AntiNMDA
23.9K views | +0 today
Follow
 
Scooped by Nesrin Shaheen
onto AntiNMDA
Scoop.it!

Mystery Case: Anti-NMDAR encephalitis with overlapping demyelinating syndrome | Neurology

Pearls Anti-NMDA receptor encephalitis can coexist with an overlapping demyelinating syndrome. An atypical presentation of a single autoimmune disorder should prompt investigation for coexistent autoimmune disorders. Discovery of overlap syndromes is important because the management and prognosis may be different. Oysters In autoimmune encephalitis, shorter time from symptom onset to treatment initiation has been associated with better outcome.1 Treatment should not be delayed until the result of autoantibody testing is available. Case report A 31-year-old man developed a subacute onset of headache, left-sided numbness, and anterograde amnesia. In the following 2 weeks, he experienced personality changes, anxiety, paranoid thoughts, 7 kg weight loss, and worsening cognitive changes. He said that he felt as though he was trapped in a time loop, meaning that events seemed to be constantly recurring to him. He denied fever, night sweats, viral prodromal symptoms, or recent vaccinations. He was diagnosed with acute disseminated encephalomyelitis (ADEM) in 2007 from which he made a full recovery. On neurologic examination, he was inattentive and agitated. His word registration and short-term recall at 5 minutes were 0 of 5. He had verbal and motor perseveration with echolalia. He had decreased sensation to pinprick on his entire left side. He also had left pronator drift and bilateral athetosis of the upper limbs. The remainder of his examination was normal. His overall clinical examination finding was consistent with a multifocal process involving subcortical and cortical regions. On day 1, routine blood testing including complete blood cell count with differential, metabolic panel, liver function test, RPR, ESR, ANA, thyroid function tests, thiamine, B12, urinalysis, urine toxicology screen, heavy metal screening, and HIV were normal or negative. Brain MRI revealed multiple T2 hyperintensities within the right internal capsule, periventricular white matter, and bilateral mesial temporal lobes. There were contrast-enhancing lesions involving the right dorsal pons and right internal capsule and thalamus (figure, A–F). CSF analysis demonstrated 9 nucleated cells/µL with lymphocytic predominance. On day 2, CT of the chest, abdomen, and pelvis and testicular ultrasound were negative for malignancy. Cervical and thoracic spine MRI was performed to look for any past or active demyelinating lesions, especially in the setting of previous history of ADEM, and the result was normal. Video EEG did not demonstrate abnormal ictal or interictal epileptiform discharges. By this time, CSF Gram stain, cultures, and viral PCRs returned negative, and 8 CSF-specific oligoclonal bands were present. Serum and CSF NMDA-R IgG and serum MOG-IgG1 antibodies were sent to the laboratory. On hospital day 3, IV methylprednisolone 1000 mg was started and repeated daily for 5 total days. Left hemihypesthesia and pronator drift improved after treatment, and immediate follow-up brain MRI revealed resolution of contrast enhancement. However, his cognitive changes and neuropsychiatric symptoms persisted. His Montreal Cognitive Assessment (MOCA) score was 10 of 30 despite steroid treatment. Hence, on day 8, he was started on 5 rounds of plasmapheresis (PLEX). After PLEX, he became much calmer, his time loop ended, and his MOCA score improved to 19 of 30. His CSF NMDA-R IgG antibody and serum MOG-IgG1 returned positive. He was diagnosed with anti-NMDAR encephalitis with overlapping MOG-IgG–associated demyelinating syndrome (MOGAD). He was started on long-term maintenance therapy with rituximab. Figure Brain MRI findings in anti-NMDAR encephalitis with overlapping MOG-IgG–associated demyelinating syndrome (A) Axial T2-FLAIR brain MRI from September 2018 showing right greater than left T2 hyperintensities in the mesial temporal lobes, (B) in the right posterior limb of the internal capsule, and (C) in the right periventricular white matter tracts. (D) Axial T1 gadolinium-enhanced brain MRI showing right pontine crescent-shaped contrast enhancement and (E) punctate enhancement in the right pons and (F) in the right posterior limb of the internal capsule and thalamus. (G and H) Axial T2-FLAIR brain MRI from June 2007 showing T2 hyperintensities in the right subcortical region and periventricular white matter tracts. (I and J) Axial T2-FLAIR brain MRI from November 2007 showing largely resolved lesions. On 6-month follow-up, his MOCA score improved to 25 of 30 with resolution of neuropsychiatric symptoms and memory issues. He is planning to go back to work. Discussion We present a rare case of subacute autoimmune encephalitis with clinical features of both anti-NMDAR encephalitis and MOG-associated disorder (MOGAD), which was not fully encompassed by either entity alone. Anti-NMDAR encephalitis with overlapping demyelinating syndrome is rare, but has previously been described in the literature. In a large retrospective analysis of 691 patients with anti-NMDAR encephalitis,2 11 of 691 patients had anti-NMDAR encephalitis occurring simultaneously with additional clinical and MRI features