iBB
46.8K views | +3 today
Follow
 
Scoop.it!

Sara Salazar to Defend PhD Thesis in Biotechnology and Biosciences

Sara Salazar to Defend PhD Thesis in Biotechnology and Biosciences | iBB | Scoop.it

Sara Barbosa Salazar will be defending her PhD thesis in Biotechnology and Biosciences at Instituto Superior Técnico, Friday the 17th of June 2022, at 14:00 am (https://videoconf-colibri.zoom.us/j/82325109047). During the last years, and under the supervision of Nuno Mira from iBB, Sara investigated the stress resilience and pathogenesis of the fungal pathogen Candida glabrata. The title of her thesis is “Deepening the role of CgHaa1- and CgPdr1- pathways in stress resilience and pathogenesis of Candida glabrata to foster new antifungal treatments".

No comment yet.
iBB
Institute for Bioengineering and Biosciences
Curated by iBB
Your new post is loading...
Your new post is loading...
Scoop.it!

Antimicrobial Activities and Metabolomes of Aquimarina from the Rare Marine Biosphere

Antimicrobial Activities and Metabolomes of Aquimarina from the Rare Marine Biosphere | iBB | Scoop.it

The marine bacterial genus Aquimarina is a promising source of novel natural products. A new study published in Marine Drugs demonstrated widespread ability of Aquimarina species to inhibit growth of human-pathogenic microbes such as Candida glabrata and methicillin-resistant Staphylococcus aureus, as well as Vibrio and other marine bacteria relevant to aquaculture. Metabolomics and genomics analyses of Aquimarina strains indicated the presence of novel polyketides and peptides, including cyclic depsipeptide-related compounds. The study further showed that Aquimarina species possess low-abundance distributions across marine biotopes worldwide. It emphasizes the relevance of this member of the microbial rare biosphere as a promising source of novel natural products, supporting future efforts to isolate new bioactive compounds from Aquimarina. The work was developed within the SymbioReactor project (DGPM | Fundo Azul program) led by Prof Rodrigo Costa and Dr Tina Keller-Costa and was first-authored by PhD student Sandra Silva. It also includes former MSc student Patrícia Paula, Dr Dalila Mil-Homens, Prof Miguel Teixeira and Prof Arsénio Fialho from BSRG-iBB as coauthors.

No comment yet.
Scoop.it!

@cientista regressa à escola – Promoting Scientific Literacy in Primary Schools

@cientista regressa à escola – Promoting Scientific Literacy in Primary Schools | iBB | Scoop.it

On May 30th, Dr. Margarida Palma from BSRG-iBB participated in the scientific literacy program @cientista regressa à escola to share science with the students from her primary school, at Centro Educativo de Algodôr, Mértola. The activities planned included bread fermentation, microscopic observation of yeasts from bread dough and the balloon experiment where yeasts fermenting sugar or wheat flour can inflate balloons. The educational program @cientista regressa à escola aims to bring scientists to their primary schools to promote scientific culture and literacy, especially in regions that do not have easy access to science outreach activities, contributing to curricular enrichment in sciences, and bringing science and society closer together.

No comment yet.
Scoop.it!

Sea Ice Prokaryotic Communities in the Subarctic

Sea Ice Prokaryotic Communities in the Subarctic | iBB | Scoop.it

A transatlantic endeavour involving researchers from BSRG-iBB, CQE (IST) and Université Laval and INRS (Canada) provided the first comprehensive assessment of prokaryotic communities in the late winter ice and its underlying water along a natural salinity gradient in Hudson Bay, a cryo-environment marking the transition between Subarctic and Arctic biomes. The study, published in Science of Total Environment, was led by Prof. Rodrigo Costa, first-authored by MIT-Portugal PhD student Lígia Coelho and co-authored by PhD student Joana Couceiro, Dr Tina Keller-Costa and Profs. Zita Martins and João Canário. The team found sharp shifts in community structure between the ice and underlying water samples at sampling sites with higher salinity, and high abundance of culturable, pigment-producing bacteria in ice. The study suggests that salinity, photosynthesis and dissolved organic matter are main drivers of prokaryotic community structure in the winter ice of Hudson Bay, the ecosystem with the fastest sea ice loss in the Canadian North.

