Amazing Science
1.1M views | +25 today
Follow
Amazing Science
Amazing science facts - 3D_printing • aging • AI • anthropology • art • astronomy • bigdata • bioinformatics • biology • biotech • chemistry • computers • cosmology • education • environment • evolution • future • genetics • genomics • geosciences • green_energy • language • map • material_science • math • med • medicine • microscopy • nanotech • neuroscience • paleontology • photography • photonics • physics • postings • robotics • science • technology • video
Your new post is loading...
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Liquid-in-liquid printing method could put 3D-printed organs within reach

Liquid-in-liquid printing method could put 3D-printed organs within reach | Amazing Science | Scoop.it
New technique makes it easier to build stable “tissues”

 

3D-printed tissues and organs could revolutionize transplants, drug screens, and lab models—but replicating complicated body parts such as gastric tracts, windpipes, and blood vessels is a major challenge. That’s because these vascularized tissues are hard to build up in traditional solid layer-by-layer 3D printing without constructing supporting scaffolding that can later prove impossible to remove.

 

One potential solution is replacing these support structures with liquid—a specially designed fluid matrix into which liquid designs could be injected before the “ink” is set and the matrix is drained away. But past attempts to make such aqueous structures have literally collapsed, as their surfaces shrink and their structures crumple into useless blobs.

 

So, researchers from China turned to water-loving, or hydrophilic, liquid polymers that create a stable membrane where they meet, thanks to the attraction of their hydrogen bonds. The researchers say various polymer combinations could work; they used a polyethylene oxide matrix and an ink made of a long carbohydrate molecule called dextran. They pumped their ink into the matrix with an injection nozzle that can move through the liquid and even suck up and rewrite lines that have already been drawn. The resulting liquid structures can hold their shape for as long as 10 days before they begin to merge, the team reported last month in Advanced Materials.

 

Using their new method, the researchers printed an assortment of complex shapes—including tornadoesque whirls, single and double helices (above), branched treelike shapes, and even one that resembles a goldfish. Once printing is finished, the shapes are set by adding polyvinyl alcohol to the inky portion of the structure. That means, the scientists say, that complex 3D-printed tissues made by including living cells in the ink could soon be within our grasp.

 
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Researchers 3D-Print an All-Liquid ‘Lab on a Chip’ Having a Variety of Potential Applications

Researchers 3D-Print an All-Liquid ‘Lab on a Chip’ Having a Variety of Potential Applications | Amazing Science | Scoop.it
Researchers at Berkeley Lab have 3D-printed an all-liquid "lab on a chip" that can make battery materials or screen drug candidates.

 

Researchers at DOE's Lawrence Berkeley National Laboratory (Berkeley Lab) have 3D-printed an all-liquid device that, with the click of a button, can be repeatedly reconfigured on demand to serve a wide range of applications -- from making battery materials to screening drug candidates.

 

"What we demonstrated is remarkable. Our 3D-printed device can be programmed to carry out multistep, complex chemical reactions on demand," said Brett Helms, a staff scientist in Berkeley Lab's Materials Sciences Division and Molecular Foundry, who led the study. "What's even more amazing is that this versatile platform can be reconfigured to efficiently and precisely combine molecules to form very specific products, such as organic battery materials."

 

The study's findings, which were reported in the journal Nature Communications, is the latest in a series of experiments at Berkeley Lab that fabricate all-liquid materials with a 3D printer.

 

Last year, a study co-authored by Helms and Thomas Russell, a visiting researcher from the University of Massachusetts at Amherst who leads the Adaptive Interfacial Assemblies Toward Structured Liquids Program in Berkeley Lab's Materials Sciences Division, pioneered a new technique for printing various liquid structures -- from droplets to swirling threads of liquid -- within another liquid.

 

"After that successful demonstration, a bunch of us got together to brainstorm on how we could use liquid printing to fabricate a functioning device," said Helms. "Then it occurred to us: If we can print liquids in defined channels and flow contents through them without destroying them, then we could make useful fluidic devices for a wide range of applications, from new types of miniaturized chemical laboratories to even batteries and electronic devices."

 

To make the 3D-printable fluidic device, lead author Wenqian Feng, a postdoctoral researcher in Berkeley Lab's Materials Sciences Division, designed a specially patterned glass substrate. When two liquids -- one containing nanoscale clay particles, another containing polymer particles -- are printed onto the substrate, they come together at the interface of the two liquids and within milliseconds form a very thin channel or tube about 1 millimeter in diameter.

 

Once the channels are formed, catalysts can be placed in different channels of the device. The user can then 3D-print bridges between channels, connecting them so that a chemical flowing through them encounters catalysts in a specific order, setting off a cascade of chemical reactions to make specific chemical compounds. And when controlled by a computer, this complex process can be automated "to execute tasks associated with catalyst placement, build liquid bridges within the device, and run reaction sequences needed to make molecules," said Russell.

No comment yet.
Rescooped by Dr. Stefan Gruenwald from Fragments of Science Archive
Scoop.it!

'Chemical MP3 Player' Can 3D Print Pharmaceuticals On-Demand from Digital Code

'Chemical MP3 Player' Can 3D Print Pharmaceuticals On-Demand from Digital Code | Amazing Science | Scoop.it

Have you ever taken your old compact discs and converted them to MP3 files so you could listen to your favorite music on your laptop, or through a portable MP3 device that’s much smaller than an unwieldy portable CD player? Now, researchers from the University of Glasgow are working on a very similar process, but instead of music files, they are using a chemical-to-digital converter to digitize the process of drug manufacturing; a chemical MP3 player, if you will, that can 3D print pharmaceuticals on demand.

 

3D printing in the pharmaceutical field is a fascinating concept, though not a new one. But this ‘Spotify for chemistry’ concept is new: it’s the first time we’ve seen an approach to manufacturing pharmaceuticals using digital code. According to Science, the University of Glasgow team “tailored a 3D printer to synthesize pharmaceuticals and other chemicals from simple, widely available starting compounds fed into a series of water bottle–size reactors.”


Via Mariaschnee
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

A New Method for the 3-D Printing of Living Tissues

A New Method for the 3-D Printing of Living Tissues | Amazing Science | Scoop.it

Scientists at the University of Oxford have developed a new method to 3D-print laboratory-grown cells to form living structures.

The approach could revolutionize regenerative medicine, enabling the production of complex tissues and cartilage that would potentially support, repair, or augment diseased and damaged areas of the body.

 

Published in the journal Scientific Reports, an interdisciplinary team from the Department of Chemistry and the Department of Physiology, Anatomy, and Genetics at Oxford and the Centre for Molecular Medicine at Bristol, demonstrated how a range of human and animal cells can be printed into high-resolution tissue constructs.

 

Interest in 3D printing living tissues has grown in recent years, but, developing an effective way to use the technology has been difficult, particularly since accurately controlling the position of cells in 3D is hard to do. They often move within printed structures and the soft scaffolding printed to support the cells can collapse on itself. As a result, it remains a challenge to print high-resolution living tissues.

 

But, led by Hagan Bayley, professor of chemical biology in Oxford's Department of Chemistry, the team devised a way to produce tissues in self-contained cells that support the structures to keep their shape. The cells were contained within protective nanoliter droplets wrapped in a lipid coating that could be assembled, layer-by-layer, into living structures. Producing printed tissues in this way improves the survival rate of the individual cells, and allowed the team to improve on current techniques by building each tissue one drop at a time to a more favorable resolution.