inconsistent with anti-NMDAR encephalitis. Only 2 patients were seropositive for MOG-IgG1 antibodies with features that would be atypical for anti-NMDAR encephalitis alone, such as ataxia, unilateral hemiparesis, or infratentorial MRI abnormalities. Our patient presented with clinical features that are typical of anti-NMDAR encephalitis: headache, behavioral changes, abnormal movements (athetosis, chorea, and dystonia), memory loss, and speech disturbance. He did not develop other symptoms, such as autonomic dysregulation or severe encephalopathy requiring intensive care unit admission, which was perhaps related to the prompt recognition of the diagnosis and early treatment with immunotherapy.3 Brain MRI can be normal in as many as 50% of patients with anti-NMDAR encephalitis, although multiple abnormalities have been described in some patients including nonspecific T2 hyperintensities, most commonly in mesial temporal lobes, but also in the cerebellar or cerebral cortex, subcortical regions, or brainstem.4 In our patient, brain MRI demonstrated heterogeneous T2 hyperintensities in the bilateral mesial temporal lobes (figure, A). These lesions did not resemble demyelinating lesions, as there was an absence of confluent T2 hyperintensity or contrast enhancement. Our patient's presentation also included several features atypical of NMDAR encephalitis. His left hemihypesthesia and pronator drift are better explained by overlapping demyelinating syndrome because unilateral sensorimotor deficits are rarely seen in anti-NMDAR encephalitis. His sensorimotor symptoms were linked to MRI findings of demyelination including confluent T2 hyperintensity of the right thalamus, internal and external capsule, peripheral diffusion restriction, and rim enhancement along the leading edge of inflammation in T1 postgadolinium sequence5 (figure, C–F). These atypical features led to additional testing for MOG-IgG1 in serum. He did meet the criteria for the diagnosis of coexisting MOGAD with previous history of ADEM, MOG-IgG seropositivity, and MRI findings compatible with CNS demyelination.6 Our patient did not have other clinicoradiographic features of MOGAD, such as longitudinally extensive spinal cord lesions, conus medullaris lesions, or perioptic gadolinium enhancement of the optic nerves.7 MOGAD is generally highly responsive to corticoseroids,6 and his unilateral sensorimotor symptoms resolved rapidly on finishing 5 doses of IV methylprednisolone, whereas neuropsychiatric symptoms resulting from anti-NMDAR encephalitis took several weeks to resolve. The exact mechanism and frequency of overlapping anti-NMDAR and demyelination is uncertain. His previous presentation of encephalitis with diagnosis of ADEM occurred in 2007, a time when MOG-IgG antibody testing was not commercially available. A brain MRI obtained in 2007 at the time of his ADEM diagnosis revealed lesions in the right periventricular white matter tracts, which fully resolved months after the initial onset of symptoms (figure, G–J). Our patient's recurrent episode in 2018 affected these areas again (figure, B and C). Recurrence of disease in the same location has been described in patients with relapsing-remitting ADEM.8 Therefore, his case likely represents relapsing MOGAD, and it is quite possible that the patient was seropositive in 2007, as persistent seropositivity is associated with an increased risk of relapses.9 Although our patient has coexistent MOG and NMDAR antibodies, the initial treatment remains similar to that of a patient with either antibody alone. First-line immunotherapy consists of corticosteroids, IVIG, PLEX, or a combination of the 3. In patients with anti-NMDAR encephalitis associated with malignancy, tumor excision should also be performed. In patients whose symptoms are refractory to first-line therapy, additional second-line immunotherapy, such as rituximab or cyclophosphamide, is needed.3 If relapse occurs, a long-term maintenance immunotherapy after rescue treatment may reduce the likelihood of future relapses. Although initial treatment approach for anti-NMDAR encephalitis and demyelinating disorders is similar, subsequent management strategies for recurrence of symptoms, prognosis, and risk of recurrence could be different, which highlights the importance in diagnosing both conditions.2 Surveillance for relapse is more challenging because neurologist, patient, and family members need to monitor for relapses of both disorders, including not only typical neuropsychiatric symptoms of NMDAR encephalitis but also heterogeneous manifestations associated with MOGAD. Also, as in our case, subsequent treatment plan was more complex because his residual neuropsychiatric symptoms and executive dysfunction had to be managed with multidisciplinary approach including psychiatry and comprehensive rehabilitation. In summary, NMDAR encephalitis can occur simultaneously with MOGAD. If a patient presents with aforementioned demyelinating features that are atypical for NMDAR encephalitis alone, serum MOG-IgG1 should be tested. Likewise, clinicians should have a low threshold to test for other neural autoantibodies in patients who have a diagnosis of MOGAD who present with atypical features such as movement disorders or neuropsychiatric symptoms. Study funding No targeted