No comment yet.
Scoop.it!

Benzyl Alcohol Production in Stirred and Packed Bed Reactors

Benzyl Alcohol Production in Stirred and Packed Bed Reactors | iBB | Scoop.it

The ocean is an excellent source for new biocatalysts due to the tremendous genetic diversity of marine microorganisms, and it may contribute to the development of sustainable industrial processes. In a recent paper published in Microorganisms, Carlos J.C. Rodrigues and Carla C.C.R. de Carvalho (iBB-BERG) used a marine bacterium for the conversion of benzaldehyde to benzyl alcohol, which is an important chemical employed as a precursor for producing esters for cosmetics and other industries. A stirred reactor, using a fed-batch approach, enabled a 1.5-fold increase in benzyl alcohol productivity when compared with batch mode. However, product accumulation in the reactor hindered the conversion. The use of a continuous flow reactor packed with immobilized cells enabled a 9.5-fold increase in productivity when compared with the fed-batch stirred reactor system.

No comment yet.
Scoop.it!

Characterization of a New Blastobotrys navarrensis Strain

Characterization of a New Blastobotrys navarrensis Strain | iBB | Scoop.it

A BSRG-iBB research paper just published in International Journal of Systematic and Evolutionary Microbiology reports the isolation, identification, and morphological and phylogenetic characterization of Blastobotrys navarrensis IST 508. The isolation of this yeast strain from a soil sample collected underneath an olive tree in Ferreira do Alentejo was essential to propose the taxonomic separation of B. navarrensis, so far represented by the single strain CBS 139.77, from Blastobotrys proliferans, which until this study was considered a synonym species. Molecular and phylogenetic data was used to propose B. navarrensis as an independent species and not a later synonym of B. proliferans. An emended description of B. navarrensis was also proposed. This research paper has as first- and corresponding- author Dr. Margarida Palma, who coordinated the investigation with contributions by Professor Isabel Sá-Correia. The article is also co-authored by former Master students Érica Vieira and Margarida Pataco, both from MSc in Biotechnology, IST.

No comment yet.
Scoop.it!

Modeling the Full Metabolism of the Human Pathogen Candida parapsilosis

Modeling the Full Metabolism of the Human Pathogen Candida parapsilosis | iBB | Scoop.it

Understanding the behavior of human pathogens is both a challenge and a need, if we are to address infectious diseases with the best possible tools. Genome-scale metabolic models are a way to meet this task, which was just used for the second most prevalent Candida species in Europe, Candida parapsilosis. The construction and validation of a global stoichiometric model describing the whole metabolic network in this human pathogen, as well as its exploitation in drug target discovery, stemming from a collaboration between researchers from BSRG/iBB (Miguel Cacho Teixeira), ITQB-NOVA (Isabel Rocha) and CEB-UMinho (Óscar Dias), was just published in Genes.

No comment yet.
Scoop.it!

Ana Melo Receives a 2022 Biophysical Travel Award

Ana Melo Receives a 2022 Biophysical Travel Award | iBB | Scoop.it

Ana M. Melo was a recipient of a 2022 Biophysical Travel Award for Scientists within 10-years after completing the PhD. She was honored during the Travel Awardee Reception by the Society’s Committees for Inclusion/Diversity and Professional Opportunities for Women. This highly competitive award covered her travel expenses to San Francisco, California (US).

No comment yet.
Scoop.it!

iBB Contributes to the Move2LowC Project

iBB Contributes to the Move2LowC Project | iBB | Scoop.it

The project Move2LowC, led by A4F, Algafuel, S.A., is mobilizing Universities, R&D Institutes, SMEs and Large Companies, to cooperate with the objective of increasing the use of aquatic biomass (microalgae), residual forest biomass and industrial effluents for the production of biofuels, in a circular economy logic. It also aims to reduce waste by reducing, reusing, recovering and recycling materials into energy vectors. IBB's contribute is geared towards the selection of unconventional yeasts for the production of microbial oils produced by heterotrophic fermentation of hydrolysates from residual lignocellulosic biomass.

No comment yet.
Scoop.it!