 

To be useful, artificial tissues need to be able to mimic the behaviors and functions of the human body. The method enables the fabrication of patterned cellular constructs, which, once fully grown, mimic or potentially enhance natural tissues.

 

Dr. Alexander Graham, lead author and 3D bioprinting scientist at OxSyBio (Oxford Synthetic Biology), said: "We were aiming to fabricate three-dimensional living tissues that could display the basic behaviors and physiology found in natural organisms. To date, there are limited examples of printed tissues, which have the complex cellular architecture of native tissues. Hence, we focused on designing a high-resolution cell printing platform, from relatively inexpensive components, that could be used to reproducibly produce artificial tissues with appropriate complexity from a range of cells including stem cells."

No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

How to build your own bio-bot

How to build your own bio-bot | Amazing Science | Scoop.it

For the past several years, researchers at the University of Illinois at Urbana-Champaign have reverse-engineered native biological tissues and organs — creating tiny walking “bio-bots” powered by muscle cells and controlled with electrical and optical pulses.

 

Now, in an open-access cover paper in Nature Protocols, the researchers are sharing a protocol with engineering details for their current generation of millimeter-scale soft robotic bio-bots*. Using 3D-printed skeletons, these devices would be coupled to tissue-engineered skeletal muscle actuators to drive locomotion across 2D surfaces, and could one day be used for studies of muscle development and disease, high-throughput drug testing, and dynamic implants, among other applications.

No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Peugeot and Divergent: This Is the World's First 3D-Printed "Supercar"?

Peugeot and Divergent: This Is the World's First 3D-Printed "Supercar"? | Amazing Science | Scoop.it

 

At the Los Angeles Auto Show, automaker Divergent 3D showed off their 3D-printed Blade Supercar. The 635 kilogram (1,400 pound) car is made of a combination of aluminum and carbon fiber; accelerates to 97 kilometers per hour (60 miles per hour) in 2.2 seconds with its 700 hp engine; and can use either gasoline or compressed natural gas as fuel.

 

The Blade Supercar debuted last year in June, heralding the company’s radical, environmentally-sustainable approach to manufacturing. Divergent calls the manufacturing approach NODE, where they 3D print aluminum nodes joined together by carbon fiber tubing.

 

The process, which is similar to using Lego blocks, requires less capital and uses up fewer materials. The ease of assembly means that even semi-skilled workers can run the process.As an added bonus, Divergent 3D’s cars are 90 percent lighter and more durable than cars built with traditional techniques.

No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Light-powered 3-D printer creates terahertz lens

Light-powered 3-D printer creates terahertz lens | Amazing Science | Scoop.it

From visible light to radio waves, most people are familiar with the different sections of the electromagnetic spectrum. But one wavelength is often forgotten, little understood, and, until recently, rarely studied.

 

"Terahertz is somewhat of a gap between microwaves and infrared," said Northwestern University's Cheng Sun. "People are trying to fill in this gap because this spectrum carries a lot of information."

 

Sun and his team have used metamaterials and 3-D printing to develop a novel lens that works with terahertz frequencies. Not only does it have better imaging capabilities than common lenses, but it opens the door for more advances in the mysterious realm of the terahertz. Supported by the National Science Foundation, the work was published online on April 22 in the journal Advanced Optical Materials.

 

"Typical lenses—even fancy ones—have many, many components to counter their intrinsic imperfections," said Sun, associate professor of mechanical engineering at Northwestern's McCormick School of Engineering. "Sometimes modern imaging systems stack several lenses to deliver optimal imaging performance, but this is very expensive and complex."

 

The focal length of a lens is determined by its curvature and refractive index, which shapes the light as it enters. Without components to counter imperfections, resulting images can be fuzzy or blurred. Sun's lens, on the other hand, employs a gradient index, which is a refractive index that changes over space to create flawless images without requiring additional corrective components.

No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Acoustic tweezers to manipulate cells could enable 3-D printing of cellular structures

Acoustic tweezers to manipulate cells could enable 3-D printing of cellular structures | Amazing Science | Scoop.it

Engineers at MIT, Penn State University, and Carnegie Mellon University have devised a way to manipulate cells in three dimensions using sound waves. These “acoustic tweezers” could make possible 3-D printing of cell structures for tissue engineering and other applications, the researchers say.


Designing tissue implants that can be used to treat human disease requires precisely recreating the natural tissue architecture, but so far it has proven difficult to develop a single method that can achieve that while keeping cells viable and functional.


“The results presented in this paper provide a unique pathway to manipulate biological cells accurately and in three dimensions, without the need for any invasive contact, tagging, or biochemical labeling,” says Subra Suresh, president of Carnegie Mellon and former dean of engineering at MIT. “This approach could lead to new possibilities for research and applications in such areas as regenerative medicine, neuroscience, tissue engineering, biomanufacturing, and cancer metastasis.”


The new acoustic tweezers are based on a microfluidic device that the researchers previously developed to manipulate cells in two dimensions. This device produces two acoustic standing waves, which are waves with a constant height. Where the two waves meet, they create a “pressure node” that can trap single cells. By altering the wavelength and another wave property known as the phase, the researchers can move the node and the cell trapped within it.


The research team previously used a similar approach to separate cancer cells from healthy cells, which could be useful for detecting rare tumor cells in a patient’s bloodstream and predicting whether the tumor will spread.

No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Building a Robot Which Can 3D Print A Steel Bridge In Mid-Air Without Human Intervention

Building a Robot Which Can 3D Print A Steel Bridge In Mid-Air Without Human Intervention | Amazing Science | Scoop.it

In 2017, Dutch designer Joris Laarman will wheel a robot to the brink of a canal in Amsterdam. He'll hit an "on" button. He'll walk away. And when he comes back two months later, the Netherlands will have a new, one-of-a-kind bridge, 3-D printed in a steel arc over the waters. This isn't some proof-of-concept, either: when it's done, it will be as strong and as any other bridge. People will be able to walk back and forth over it for decades.


That's the plan, anyway. To make his dream a reality, Laarman has created a new research and development company called MX3D, which specializes in building six-axis robots that can 3-D print metal and resin in mid-air. The tech allows for large-scale objects like infrastructure to be printed in the exact spot where they'll live, which has radical implications for the construction industry and opens up a wealth of new design possibilities.


MX3D isn't some high-tech concept; it actually works. In February 2014, Laarman showed off the MX3D system's ability to 3-D printgravity-defying metal sculptures in mid-air. But printing out a bridge on location is a decidedly different challenge than 3-D printing something in a lab.


"We thought to ourselves: what is the most iconic thing we could print in public that would show off what our technology is capable of?" Laarman says in a phone interview. "This being the Netherlands, we decided a bridge over an old city canal was a pretty good choice. Not only is it good for publicity, but if MX3D can construct a bridge out of thin air, it can construct anything."


The finished bridge will be around 24 feet long, support normal Amsterdam foot traffic, and feature a beautiful, intricate design that looks far more handcrafted than the detailing on most bridges. Because 3-D printing allows for a granular control of detail that industrial manufacturing does not, designs can be much more ornate, and almost bespoke in appearance.


