
Endogenous human brain tissue is not easily available for studying neurodevelopment and neurodegenerative diseases. However, human pluripotent stem cells (PSCs) have been used to generate a variety of glial and neuronal cells of the central nervous system. Still, reproducible protocols for generating in vitro models of the human cerebellum are scarce. In this context, Silva et al. describe the scalable production of human PSC-derived cerebellar organoids using single-use vertical-wheel bioreactors. The transcriptomic profile of cerebellar organoids derived under dynamic conditions demonstrates a faster cerebellar differentiation combined with significant enrichment of extracellular matrix and upregulation of transcripts involved in angiogenesis when compared with the static protocol. The authors anticipate that large-scale production of cerebellar organoids may help developing models for drug screening, toxicological tests and studying pathological pathways involved in cerebellar degeneration.