Detection of mcr-1 gene in Vibrio Species Isolated From Clams

Detection of mcr-1 gene in Vibrio Species Isolated From Clams | iBB | Scoop.it

Pathogenic Vibrio species are responsible for human and animal illness and one of the main causes of human infection is related to the ingestion of undercooked seafood. Due to their filter-feeding habit, marine invertebrates, such as clams, are known to be a natural reservoir of specific microbial communities. In a recently published study carried out by researchers of ESTM, Polytechnic of Leiria, and Carla C.C.R. de Carvalho (BERG-iBB), the profile of antimicrobial resistance and the presence of virulence genes in the bacterial isolates from clams were evaluated. The presence of the mobilisable colistin resistance gene mcr-1 in three Vibrio spp. isolates highlights a potential threat to public health.

No comment yet.
Scoop.it!

Special Issue on "Yeasts for a Sustainable Circular Bio-Based Economy" for The Journal of Fungi

Special Issue on "Yeasts for a Sustainable Circular Bio-Based Economy" for The Journal of Fungi | iBB | Scoop.it

Together with Dr. Naseem A. Gaur, prof. Isabel Sá-Correia is organizing a special issue for The Journal of Fungi. This special issue is focused on the new circular bio-based economy. The development of large-scale bioprocesses for the bioconversion of biomass resources into environmentally friendly biofuels, chemicals, and materials is required to answer timeless societal challenges. Cost-effective microbial conversion processes of renewable feedstock into biofuels and biochemicals are of utmost importance for the establishment of a robust bioeconomy. Therefore, the transition to a sustainable bio-based economy requires further scientific research and innovation to reach those goals. Integrated yeast biorefinery processes have recently gained relevance in envisaging the conversion of forest and agro-industrial residues into environmentally friendly products currently produced by the petrochemical industry. For all these reasons, this is a very active and exciting area of R&D. Deadline for new manuscript submissions is August 31, 2022.

No comment yet.
Scoop.it!

A CBM-Hexapeptide Fusion Confers Antimicrobial Properties to Cellulose

A CBM-Hexapeptide Fusion Confers Antimicrobial Properties to Cellulose | iBB | Scoop.it

A new strategy to modify cellulose with the short antimicrobial hexapeptide MP196 (RWRWRW-NH2) is proposed by BERG and BSIRG researchers that uses fusions of Cys-terminated derivatives of MP196 and a carbohydrate binding module (CBM). CBM3-MP196-modified cellulose hydrogels displayed antibacterial activity that was significantly higher when compared with controls. This versatile concept offers a toolbox for the functionalization of different cellulose materials with a broad choice in peptides. the paper was published in Acta Biomaterialia. The work was funded by project CBM-X.

No comment yet.
Scoop.it!

Optimization of the Brewing Parameters on Coffee Extraction Using a Central Composite Rotatable Design

Optimization of the Brewing Parameters on Coffee Extraction Using a Central Composite Rotatable Design | iBB | Scoop.it

When an idea in a coffee break in an international meeting turns into a paper, Pedro Fonte from BERG-iBB in collaboration with researchers from UFVJM, Brazil just published a work in JSFA Reports performing an optimization of the brewing parameters on coffee extraction using a central composite rotatable design. The effects of extraction time, particle size of ground coffee, extraction temperature, coffee-to-water ratio, stirring on caffeine yield, and soluble solids on caffeine concentrations were studied. Optimized parameters showed 45 min sufficed to perform a cold extraction at 4°C and 24°C. The parameters selected for validation were 24°C, 30% coffee-to-water ratio, a stirring of 400 rpm resulting in 3.98 mg/ml of extracted caffeine, 11.20 °Brix, and 93.9% of caffeine yield. The smaller particle size (595 μm) displayed the higher caffeine extraction of about 4 mg/ml. This study reveals the high efficiency of cold brew extraction and its potential at the industrial scale, decreasing costs with energy and extraction time, and producing a coffee rich in caffeine and soluble solids.

No comment yet.
Scoop.it!