Most 3-D printers use resin or plastic to construct objects. MX3D's bridge will be made of a new steel composite that the University of Delft created. As strong as regular steel, it can be dolloped out by a 3-D printer, drop by drop. The result? A 3-D printed bridge as strong as any other, Laarman says.


As for the printer: it isn't much like a Makerbot or any other desktop 3-D printer. For one thing, it has no printer bed. Instead, it works like a train. Except instead of running along existing tracks, it can actually print out its own tracks as it goes along. An additive printing technology that is more like welding than squirting out drops of plastic means that the tracks can go in any direction: not just horizontally, but vertically and diagonally as well. That allows the MX3D to cross gaps, like the empty space between walls, or the banks on a river, just by printing its way across them. A useful skill for a robot to have if it wants to 3-D print a bridge, or any other large structure, for that matter.

TJ Allard's curator insight, July 27, 2015 10:44 AM

I can already see the battle with the Steel Workers' Union looming in the distance. (they tuk yer jobs!)

Scooped by Dr. Stefan Gruenwald
Scoop.it!

Explainer: What is 4D printing?

Explainer: What is 4D printing? | Amazing Science | Scoop.it

Additive manufacturing — or 3D printing — is 30 years old this year. Today, it’s found not just in industry but in households, as the price of 3D printers has fallen below US$1,000. Knowing you can print almost anything, not just marks on paper, opens up unlimited opportunities for us to manufacture toys, household appliances and tools in our living rooms.


But there’s more that can be done with 3D printed materials to make them more flexible and more useful: structures that can transform in a pre-programmed way in response to a stimulus. Recently given the popular science name of “4D printing,” perhaps a better way to think about it is that the object transforms over time.


These sorts of structural deformations are not new — researchers have already demonstrated “memory” and “smart material” properties. One of the most popular technologies is known as shape memory alloy, where a change of temperature triggers a shape change. Other successful approaches use electroactive polymers, pressurised fluids or gasses, chemical stimulus and even in response to light.


In a paper published in Nature Scientific Reports, we looked at the design of complex self-deformations in objects that have been printed from multiple materials as a means to customize the object into specific forms.


Unlike many others who have demonstrated how to bend simple paper-like shapes, we constructed a two-dimensional grid structure that deforms itself by stretching or shrinking across a complex three-dimensional surface.


Imagine dropping a flat stretchable cloth onto a randomly shaped object, where the cloth molds over the shape beneath it. In geometrical terms, as the curvature of the cloth changes to fit the object, the distances and areas alter. We took this into account by providing a solution that copes with bending and also expansion in size, and came up with several designs that demonstrated that this is possible.


Head of the MIT’s Self-Assembly Laboratory, Skylar Tibbits, started this line of research a few years ago with expanding materials and simple deformations. The collaboration of researchers from MIT’s Camera Culture group and Self-Assembly Laboratory and the companies Stratasys and Autodesk Inc took this further.


Our approach was to print 3D structures using materials with different properties: one that remained rigid and another that expanded up to 200% of its original volume. The expanding materials were placed strategically on the main structure to produce joints that stretched and folded like a bendy straw when activated by water, forming a broad range of shapes. For example, a 3D-printed shape that resembled the initials “MIT” was shown to evolve into another formation that looks like the initials “SAL.”

No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Creating 3D-printed prosthetic limbs for Ugandan children

Creating 3D-printed prosthetic limbs for Ugandan children | Amazing Science | Scoop.it

Consumer-grade 3D printers have been used to create everything from guns to edible candy; but a team at the University of Toronto is hoping to use the technology to change the lives of children with disabilities in Uganda by helping to create prosthetic limbs.


“Mobility is something that people take for granted. But a lot of children in the developing world don’t have the capacity to move on their own due to amputation or congenital disease,” said Matt Ratto, professor at the faculty of information at the University of Toronto.


“The World Health Organization (WHO) has indicated that the current shortfall of prosthetic technicians in the developing world is 40,000 and that they can only train up about another 18,000 if they spent another 15 years doing so.”


In order to solve this problem, Ratto’s team is using consumer-grade 3D printing and scanning technology to reduce the need for technicians in developing countries by making it easier to make parts for prosthetic limbs.


“We’re seeing if we can capture a 3D model of a child’s residual limb – whatever they have left after an amputation – turn that model into a 3D model and convert that into a printable socket that can serve to support a prosthetic limb,” Ratto said in an interview with Global News reporter Christina Stevens.


The process will also take considerably less time – with a 3D-printed socket being made in just seven to 10 hours. Ratto said the process will also be more reliable, as the technology allows for a common standard of quality from beginning to end.


With the help of the Christian Blind Mission, a large NGO working with hospitals in developing countries, the team will launch a pilot project at the CoRSU Hospital in Uganda. Eventually, all of the 3D printing and scanning will be done on site in Uganda.

No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

3D faxing with the world's first all-in-one multifunction 3D printer / scanner

3D faxing with the world's first all-in-one multifunction 3D printer / scanner | Amazing Science | Scoop.it

The technology startup AIO Robotics has a prototype of an all-in-one 3D printer, scanner, copier and fax machine. The company states that it created a 3D printer with an integrated 3D scanner. The idea is to have an all-in-one 3D printer that is capable of 3D scanning, 3D printing, 3D copying, and 3D faxing.


The machine has a 7-inch color touchscreen with an on-board computer (ARM based) so the printer can totally work by itself without connection to a desktop computer. The on-board computer also handles 3D scanning data (HD camera pictures from a swiping laser) and uploads the data to the cloud for final 3D reconstruction."All linear components are made by CNC-machined aluminum (xyz-carrier, turntable) to ensure super rigid structure without any deforming and heat soaking. In addition, we also created an auto-bed leveling feature by integrating a Z-probe mechanism onto the extruder. This way, users don't need to calibrate the bed height at all. We will include a full API-package for developers to fully control all sensor and motors."


Although AIO Robotics have not finalized the pricing yet, the company says that it will be significantly cheaper than the Makerbot Replicator + Digitizer.

No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Voxeljet: The First Continuous 3D Printer

Voxeljet: The First Continuous 3D Printer | Amazing Science | Scoop.it

If there ever was a major leap in the evolution of the 3D printer, the Voxeljet concept is the benchmark machine to follow. In the explosive arena of start-ups that produce innovative 3D-printers, voxeljet has decided to challenge and change the direction of how 3D printers work. Taking a look at three specific factors that set this process apart from others on the market, it becomes quite clear just how revolutionary this concept is.

 

• The ability to have a continuous supply of consumables delivered to the machines as it is making a model. This is made possible because the bed of consumables sits above where the models are actually made.

 

• The printhead sits in an area that it tilted at about a 35 degree angle with a printhead resolution of 600 DPI.

 

• The build size 800mm x 500mm x Infinity. As the model is being printed it sits on a conveyor belt that delivers the model out at the other end.

 

At a layer thickness of 150 to 400 microns, the resolution is decent when compared to others 3D printers but it is worth noting that this is still in the concept phase so there is the possibility to improve the layer thickness.

