart isn’t good enough, the process must start again.

 

Bivacor is currently deciding which features will be included in the clinical trial of its heart. A wrong decision would likely sink the company; almost certainly, there wouldn’t be a second attempt on the summit.

 

read this fabulous article at https://www.newyorker.com/magazine/2021/03/08/how-to-build-an-artificial-heart?utm_source=pocket-newtab-intl-en

 

 

 

 

No comment yet.