The Effect of Recombinant Protein Production in Lactococcus lactis Transcriptome and Proteome

The Effect of Recombinant Protein Production in Lactococcus lactis Transcriptome and Proteome | iBB | Scoop.it

Lactococcus lactis is a food-grade, and generally recognized as safe, bacterium, which making it ideal for producing plasmid DNA (pDNA) or recombinant proteins for industrial or pharmaceutical applications. A paper published in Microorganisms by Sofia Duarte and Gabriel Monteiro from BERG-iBB reviews the major findings from L. lactis transcriptome and proteome studies, with an overexpression of native or recombinant proteins. These studies provide important insights on how to engineer the plasmid vectors and/or the strains in order to achieve high pDNA or recombinant proteins yields, with high quality standards. 

No comment yet.
Scoop.it!

Sara Salazar to Defend PhD Thesis in Biotechnology and Biosciences

Sara Salazar to Defend PhD Thesis in Biotechnology and Biosciences | iBB | Scoop.it

Sara Barbosa Salazar will be defending her PhD thesis in Biotechnology and Biosciences at Instituto Superior Técnico, Friday the 17th of June 2022, at 14:00 am (https://videoconf-colibri.zoom.us/j/82325109047). During the last years, and under the supervision of Nuno Mira from iBB, Sara investigated the stress resilience and pathogenesis of the fungal pathogen Candida glabrata. The title of her thesis is “Deepening the role of CgHaa1- and CgPdr1- pathways in stress resilience and pathogenesis of Candida glabrata to foster new antifungal treatments".

No comment yet.
Scoop.it!

Aquimarins, Peptide Antibiotics from a Sponge-Derived Aquimarina sp. Bacterium

Aquimarins, Peptide Antibiotics from a Sponge-Derived Aquimarina sp. Bacterium | iBB | Scoop.it

A joint collaborative effort coordinated by Prof Jörn Piel from the ETH Zürich (Switzerland) led to the identification of new antibiotic compounds from Aquimarina sp. strain Aq135 which was cultivated from the marine sponge Ircinia variabilis in the laboratory of Prof Rodrigo Costa from BSRG-iBB. Activity-guided isolation identified novel antibacterial peptides, named aquimarins, featuring a new scaffold with an unusual C-terminal amino group and chlorine moieties. Structure–activity relationship studies with these compounds showed that the synthetically more laborious chlorinations are not required for antibacterial activity but enhance cytotoxicity. In contrast, variants lacking the C-terminal amine were virtually inactive, suggesting diamines similar to the terminal aquimarin residue as candidate building blocks for new peptidomimetic antibiotics. The study was published in Angewandte Chemie.

No comment yet.
Scoop.it!

Production of a Novel Marine Pseudomonas aeruginosa Recombinant L‑Asparaginase

Production of a Novel Marine Pseudomonas aeruginosa Recombinant L‑Asparaginase | iBB | Scoop.it

L-asparaginases have an acknowledge role in food and pharmaceutical industries. Accordingly, efforts to produce highly efficient, selective and stable L-asparaginases are currently underway. One of the strategies used to fulfill this goal involves the production of recombinant. In a recent paper published in Marine Biotechnology, Pedro Fernandes (iBB-BERG) and colleagues from the University of Hormozgan and Tarbiat Modares University in Iran report the production of a novel marine recombinant L‑asparaginase and provide its biochemical and structural characterization. The results obtained suggest the potential of the thermostable recombinant enzyme obtained for practical applications in food and pharmaceutical areas.

No comment yet.
Scoop.it!

Greener Strategy for Lupanine Purification from Lupin Bean Wastewaters Using a Molecularly Imprinted Polymer

Greener Strategy for Lupanine Purification from Lupin Bean Wastewaters Using a Molecularly Imprinted Polymer | iBB | Scoop.it

Lupanine is used as a building block in the synthesis of sparteine, a chiral selector in drug synthesis. This alkaloid is found in wastewaters derived from the debittering process that makes lupin beans edible. In a recently published work, carried out by researchers of the Faculty of Sciences and Faculty of Pharmacy from the University of Lisbon, and Teresa Esteves, Frederico Ferreira, Flávio Ferreira and Ana Mota from BERG-iBB, a computational chemistry approach was taken to design molecularly imprinted polymers (MIPs) selecting itaconic acid, a biobased building block, as a functional monomer that can provide higher affinities for lupanine. In this work, lupanine was concentrated from lupin bean wastewater by nanofiltration, extracted with ethyl acetate, and purified using the synthesized MIP, which was able to selectively recognize lupanine and improve its purity to 88%, with 82% recovery of the alkaloid, showing the potential application of this strategy to render the industrial process more sustainable.