Continuous 3D-Printing Technology represents a new dimension in the manufacturing of moulds and models without tools. With its big advantages compared to conventional standard-3D-printers VX concept is a pioneer for a whole new generation of machines. The length of the moulds is virtually unlimited with this type of system as there is no restriction to the length of the belt conveyor. The usable build length is only limited by the manageability of the moulds. Furthermore, the tilt of the print level enables the print head to take far less time for positioning movements, which improves the print speed. Apart from the technological highlights, users will be pleased with the investment and operating costs because they are lower than those of conventional systems. With the continuous printing system, there is no need for a build container or separate unpacking station, which has a positive effect on the purchase costs. The printer also scores points with its high re-use rate for the unprinted particle material, which is returned straight to the build zone from the unpacking area. Consequently, the machine requires smaller filling quantities and incurs lower set-up costs.

 

The voxeljet adds a whole new possibility with the ability to produce a larger number of mass-customized products. The notion of using 3D printed models as the only source of fabrication for manufactured models is still too costly, but with the voxeljet, we approach the tipping point in that it allows for the best of both worlds. Additive manufacturing as a process has less waste as when compared to its subtractive counterpart. There is also no increase in cost when it comes to the complexity of geometry in additive manufacturing. Coupled with an extra long support bed out the other side, it becomes quite clear that a customized, on-demand future is just that much closer.

No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Organ bioprinting gets a breath of fresh air

Organ bioprinting gets a breath of fresh air | Amazing Science | Scoop.it

Bioengineers have cleared a major hurdle on the path to 3D printing replacement organs. It's a breakthrough technique for bioprinting tissues with exquisitely entangled vascular networks that mimic the body's natural passageways for blood, air, lymph and other vital fluids.

 

The new innovation allows scientists to create exquisitely entangled vascular networks that mimic the body's natural passageways for blood, air, lymph and other vital fluids.

The research is featured on the cover of this week's issue of Science. It includes a visually stunning proof-of-principle -- a hydrogel model of a lung-mimicking air sac in which airways deliver oxygen to surrounding blood vessels. Also reported are experiments to implant bioprinted constructs containing liver cells into mice.

 

The work was led by bioengineers Jordan Miller of Rice University and Kelly Stevens of the University of Washington (UW) and included 15 collaborators from Rice, UW, Duke University, Rowan University and Nervous System, a design firm in Somerville, Massachusetts.

 

"One of the biggest road blocks to generating functional tissue replacements has been our inability to print the complex vasculature that can supply nutrients to densely populated tissues," said Miller, assistant professor of bioengineering at Rice's Brown School of Engineering. "Further, our organs actually contain independent vascular networks -- like the airways and blood vessels of the lung or the bile ducts and blood vessels in the liver. These interpenetrating networks are physically and biochemically entangled, and the architecture itself is intimately related to tissue function. Ours is the first bioprinting technology that addresses the challenge of multivascularization in a direct and comprehensive way."

 

Stevens, assistant professor of bioengineering in the UW College of Engineering, assistant professor of pathology in the UW School of Medicine, and an investigator at the UW Medicine Institute for Stem Cell and Regenerative Medicine, said multivascularization is important because form and function often go hand in hand.

 

"Tissue engineering has struggled with this for a generation," Stevens said. "With this work we can now better ask, 'If we can print tissues that look and now even breathe more like the healthy tissues in our bodies, will they also then functionally behave more like those tissues?' This is an important question, because how well a bioprinted tissue functions will affect how successful it will be as a therapy."

Cindy Flores's curator insight, September 8, 2019 8:43 PM
I came across this article which touches the topic on medicine and a way to find a solution for organ transplant. This group of college students is doing a study which can improve the life of those who are on the waiting transplant list In this article, it is being stated that those who will receive bioprinting organs are less likely to have organ rejection or lifetime suppression drugs.  More than 100,00 people are on the transplant waiting list, which this bioprinting can decrease the numbers. If I decide to do further research on this topic, I plan to use this as a supporting article.
Rescooped by Dr. Stefan Gruenwald from Spaceport UK
Scoop.it!

Skyrora: Scotland joins space race with 3D printed suborbital launch vehicle

Skyrora: Scotland joins space race with 3D printed suborbital launch vehicle | Amazing Science | Scoop.it

Edinburgh-based Skyrora, a company with partners in Ukraine, will launch a partially 3D printed suborbital vehicle from the north of Scotland later this year. Skyrora’s rocket engines run on hydrogen peroxide and kerosene.

 

America, Russia, China, and… Scotland? Yes, the newest contender in the space race is that tiny northern country of the United Kingdom, Scotland, whose very own Skyrora has developed a suborbital launch vehicle that will take off from northern Scotland in the last three months of 2018.

 

It’s a great achievement for the company, which also operates from Ukraine and which has used 3D printing to develop parts for its spacecraft. Potential launch locations include Shetland, where the Shetland Space Centre is bidding for a license from the UK Space Agency. If the company can secure a launch location, its partly 3D printed suborbital launch vehicle could be taking off within the year.


Via Aso Galicia
Aso Galicia's curator insight, February 20, 2018 10:26 AM
visit spaceportuk in Secondlife for more on the UK in space
Rescooped by Dr. Stefan Gruenwald from Alan Charky - Vacuum Furnaces
Scoop.it!

Study Shows How 3D Printed Metals can be Ductile as well as Strong

Study Shows How 3D Printed Metals can be Ductile as well as Strong | Amazing Science | Scoop.it
A new method by which to 3D print metals, involving an extensively used stainless steel, has been shown to realize exceptional levels of both ductility and strength, when compared to counterparts from more conventional processes.

 

The research is opposing to the skepticism surrounding the ability to make robust and ductile metals using 3D printing, and as such the discovery is vital to moving the technology forward for the manufacturing of heavy duty components.

 

3D printing has long been accepted as a technology which can possibly transform the way of manufacturing, allowing one to quickly construct objects with intricate and tailored geometries.

With the technology rapidly developing in recent years, 3D printing, particularly metal 3D printing, is swiftly progressing toward extensive industrial application.

 

Indeed, the manufacturing leader General Electric (GE) has already been using metal 3D printing to create certain key parts, such as the fuel nozzles in their newest LEAP aircraft engine. The technology helps GE to minimize 900 separate parts into just 16, and make fuel nozzles 60% cheaper and 40% lighter.

 

The worldwide revenue from the industry is predicted to be more than 20 billion USD per year by the year 2025. Regardless of the bright future, the quality of the products from metal 3D printing has been susceptible to skepticism. In majority of metal 3D printing processes, products are directly made from metal powders, which make it prone to defects, therefore causing weakening of mechanical properties.

 

Dr. Leifeng Liu, who is the key participant of the project, lately moved to the University of Birmingham from Stockholm University as an AMCASH research fellow. He said, “Strength and ductility are natural enemies of one another, most methods developed to strengthen metals consequently reduce ductility.”


Via Alan Charky
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

3-D printing offers new approach to make buildings in 14 hours time

3-D printing offers new approach to make buildings in 14 hours time | Amazing Science | Scoop.it
MIT researchers have developed a system that can 3-D print the basic structure of an entire building.

 

MIT's system  is a massive robotic arm attached to a track vehicle. The arm is fitted with nozzles that can spray foam insulation on the ground and fill the area in with concrete.

It is operated electrically and can harvest its power from the sun using solar panels. A scoop attached to the robot lets it prepare the building surface and acquire local materials, such as dirt for a rammed-earth building, for the construction itself.

 

To demonstrate the technology, the team constructed the walls of a 50-foot-diameter, 12-foot-high dome in 14 hours of 'printing' time.  Although this technology could change how humans build homes on Earth, the team foresees this system being useful when we go to Mars, as it can create small dwellings in less than 24 hours.