funding reported. Disclosure The authors report no disclosures relevant to the manuscript. Go to Neurology.org/N for full disclosures. Mystery Case responses: A 31-year-old with left-sided numbness, amnesia, and personality changes The Mystery Case series was initiated by the Neurology® Resident & Fellow Section to develop the clinical reasoning skills of trainees. Residency programs, medical student preceptors, and individuals were invited to use this Mystery Case as an educational tool. Responses to multiple-choice questions formulated using this case were solicited through a group email sent to the American Academy of Neurology Consortium of Neurology Residents and Fellows and through social media. We received 580 responses. The majority of respondents (66%) had just been in practice for 1–4 years; 56% were residents or fellows, whereas 34% were faculty/board-certified physicians; the remainder were medical students or advanced practice providers. Seventy percent resided outside the United States. A wide range of practice settings was represented. When presented with this brief vignette and the brain MRI of a 31-year-old with left-sided numbness, amnesia, and personality changes and asked for the 2 most likely differential diagnoses, 58.3% correctly chose autoimmune encephalitis, and 37.6% correctly recognized demyelinating lesions. The most frequently selected incorrect options were CNS lymphoma (32.6%), tertiary syphilis (15.3%), and MELAS (14.3%), these are lower in the differential. After being given preliminary results, the participants were asked for the 3 most important next tests. Autoimmune encephalitis panel was correctly chosen by 70.7%. Because of the suspicion of demyelination, the other correct answers included whole-spine MRI with contrast (28.1%) and AQP4 and MOG antibodies (37.1%). The most commonly selected incorrect answers were CSF cytology and flow cytometry (46.4%), CSG HSV PCR (21.0%), and syphilis treponemal test (16.7%). Although these tests are reasonable, they are lower in priority for this patient. Finally, the participants were asked for the best empiric treatment while waiting for results. IV methylprednisolone was correctly selected by 55.9%. The most common incorrect answers were IV acyclovir (17.9%) and no therapeutic intervention (14.0%). This patient testing came back with a positive anti-NMDAR antibody and anti-MOG antibody. He was diagnosed with anti-NMDAR encephalitis with overlapping MOG-IgG–associated demyelinating syndrome. He received IV steroids, followed by PLEX with good response. This overlap syndrome has been previously described, and in a study, 5% of patients with anti-NMDAR encephalitis showed evidence of demyelinating disease.1 Antibodies against AQP4 and MOG have been reported in these cases.1,2 Although acute treatment is similar, recognition of these association is important to guide long-term treatment. Cincinnati Children's Hospital Medical Center Appendix Authors Footnotes Go to Neurology.org/N for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article. Survey and results: NPub.org/mc9417 © 2020 American Academy of Neurology References 1.↵Lancaster E. The diagnosis and treatment of autoimmune encephalitis. J Clin Neurol 2016;12:1–13.OpenUrlCrossRefPubMed 2.↵Titulaer MJ, Höftberger R, Iizuka T, et al. Overlapping demyelinating syndromes and anti–N-methyl-D-aspartate receptor encephalitis. Ann Neurol 2014;75:411–428.OpenUrlCrossRefPubMed 3.↵Dalmau J, Lancaster E, Martinez-Hernandez E, Rosenfeld MR, Balice-Gordon R. Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis. Lancet Neurol 2011;10:63–74.OpenUrlCrossRefPubMed 4.↵Dalmau J, Geis C, Graus F. Autoantibodies to synaptic receptors and neuronal cell surface proteins in autoimmune diseases of the central nervous system. Physiol Rev 2017;97:839–887.OpenUrlCrossRefPubMed 5.↵Tillema JM, Pirko I. Neuroradiological evaluation of demyelinating disease. Ther Adv Neurol Disord 2013;6:249–268.OpenUrlCrossRefPubMed 6.↵Jarius S, Paul F, Aktas O, et al. MOG encephalomyelitis: international recommendations on diagnosis and antibody testing. J Neuroinflammation 2018;15:134.OpenUrl 7.↵Jarius S, Ruprecht K, Kleiter I, et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 2: epidemiology, clinical presentation, radiological and laboratory features, treatment responses, and long-term outcome. J Neuroinflammation 2016;13:280.OpenUrlCrossRefPubMed 8.↵Cohen O, Steiner-Birmanns B, Biran I, Abramsky O, Honigman S, Steiner I. Recurrence of acute disseminated encephalomyelitis at the previously affected brain site. Arch Neurol 2001;58:797–801.OpenUrlCrossRefPubMed 9.↵López-Chiriboga AS, Majed M, Fryer J, et al. Association of MOG-IgG serostatus with relapse after acute disseminated encephalomyelitis and proposed diagnostic criteria for MOG-IgG–associated disorders. JAMA Neurol 2018;75:1355–1363.OpenUrl References 1.Titulaer MJ, Hoftberger R, Iizuka T, et al. Overlapping demyelinating syndromes and anti-N-methyl-D-aspartate receptor encephalitis. Ann Neurol 2014;75:411–428.OpenUrlCrossRefPubMed 2.Hacohen Y, Absoud M, Hemingway C, et al. NMDA receptor antibodies associated with distinct white matter syndromes. Neurol Neuroimmunol Neuroinflamm 2014;1:e2.
No comment yet.
Your new post is loading...
Scooped by Nesrin Shaheen
Scoop.it!