No comment yet.
Scoop.it!

Additive Manufactured PCL-Graphene Scaffolds for Tissue Engineering

Additive Manufactured PCL-Graphene Scaffolds for Tissue Engineering | iBB | Scoop.it

Understanding the mechano–biological coupling mechanisms of biomaterials for tissue engineering is of major importance to assure proper scaffold performance in situ. Therefore, it is of paramount importance to establish correlations between biomaterials, their processing conditions, and their mechanical behaviour, as well as their biological performance. In a collaborative work between CDRSP-Politécnico de Leiria and SCERG-iBB  (João C. Silva and Frederico Ferreira), it was possible to infer a correlation between the addition of different concentrations of graphene nanoparticles (GPN) in three-dimensional poly(ε-caprolactone) (PCL)-based scaffolds, their extrusion-based processing parameters, and the lamellar crystal orientation observed in the different scaffolds through small-angle X-ray scattering experiments. Moreover, in vitro cell culture studies performed at SCERG-iBB demonstrated the suitability and potential of these novel 3D PCL/GPN scaffolds for tissue engineering applications. The results of this study were just published in Polymers.

No comment yet.
Scoop.it!

Recent Developments in Enzyme Immobilization for Food Production

Recent Developments in Enzyme Immobilization for Food Production | iBB | Scoop.it

Greener, cost-effective methodologies for food processing and production have been actively looked after because of increased demand due to growing population. Enzymes, as green and highly efficient catalysts, have been a mainstay of food technology. However, the advantageous features of enzymes are negatively impacted by their long-term instability, harsh industrial operational conditions and challenges for enzyme recovery and reuse. Immobilized enzyme formulations have been developed to address these limitations. In a recently published book chapter, Filipe Carvalho and Pedro Fernandes (iBB-BERG) present the latest finding and trends on the design and application of immobilized enzyme for food production and processing. The chapter was published in the book Value Addition in Food Products and Processing using Enzyme Technology, published by Academic Press.

No comment yet.
Scoop.it!

Ana Melo Presents and Co-chairs at the 66th Biophysical Society Annual Meeting

Ana Melo Presents and Co-chairs at the 66th Biophysical Society Annual Meeting | iBB | Scoop.it

Ana Melo from BSIRG-iBB delivered an oral presentation at the 66th Biophysical Society Annual (BPS) Meeting, San Francisco, California (February 2022). The focus was on the characterization of the distinct conformational signatures of the flanking polyQ regions in the membrane-bound state of Huntington exon 1, and its implications in Huntington´s disease. Ana was also invited by the Scientific Committee to co-chair the Intrinsically Disordered Proteins (IDPs) section together with Martin Fossat from Washington University (St Louis). The BPS meeting is the largest and most reputed worldwide Biophysical Meeting, and this year was attended by biophysicists from 46 countries. In Ana´s section, researchers from Univ. Cambridge, Yale Univ., Washington Univ. St Louis, Univ. of Copenhagen and Rensselaer Polytechnic Institute presented research focused on distinct biophysical features of IDPs associated with function and dysfunction.

No comment yet.
Scoop.it!

Cellulose-based LFA for Detection of Cystatin C

Cellulose-based LFA for Detection of Cystatin C | iBB | Scoop.it

The relevance and impact of Lateral Flow Assays (LFA) as point-of-care devices has been amply demonstrated with the current SARS-CoV-2 pandemic. However, and despite their usefulness, drawbacks like low sensitivity, low specificity, and lack of quantitation are often associated with LFAs. In a paper published in Scientific Reports, Miguel Prazeres from BERG-IST and colleagues from the Indian Institute of Technology (Madras) propose a new LFA architecture that combines nitrocellulose strips with layered cellulose, ZZ-CBM3 fusions and fluorescently labeled Fab fragments. The system was successfully applied to the the quantitative, fluorescence-based detection of the kidney biomarker cystatin C. The work was funded by project CBM-X.

No comment yet.
Scoop.it!

