Electrical Stimulation of Neural Stem Cells on Electroconductive Platforms Made of PEDOT:PSS | iBB | Scoop.it

Many cells in the human body respond to electrical stimuli. The differentiation of neural stem cells into mature neurons, in particular, can be stimulated via electroconductive materials. In a recent publication in Frontiers in Bioengineering and Biotechnology researchers from SCERG-iBB and IT report on the electrical stimulation of neural stem cells on electroconductive platforms made of  conjugated polymer PEDOT:PSS. In a first stage, the performance of electroconductive platforms made of cross-linked (with GOPS or DVS) PEDOT:PSS was evaluated in terms of conductivity and stability. Three different protocols of electrical stimulation, with 3 different electrical currents (AC, DC and pulsatile DC), were then compared for neural stem cell differentiation. Results show that pulsatile DC assisted best in generating higher number of neurons. This finding is important for future regenerative approaches to treat neurological diseases and highlights the importance of using the correct platform to design scaffolds to regenerate the brain tissue.