No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's | Amazing Science | Scoop.it

By Gabe Cherry


In research that could one day lead to advances against neurodegenerative diseases like Alzheimer's and Parkinson's, University of Michigan engineering researchers have demonstrated a technique for precisely measuring the properties of individual protein molecules floating in a liquid.

Proteins are essential to the function of every cell. Measuring their properties in blood and other body fluids could unlock valuable information, as the molecules are a vital building block in the body. The body manufactures them in a variety of complex shapes that can transmit messages between cells, carry oxygen and perform other important functions.

Sometimes, however, proteins don't form properly. Scientists believe that some types of these misshapen proteins, called amyloids, can clump together into masses in the brain. The sticky tangles block normal cell function, leading to brain cell degeneration and disease.

But the processes of how amyloids form and clump together are not well understood. This is due in part to the fact that there's currently not a good way to study them. Researchers say current methods are expensive, time-consuming and difficult to interpret, and can only provide a broad picture of the overall level of amyloids in a patient's system.

The University of Michigan and University of Fribourg researchers who developed the new technique believe that it could help solve the problem by measuring an individual molecule's shape, volume, electrical charge, rotation speed and propensity for binding to other molecules.

They call this information a "5-D fingerprint" and believe that it could uncover new information that may one day help doctors track the status of patients with neurodegenerative diseases and possibly even develop new treatments. Their work is detailed in a paper published in Nature Nanotechnology.

"Imagine the challenge of identifying a specific person based only on their height and weight," said David Sept, a U-M biomedical engineering professor who worked on the project. "That's essentially the challenge we face with current techniques. Imagine how much easier it would be with additional descriptors like gender, hair color and clothing. That's the kind of new information 5-D fingerprinting provides, making it much easier to identify specific proteins."

Michael Mayer, the lead author on the study and a former U-M researcher who's now a biophysics professor at Switzerland's Adolphe Merkle Institute, says identifying individual proteins could help doctors keep better tabs on the status of a patient's disease, and it could also help researchers gain a better understanding of exactly how amyloid proteins are involved with neurodegenerative disease.

To take the detailed measurements, the research team uses a nanopore 10-30 nanometers wide—so small that only one protein molecule can fit through at a time. The researchers filled the nanopore with a salt solution and passed an electric current through the solution.

As a protein molecule tumbles through the nanopore, its movement causes tiny, measurable fluctuations in the electric current. By carefully measuring this current, the researchers can determine the protein's unique five-dimensional signature and identify it nearly instantaneously.

"Amyloid molecules not only vary widely in size, but they tend to clump together into masses that are even more difficult to study," Mayer said. "Because it can analyze each particle one by one, this new method gives us a much better window to how amyloids behave inside the body."

Ultimately, the team aims to develop a device that doctors and researchers could use to quickly measure proteins in a sample of blood or other body fluid. This goal is likely several years off; in the meantime, they are working to improve the technique's accuracy, honing it in order to get a better approximation of each protein's shape. They believe that in the future, the technology could also be useful for measuring proteins associated with heart disease and in a variety of other applications as well.

"I think the possibilities are pretty vast," Sept said. "Antibodies, larger hormones, perhaps pathogens could all be detected. Synthetic nanoparticles could also be easily characterized to see how uniform they are."

The study is titled "Real-time shape approximation and fingerprinting of single proteins using a nanopore."

No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Physicists make it possible to 3D print your own baby universe

Physicists make it possible to 3D print your own baby universe | Amazing Science | Scoop.it

Physicists have created a 3D printed cosmic microwave background - a map of the oldest light in the universe - and provided the files for download. The cosmic microwave background (CMB) is a glow that the universe has in the microwave range that maps the oldest light in the universe. It was imprinted when the universe first became transparent, instead of an opaque fog of plasma and radiation.

 

The CMB formed when the universe was only 380,000 years old – very early on in its now 13.8 billion-year history. The Planck satellite is making ever-more detailed maps of the CMB, which tells astronomers more about the early universe and the formation of structures within it, such as galaxies. However, more detailed maps are increasingly difficult to view and explore.

 

To address this issue, Dr Dave Clements from the Department of Physics at Imperial, and two final-year undergraduate students in Physics, have created the plans for 3D printing the CMB. A paper describing the process is published today in the European Journal of Physics.

 

Dr Clements said: “Presenting the CMB in a truly 3D form, that can be held in the hand and felt rather than viewed, has many potential benefits for teaching and outreach work, and is especially relevant for those with a visual disability.

No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

3D-printing a new lifelike liver tissue for drug screening

3D-printing a new lifelike liver tissue for drug screening | Amazing Science | Scoop.it

University of California, San Diego researchers have 3D-printed a tissue that closely mimics the human liver’s sophisticated structure and function. The new model could be used for patient-specific drug screening and disease modeling and could help pharmaceutical companies save time and money when developing new drugs, according to the researchers.


The liver plays a critical role in how the body metabolizes drugs and produces key proteins, so liver models are increasingly being developed in the lab as platforms for drug screening. However, so far, the models lack both the complex micro-architecture and diverse cell makeup of a real liver. For example, the liver receives a dual blood supply with different pressures and chemical constituents.


So the team employed a novel bioprinting technology that can rapidly produce complex 3D microstructures that mimic the sophisticated features found in biological tissues.


  • The team printed a honeycomb pattern of 900-micrometer-sized hexagons, each containing liver cells derived fromhuman induced pluripotent stem cells. An advantage of human induced pluripotent stem cells is that they are patient-specific, which makes them ideal materials for building patient-specific drug screening platforms. And since these cells are derived from a patient’s own skin cells, researchers don’t need to extract any cells from the liver to build liver tissue.
  • Then, endothelial and mesenchymal supporting cells were printed in the spaces between the stem-cell-containing hexagons.


The entire structure — a 3 × 3 millimeter square, 200 micrometers thick — takes just seconds to print. The researchers say this is a vast improvement over other methods to print liver models, which typically take hours. Their printed model was able to maintain essential functions over a longer time period than other liver models. It also expressed a relatively higher level of a key enzyme that’s considered to be involved in metabolizing many of the drugs administered to patients.

“It typically takes about 12 years and $1.8 billion to produce one FDA-approved drug,” said Shaochen Chen, NanoEngineering professor at the UC San Diego Jacobs School of Engineering. “That’s because over 90 percent of drugs don’t pass animal tests or human clinical trials. We’ve made a tool that pharmaceutical companies could use to do pilot studies on their new drugs, and they won’t have to wait until animal or human trials to test a drug’s safety and efficacy on patients. This would let them focus on the most promising drug candidates earlier on in the process.”
good health's curator insight, January 11, 9:14 AM