Piezoelectric Nanofibers for Osteochondral Tissue Engineering

Piezoelectric Nanofibers for Osteochondral Tissue Engineering | iBB | Scoop.it

Osteochondral (OC) tissue disorders, particularly osteoarthritis, number among the most prevalent and debilitating diseases in the adult population worldwide. However, despite the recent achievements in the field, no satisfactory clinical treatments have been developed to date to resolve this unmet medical issue. Notably, while the piezoelectric nature of the OC tissue has been extensively reported in different studies, this feature keep being neglected in the design of novel biomaterial scaffolds for OC regeneration. Thus, piezoelectric electrospun scaffolds capable of both recapitulating the piezoelectric nature of the tissue’s fibrous extracellular matrix and of providing a platform for electrical and mechanical stimulation of cells/tissues are promising platforms to promote OC regeneration. In a recent publication in the International Journal of Molecular Sciences, SCERG-iBB researchers MSc Frederico Barbosa, Prof. Frederico Ferreira and Dr. João Silva review and discuss the current state of the art of such piezoelectric biomimetic scaffolds for OC tissue engineering strategies.

No comment yet.
Scoop.it!

Insights into Nanomedicine for Head and Neck Cancer Diagnosis and Treatment

Insights into Nanomedicine for Head and Neck Cancer Diagnosis and Treatment | iBB | Scoop.it

Head and neck cancers rank sixth among the most common cancers today, and the survival rate has remained virtually unchanged over the past 25 years, due to late diagnosis and ineffective treatments. These cancers affect areas of the body that are fundamental for the five senses. Therefore, it is necessary to treat them effectively and non-invasively as early as possible, to not compromise vital functions, which is not always possible with conventional treatments (chemotherapy or radiotherapy). Nanomedicine involves using nanocarriers to deliver drugs to sites of action and reducing the necessary doses and possible side effects. In a paper published in Materials, Pedro Fonte and co-workers from BERG-iBB performed an overview of the applications of nanocarrier systems to the diagnosis and treatment of head and neck cancer. Herein, several types of delivery strategies, radiation enhancement, inside-out hyperthermia, and theragnostic approaches were addressed.

No comment yet.
Scoop.it!

Genome Sequence and Analysis of the Flavinogenic Yeast Candida membranifaciens

Genome Sequence and Analysis of the Flavinogenic Yeast Candida membranifaciens | iBB | Scoop.it

A BSRG-iBB research paper just published in Journal of Fungi (special issue “New Trends in Yeast Genomics”) reports the isolation of Candida membranifaciens strains from soil, their physiological characterization and comparison regarding the production of riboflavin (vitamin B2). The first annotated genome sequence of C. membranifaciens IST 626 is provided, as well as the comparative genomic analysis with other relevant yeast species. This research work is first-authored by Dr. Margarida Palma, who coordinated the investigation with Professor Isabel Sá-Correia. The work has contributions from Master students Mariana Pereira and Érica Vieira and researchers from Joint Genome Institute, Berkeley, USA.

No comment yet.
Scoop.it!

InSilico4OCReg – Computational Models Optimizing In Vitro Biophysical Stimulation Protocols for Osteochondral Regeneration

InSilico4OCReg – Computational Models Optimizing In Vitro Biophysical Stimulation Protocols for Osteochondral Regeneration | iBB | Scoop.it

The research project “InSilico4OCReg - In silico models guiding in vitro biophysical stimulation of biomimetic hierarchical scaffolds: a computational modelling approach towards functional osteochondral regeneration” was recommended for funding by FCT (250,000 euros in the 2021 Call for SR&TD Project Grants). The project started in January 2022 and aims to develop an innovative combined in silico modelling-in vitro experimental system which, inspired by the properties of the native osteochondral tissue, will be able to optimize tissue engineering strategies towards the production of implants with improved functionality and mechanical properties. The multidisciplinary team of InSilico4OCReg includes researchers from iBB, CDRSP-Politécnico de Leiria, Rensselaer Polytechnic Institute (Troy, NY-USA), and an orthopedic surgeon (Hospital dos Lusíadas). The project, which falls within the scientific area of Mechanical Engineering-Engineering Systems, is headed by João Carlos Silva (PI, SCERG-iBB) and Prof. Paula Pascoal-Faria (co-PI, CDRSP-Politécnico de Leiria).

No comment yet.