healthcare technology
147.6K views | +31 today
Follow
healthcare technology
The ways in which technology benefits healthcare
Curated by nrip
Your new post is loading...
Your new post is loading...
Scooped by nrip
Scoop.it!

Tool could predict drug combos that spark antibiotic resistance

Tool could predict drug combos that spark antibiotic resistance | healthcare technology | Scoop.it

Scientists propose a modeling framework that could predict how antibiotic resistance will evolve in response to different drug combinations.

 

A new framework may suggest which drug combinations would speed up, slow down, or even reverse antibiotic resistance.

 

The research could help doctors optimize the choice, timing, dose, and sequence of antibiotics used to treat common infections in order to help halt the growing threat of antibiotic resistance to modern medicine.

 

“Drug combinations are a particularly promising approach for slowing resistance, but the evolutionary impacts of combination therapy remain difficult to predict, especially in a clinical setting,” says Erida Gjini, a researcher at the University of Lisbon, Portugal, and first author of the paper in eLife.

 

read more at https://www.futurity.org/antibiotic-resistance-drug-combinations-2605182-2/

 

No comment yet.
Scooped by nrip
Scoop.it!

Mathematical model predicts effect of bacterial mutations on antibiotic success

Mathematical model predicts effect of bacterial mutations on antibiotic success | healthcare technology | Scoop.it

Antibiotic resistance is a significant public health challenge, caused by changes in bacterial cells that allow them to survive drugs that are designed to kill them. Resistance often occurs through new mutations in bacteria that arise during the treatment of an infection. Understanding how this resistance emerges and spreads through bacterial populations is important to preventing treatment failure.

 

Scientists have developed a mathematical model that predicts how the number and effects of bacterial mutations leading to drug resistance will influence the success of antibiotic treatments.

 

Their model, described in the journal eLife, provides new insights on the emergence of drug resistance in clinical settings and hints at how to design novel treatment strategies that help avoid this resistance occurring.

"Mathematical models are a crucial tool for exploring the outcome of drug treatment and assessing the risk of the evolution of antibiotic resistance," explains first author Claudia Igler, Postdoctoral Researcher at ETH Zurich, Switzerland. "These models usually consider a single mutation, which leads to full drug resistance, but multiple mutations that increase antibiotic resistance in bacteria can occur. So there are some mutations that lead to a high level of resistance individually, and some that provide a small level of resistance individually but can accumulate to provide high-level resistance."

 

"Our work provides a crucial step in understanding the emergence of antibiotic resistance in clinically relevant treatment settings," says senior author Roland Regoes, Group Leader at ETH Zurich. "Together, our findings highlight the importance of measuring the level of antibiotic resistance granted by single mutations to help inform effective antimicrobial treatment strategies."

read the study paper at https://elifesciences.org/articles/64116

read the original unedited article at https://phys.org/news/2021-05-mathematical-effect-bacterial-mutations-antibiotic.html

nrip's insight:

Mathematical models are a crucial tool for exploring outcomes.

That they can be outcomes of drug treatment , and the further and deeper study into assessing the risk of the evolution of antibiotic resistance is fascinating. This is an excellent paper.

No comment yet.
Scooped by nrip
Scoop.it!

Nanomaterial fights back against resistant bacteria

Nanomaterial fights back against resistant bacteria | healthcare technology | Scoop.it

Antibiotic resistance is one of the greatest global health challenges of our time. Wastewater treatment plants are a true breeding ground for antibiotic-resistant germs, as this is where pathogens and antibiotic residues come together. The resistant bacterial strains then re-enter the environment via the treated water and can spread further.

 

Scientists at the University of Naples Federico II have now developed a nanomaterial to combat this problem. Supported by instrument scientist Dr. Judith Houston from Forschungszentrum Jülich (and meanwhile at the European Spallation Neutron Source ESS in Sweden), they have analyzed it at the Heinz Maier-Leibnitz Zentrum. The material is a hybrid of humic acid and titanium dioxide (TiO2). Humic acids (HAs), which occur naturally in humus soils, have useful properties that can counteract water pollution: on the one hand, they have an antibacterial effect, and on the other hand, they can bind small molecules such as antibiotics.

 

Highlights

• In situ hydrothermal route is a versatile approach to realize multifunctional hybrid nanomaterials for biowaste valorization.
• The combination at molecular scale of HAs and TiO2 improves the.•OH generation even under visible light;
• Hybrid HA-NDL/TiO2 nanomaterials exert a ROS-mediated antibacterial activity.
• Surface and colloidal properties make the hybrid nanomaterials as valid sequestering agents against antibiotics.
• A high and selective activity is shown in sequestering amoxicillin and tetracycline contaminants.

 

image © Wenzel Schuermann / TU Muenchen

 

read the study at https://www.sciencedirect.com/science/article/abs/pii/S0013935120314596

 

read the entire article/press release at the MLZ website at https://mlz-garching.de/englisch/news-und-press/news-articles/nanomaterial-sagt-resistenten-bakterien-den-kampf-an.html

 

 

No comment yet.