Acquista Online La Prescrizione Di Perdita Di Peso
Crediamo che i farmaci a volte possano essere molto urgenti da assumere. Se hai urgente bisogno di farmaci, possiamo anche fornirti una consegna espressa,


https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-ozempic-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-victoza-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-mounjaro-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-mysimba-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-wegovy-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquistare-saxenda-6mg-ml-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-phentermine-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquistare-sibutramina-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/ephedrine-hcl-30mg/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-adderall-30mg/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-adipex-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-vyvanse-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-ossicodone-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-oxycontin-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-percocet-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-stilnox-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-suboxone-8mg/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-subutex-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-metadone/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-botox-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquistare-rohypnol-2mg/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-l-ritalin-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-adma-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/a-215-ossicodone-actavis/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-ativan-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-cerotti-al-fentanil/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-codeina-linctus-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-codeina-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-demerol-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-depalgo-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-diazepam-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-dilaudid-8mg/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-endocet-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-eroina-bianca/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-opana-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-vicodin-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-xanax-2mg/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/efedrina-hcl-in-polvere/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/sciroppo-di-metadone/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/tramadolo-hcl-200mg/

https://globalefarmacia.com/Prodotto/acquista-ozempic-online/
https://globalefarmacia.com/Prodotto/acquista-victoza-online/
https://globalefarmacia.com/Prodotto/acquista-mounjaro-online/
https://globalefarmacia.com/Prodotto/acquista-mysimba-online/
https://globalefarmacia.com/Prodotto/acquista-wegovy-online/
https://globalefarmacia.com/Prodotto/acquistare-saxenda-6mg-ml-online/
https://globalefarmacia.com/Prodotto/acquista-phentermine-online/
https://globalefarmacia.com/Prodotto/acquistare-sibutramina-online/
https://globalefarmacia.com/Prodotto/ephedrine-hcl-30mg/
https://globalefarmacia.com/Prodotto/acquista-adderall-30mg/
https://globalefarmacia.com/Prodotto/acquista-adipex-online/
https://globalefarmacia.com/Prodotto/acquista-vyvanse-online/
https://globalefarmacia.com/Prodotto/acquista-ossicodone-online/
https://globalefarmacia.com/Prodotto/acquista-oxycontin-online/
https://globalefarmacia.com/Prodotto/acquista-percocet-online/
https://globalefarmacia.com/Prodotto/acquista-stilnox-online/
https://globalefarmacia.com/Prodotto/acquista-suboxone-8mg/
https://globalefarmacia.com/Prodotto/acquista-subutex-online/
https://globalefarmacia.com/Prodotto/acquista-metadone/
https://globalefarmacia.com/Prodotto/acquista-botox-online/
https://globalefarmacia.com/Prodotto/acquistare-rohypnol-2mg/
https://globalefarmacia.com/Prodotto/acquista-l-ritalin-online/
https://globalefarmacia.com/Prodotto/acquista-adma-online/
https://globalefarmacia.com/Prodotto/a-215-ossicodone-actavis/
https://globalefarmacia.com/Prodotto/acquista-ativan-online/
https://globalefarmacia.com/Prodotto/acquista-cerotti-al-fentanil/
https://globalefarmacia.com/Prodotto/acquista-codeina-linctus-online/
https://globalefarmacia.com/Prodotto/acquista-codeina-online/
https://globalefarmacia.com/Prodotto/acquista-demerol-online/
https://globalefarmacia.com/Prodotto/acquista-depalgo-online/
https://globalefarmacia.com/Prodotto/acquista-diazepam-online/
https://globalefarmacia.com/Prodotto/acquista-dilaudid-8mg/
https://globalefarmacia.com/Prodotto/acquista-endocet-online/
https://globalefarmacia.com/Prodotto/acquista-eroina-bianca/
https://globalefarmacia.com/Prodotto/acquista-opana-online/
https://globalefarmacia.com/Prodotto/acquista-vicodin-online/
https://globalefarmacia.com/Prodotto/acquista-xanax-2mg/
https://globalefarmacia.com/Prodotto/efedrina-hcl-in-polvere/
https://globalefarmacia.com/Prodotto/sciroppo-di-metadone/
https://globalefarmacia.com/Prodotto/tramadolo-hcl-200mg/


<a href="https://globalefarmacia.com/Prodotto/acquista-ozempic-online/">acquista-ozempic-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-victoza-online/">acquista-victoza-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-mounjaro-online/">acquista-mounjaro-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-mysimba-online/">acquista-mysimba-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-wegovy-online/">acquista-wegovy-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquistare-saxenda-6mg-ml-online/">acquistare-saxenda-6mg-ml-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-phentermine-online/">acquista-phentermine-online</a>;
<a href="https://globalefarmacia.com/Prodotto/ephedrine-hcl-30mg/">ephedrine-hcl-30mg</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-ossicodone-online/">acquista-ossicodone-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-oxycontin-online/">acquista-oxycontin-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-percocet-online/">acquista-percocet-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-stilnox-online/">acquista-stilnox-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-suboxone-8mg/">acquista-suboxone-8mg</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-subutex-online/">acquista-subutex-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-metadone/">acquista-metadone</a>;
<a href="https://globalefarmacia.com/Prodotto/buy-vyvanse-online/">buy-vyvanse-online</a>;
<a href="https://globalefarmacia.com/Prodotto/a-215-ossicodone-actavis/">a-215-ossicodone-actavis</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-adderall-30mg/">acquista-adderall-30mg</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-adipex-online/">acquista-adipex-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-adma-online/">acquista-adma-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-ativan-online/">acquista-ativan-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-botox-online/">acquista-botox-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-cerotti-al-fentanil/">acquista-cerotti-al-fentanil</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-codeina-linctus-online/">acquista-codeina-linctus-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-codeina-online/">ta-codeina-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-demerol-online/">acquista-demerol-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-depalgo-online/">acquista-depalgo-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-diazepam-online/">acquista-diazepam-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-dilaudid-8mg/">acquista-dilaudid-8mg</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-endocet-online/">acquista-endocet-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-eroina-bianca/">acquista-eroina-bianca</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-l-ritalin-online/">acquista-l-ritalin-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-opana-online/">acquista-opana-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-vicodin-online/">acquista-vicodin-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-xanax-2mg/">acquista-xanax-2mg</a>;
<a href="https://globalefarmacia.com/Prodotto/acquistare-rohypnol-2mg/">acquistare-rohypnol-2mg</a>;
<a href="https://globalefarmacia.com/Prodotto/acquistare-sibutramina-online/">acquistare-sibutramina-online</a>;
<a href="https://globalefarmacia.com/Prodotto/efedrina-hcl-in-polvere/">efedrina-hcl-in-polvere</a>;
<a href="https://globalefarmacia.com/Prodotto/sciroppo-di-metadone/">sciroppo-di-metadone</a>;
<a href="https://globalefarmacia.com/Prodotto/tramadolo-hcl-200mg/">tramadolo-hcl-200mg</a>;

 


<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-ozempic-online/&quot; rel="dofollow">acquista-ozempic-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-victoza-online/&quot; rel="dofollow">acquista-victoza-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-mounjaro-online/&quot; rel="dofollow">acquista-mounjaro-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-mysimba-online/&quot; rel="dofollow">acquista-mysimba-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-wegovy-online/&quot; rel="dofollow">acquista-wegovy-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquistare-saxenda-6mg-ml-online/&quot; rel="dofollow">acquistare-saxenda-6mg-ml-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-phentermine-online/&quot; rel="dofollow">acquista-phentermine-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquistare-sibutramina-online/&quot; rel="dofollow">acquistare-sibutramina-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/ephedrine-hcl-30mg/&quot; rel="dofollow">ephedrine-hcl-30mg</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-adderall-30mg/&quot; rel="dofollow">acquista-adderall-30mg</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-adipex-online/&quot; rel="dofollow">acquista-adipex-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-vyvanse-online/&quot; rel="dofollow">acquista-vyvanse-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-ossicodone-online/&quot; rel="dofollow">acquista-ossicodone-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-oxycontin-online/&quot; rel="dofollow">acquista-oxycontin-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-percocet-online/&quot; rel="dofollow">acquista-percocet-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-stilnox-online/&quot; rel="dofollow">acquista-stilnox-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-suboxone-8mg/&quot; rel="dofollow">acquista-suboxone-8mg</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-subutex-online/&quot; rel="dofollow">acquista-subutex-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-metadone/&quot; rel="dofollow">acquista-metadone</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-botox-online/&quot; rel="dofollow">acquista-botox-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquistare-rohypnol-2mg/&quot; rel="dofollow">acquistare-rohypnol-2mg</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-l-ritalin-online/&quot; rel="dofollow">acquistare-rohypnol-2mg</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-adma-online/&quot; rel="dofollow">acquista-adma-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/a-215-ossicodone-actavis/&quot; rel="dofollow">a-215-ossicodone-actavis</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-ativan-online/&quot; rel="dofollow">acquista-ativan-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-cerotti-al-fentanil/&quot; rel="dofollow">acquista-cerotti-al-fentanil</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-codeina-linctus-online/&quot; rel="dofollow">acquista-codeina-linctus-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-codeina-online/&quot; rel="dofollow">acquista-codeina-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-demerol-online/&quot; rel="dofollow">acquista-demerol-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-depalgo-online/&quot; rel="dofollow">acquista-depalgo-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-diazepam-online/&quot; rel="dofollow">acquista-diazepam-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-dilaudid-8mg/&quot; rel="dofollow">acquista-dilaudid-8mg</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-endocet-online/&quot; rel="dofollow">acquista-endocet-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-eroina-bianca/&quot; rel="dofollow">acquista-eroina-bianca</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-opana-online/&quot; rel="dofollow">acquista-opana-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-vicodin-online/&quot; rel="dofollow">acquista-vicodin-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-xanax-2mg/&quot; rel="dofollow">acquista-xanax-2mg</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/efedrina-hcl-in-polvere/&quot; rel="dofollow">efedrina-hcl-in-polvere</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/sciroppo-di-metadone/&quot; rel="dofollow">sciroppo-di-metadone</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/tramadolo-hcl-200mg/&quot; rel="dofollow">tramadolo-hcl-200mg</a>

https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-ozempic-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-victoza-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-mounjaro-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-mysimba-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-wegovy-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquistare-saxenda-6mg-ml-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-phentermine-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquistare-sibutramina-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/ephedrine-hcl-30mg/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-adderall-30mg/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-adipex-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-vyvanse-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-ossicodone-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-oxycontin-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-percocet-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-stilnox-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-suboxone-8mg/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-subutex-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-metadone/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-botox-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquistare-rohypnol-2mg/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-l-ritalin-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-adma-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/a-215-ossicodone-actavis/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-ativan-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-cerotti-al-fentanil/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-codeina-linctus-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-codeina-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-demerol-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-depalgo-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-diazepam-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-dilaudid-8mg/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-endocet-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-eroina-bianca/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-opana-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-vicodin-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-xanax-2mg/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/efedrina-hcl-in-polvere/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/sciroppo-di-metadone/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/tramadolo-hcl-200mg/


<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-ozempic-online/&quot; rel="dofollow">acquista-ozempic-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-victoza-online/&quot; rel="dofollow">acquista-victoza-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-mounjaro-online/&quot; rel="dofollow">acquista-mounjaro-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-mysimba-online/&quot; rel="dofollow">acquista-mysimba-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-wegovy-online/&quot; rel="dofollow">acquista-wegovy-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquistare-saxenda-6mg-ml-online/&quot; rel="dofollow">acquistare-saxenda-6mg-ml-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-phentermine-online/&quot; rel="dofollow">acquista-phentermine-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquistare-sibutramina-online/&quot; rel="dofollow">acquistare-sibutramina-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/ephedrine-hcl-30mg/&quot; rel="dofollow">ephedrine-hcl-30mg</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-adderall-30mg/&quot; rel="dofollow">acquista-adderall-30mg</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-adipex-online/&quot; rel="dofollow">acquista-adipex-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-vyvanse-online/&quot; rel="dofollow">acquista-vyvanse-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-ossicodone-online/&quot; rel="dofollow">acquista-ossicodone-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-oxycontin-online/&quot; rel="dofollow">acquista-oxycontin-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-percocet-online/&quot; rel="dofollow">acquista-percocet-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-stilnox-online/&quot; rel="dofollow">acquista-stilnox-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-suboxone-8mg/&quot; rel="dofollow">acquista-suboxone-8mg</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-subutex-online/&quot; rel="dofollow">acquista-subutex-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-metadone/&quot; rel="dofollow">acquista-metadone</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-botox-online/&quot; rel="dofollow">acquista-botox-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquistare-rohypnol-2mg/&quot; rel="dofollow">acquistare-rohypnol-2mg</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-l-ritalin-online/&quot; rel="dofollow">acquistare-rohypnol-2mg</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-adma-online/&quot; rel="dofollow">acquista-adma-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/a-215-ossicodone-actavis/&quot; rel="dofollow">a-215-ossicodone-actavis</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-ativan-online/&quot; rel="dofollow">acquista-ativan-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-cerotti-al-fentanil/&quot; rel="dofollow">acquista-cerotti-al-fentanil</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-codeina-linctus-online/&quot; rel="dofollow">acquista-codeina-linctus-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-codeina-online/&quot; rel="dofollow">acquista-codeina-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-demerol-online/&quot; rel="dofollow">acquista-demerol-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-depalgo-online/&quot; rel="dofollow">acquista-depalgo-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-diazepam-online/&quot; rel="dofollow">acquista-diazepam-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-dilaudid-8mg/&quot; rel="dofollow">acquista-dilaudid-8mg</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-endocet-online/&quot; rel="dofollow">acquista-endocet-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-eroina-bianca/&quot; rel="dofollow">acquista-eroina-bianca</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-opana-online/&quot; rel="dofollow">acquista-opana-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-vicodin-online/&quot; rel="dofollow">acquista-vicodin-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-xanax-2mg/&quot; rel="dofollow">acquista-xanax-2mg</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/efedrina-hcl-in-polvere/&quot; rel="dofollow">efedrina-hcl-in-polvere</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/sciroppo-di-metadone/&quot; rel="dofollow">sciroppo-di-metadone</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/tramadolo-hcl-200mg/&quot; rel="dofollow">tramadolo-hcl-200mg</a>

Scooped by Dr. Stefan Gruenwald
Scoop.it!

MIT researchers invent process for 3D-printing complex transparent glass forms

MIT researchers invent process for 3D-printing complex transparent glass forms | Amazing Science | Scoop.it

An additive-manufacturing glass-printing process called G3DP (Glass 3D Printing) has been developed by researchers in the Mediated Matter Group at the MIT Media Lab in collaboration with the Glass Lab at MIT.


The platform is based on a dual heated-chamber concept. The upper chamber acts as a Kiln Cartridge (a thermally insulated heater) operating at about 1900°F to melt the glass, while the lower chamber serves to anneal (form) the structures. The molten material gets funneled through an alumina-zircon-silica nozzle, which extrudes the material onto a build platform, where it cools and hardens. By tuning the form, transparency, and color variation, the process can drive, limit, or control light transmission, reflection and refraction in the final material.


The G3DP project was created in collaboration between the Mediated Matter group at the MIT Media Lab, the Mechanical Engineering Department, the MIT Glass Lab, and the Wyss Institute.

A selection of Glass pieces will appear in an exhibition at Cooper Hewitt, Smithsonian Design Museum, New York City in 2016.  An “Additive Manufacturing of Optically Transparent Glass” patent application was filed on April 25, 2014.


References:
No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

Could a 3D printer just make your next organ?

Could a 3D printer just make your next organ? | Amazing Science | Scoop.it

With 3D printers everywhere, making everything from Yoda statues to bionic body parts, this company is using 3D printing to make new body tissue. BioBots, a team from the University of Pennsylvania, does just that. They’ve developed a $5,000 3D printer that actually prints functional living tissue. The company just snagged the Most Innovative Company at SXSW’s Accelerator Awards.


And while most of the living tissue BioBots is creating these days is for drug research — to make it less expensive and take animals out of the mix — one day, it could print new organs for transplants. “If we could somehow reveal the failures before testing drugs on people, we would be able to identify false positives much earlier in the drug development process,” CEO and co-founder Danny Cabrera told Forbes. “The problem is in animal testing – mice are not humans, and tests on animals often fail to mimic human diseases or predict how the human body responds to new drugs.


“The Holy Grail is to develop fully functioning replacement organs out of a patient’s own cells, eliminating the organ waiting list, but in the meantime we’ll settle for getting more drugs approved by the FDA at a significantly lower cost on an accelerated time scale, improving the quality of life for millions of people around the world.”

Gary Yuen's curator insight, March 26, 2015 6:18 PM

For now, printing fully-functional organs to be transplanted is still in development, only using mice as test subjects. But it's a start, in the future, a machine may be able to produce the organ you need without you having to wait in line for an organ donor.

Patrick Bolter's curator insight, March 27, 2015 3:31 AM

With 3D printers becoming more and more advanced, it is becoming feasible to create specialised ones that will be capable of printing things like body tissue. I believe this will become a big area in technology in the coming decade.

Rescooped by Dr. Stefan Gruenwald from 21st Century Innovative Technologies and Developments as also discoveries, curiosity ( insolite)...
Scoop.it!

Incredibly Small 3D Printed Middle Ear Prosthesis is Achieved on a 3D Systems Printer

Incredibly Small 3D Printed Middle Ear Prosthesis is Achieved on a 3D Systems Printer | Amazing Science | Scoop.it

3D printing has been providing various forms of prosthetic devices such as fingers, hands, arms and legs for a short time now, mostly due to the fact that it is affordable, easy to use, faster than traditional manufacturing, and provides for total customization. Companies are also really beginning to see the potential of 3D printing in the rapid prototyping of medical products.


One company, Potomac Laser, has been in the business of specializing in and creating medical devices, as well as other unique electronic devices for over 32 years now. Located in Baltimore, Maryland, they use 3D printing, laser micromachining, micro CNC and micro drilling in their many unique projects.


Just recently, a woman by the name of Monika Kwacz, who is a researcher at the Institute of Micromechanics and Photonics at Warsaw Technical University in Poland, contacted Potomac Laser to see if they could help her 3D print something almost unheard of. She had been studying stapedotomy, which is a form of surgical procedure that aims at improving hearing loss in those who suffer from the fixation of their stapes. The stapes, which is one of the 3 tiny bones within the middle ear involved in the conduction of sound vibrations to the inner ear, is the smallest and lightest bone within the human body.


Millions of peoples in the US alone suffer from a condition called Otosclerosis, where the stapes becomes stuck in a fixed position, and can no longer efficiently receive and transmit vibrations needed for a subject to hear properly. This is mostly due to a mineralization process of the bone and surrounding tissue.  It is estimated that 10% of the world’s adult Caucasian population suffers from this condition in one form or another.


Via Gust MEES
Scooped by Dr. Stefan Gruenwald
Scoop.it!

New Tech Embeds ID in 3D-Printed Products

New Tech Embeds ID in 3D-Printed Products | Amazing Science | Scoop.it

Researchers at Microsoft have developed an answer: a new method of marking objects without leaving a visual trace. The method involves creating objects with various internal gaps, or bubbles, within its body that form predetermined patterns. These patterns can then be observed using a Terahertz scanner, a device that has been used in airport security since 2007.


Terahertz radiation is a type of electromagnetic light that is not visible to the human eye and also doesn't harm organic matter like nuclear radiation does. It can also pass through most plastics, fabric, wood and organic material, making it ideal for imaging the insides of objects. By analyzing the rate at which the Terahertz radiation beams pass through the object, the scanner can locate the gaps that make up the pattern and interpret the gaps' meaning.


Microsoft calls this type of tag an InfraStruct. It's similar to a barcode or a QR code, but the mark is structural, not visual, and therefore doesn't have to be on the outside of an object. Unlike radio-frequency identification tags, or RFIDs, tags such as InfraStructs don't require any kind of electricity to exist; they're just a part of the object's architectural makeup.


This method is particularly easy to implement with 3D-printed objects, as the printers work by creating an object layer by layer, so adding the pattern is a relatively simple modification.


3D printers capable of printing in multiple materials, such as different types of polymers or even metal, could easily create a different type of InfraStruct. If you were to make one of those layers a different material than the rest, a Terahertz scanner would detect it because the radiation would pass through that layer at a different rate than the rest.

No comment yet.
Scooped by Dr. Stefan Gruenwald
Scoop.it!

3D ultrasound hologram printing service of unborn fetuses using Pioneer's compact holographic printer

A Japanese company, Pioneer, has unveiled a service that creates 3D holograms of unborn fetuses. Ultrasound photos - sooo old school from last century! Make way for hologram-babies. The service uses data gathered during a routine pregnancy checkup. The information from an echogram is used to create a 3D digital model of the baby on a computer. That digital model is then printed using Pioneer's compact hologram printer, first developed end of 2012. Within two hours, you have a stunning, but slightly creepy, multi-colored 3D image that lets you see your child from a range of angles.

 

Holograms are recordings of "light fields", the sum of the scattered light reflecting off a surface in a range of directions. (As opposed to an ordinary photograph, which captures only the light scattered in one direction). By capturing the light from a range of directions, the "light field", the hologram allows a 3D recreation of the original object. Creating a hologram from scratch is a straightforward but tricky process. (See our "How To" here). But the printer developed by Pioneer bypasses all of that, at least as far as you're concerned.

 

"Previously, holograms were produced by making a model of the subject, shining two lights on the model, and photographing it. That method involved a lot of work, because it required a darkroom, knowledge of techniques, and specialized equipment," said a spokesperson for Pioneer. "But with the device we've developed, even if you don't have the actual object, as long as you have a CG design, then that can be used to record a hologram easily."

 

Advances in holographic technology have seen holograms invade various areas of modern life. Researchers at Cambridge are investigating the security applications of holograms embedded in carbon nanotubes; it has been suggested that infrared holographic images could aid firefighters; and in 2012, Coachella festival in California featured a performance from a holographic Tupac -- though it wasn't a "hologram"in the strictest sense of the word.

No comment yet.