Neural Antibody Testing in Patients with Suspected Autoimmune Encephalitis | Clinical Chemistry | Oxford Academic

Neural Antibody Testing in Patients with Suspected Autoimmune Encephalitis | Clinical Chemistry | Oxford Academic | AntiNMDA | Scoop.it
AbstractBackground. Autoimmunity is an increasingly recognized cause of encephalitis with a similar prevalence to that of infectious etiologies. Over the past d
No comment yet.
Scooped by Nesrin Shaheen
Scoop.it!

Ten Point Guide to Mental State Examination (MSE) in Psychiatry

Ten Point Guide to Mental State Examination (MSE) in Psychiatry | AntiNMDA | Scoop.it
This 10 point guide to mental state exam (MSE) enhaces your psychiatric evaluation skills. An accurate MSE assists in the diagnosis of mental illness.
No comment yet.
Scooped by Nesrin Shaheen
Scoop.it!

Hallucinations Lead to Ovarian Cancer Diagnosis for Young Woman

Hallucinations Lead to Ovarian Cancer Diagnosis for Young Woman | AntiNMDA | Scoop.it
Lauren went from a psychiatric ward in a local hospital to the ICU....
No comment yet.
Scooped by Nesrin Shaheen
Scoop.it!

Pathophysiology of paraneoplastic and autoimmune encephalitis: genes, infections, and checkpoint inhibitors - Alberto Vogrig, Sergio Muñiz-Castrillo, Virginie Desestret, Bastien Joubert, Jérôme Hon...

Pathophysiology of paraneoplastic and autoimmune encephalitis: genes, infections, and checkpoint inhibitors - Alberto Vogrig, Sergio Muñiz-Castrillo, Virginie Desestret, Bastien Joubert, Jérôme Hon... | AntiNMDA | Scoop.it
Paraneoplastic neurological syndromes (PNSs) are rare complications of systemic cancers that can affect all parts of the central and/or peripheral nervous system. A body of experimental and clinica...
No comment yet.
Scooped by Nesrin Shaheen
Scoop.it!

Relationship between serum NMDA receptor antibodies and response to antipsychotic treatment in first episode psychosis

Relationship between serum NMDA receptor antibodies and response to antipsychotic treatment in first episode psychosis | AntiNMDA | Scoop.it
When psychosis develops in NMDAR antibody encephalitis it usually has an acute or
subacute onset, and antipsychotic treatment may be ineffective and associated with
adverse effects. Serum NMDAR antibodies have been reported in a minority of patients with first episode psychosis (FEP), but their...
No comment yet.
Scooped by Nesrin Shaheen
Scoop.it!

https://www.researchgate.net/publication/343817904_Anti-N-methyl-D-Aspartate_NMDA_Receptor_Encephalitis_A_Case_Report

No comment yet.
Scooped by Nesrin Shaheen
Scoop.it!

Defying the odds, U of T's Carisse Samuel to graduate after spending five months in a coma

Defying the odds, U of T's Carisse Samuel to graduate after spending five months in a coma | AntiNMDA | Scoop.it
When Carisse Samuel joins her fellow graduates at the University of Toronto’s virtual convocation this Saturday, the celebration will be both an academic and personal victory.
No comment yet.
Scooped by Nesrin Shaheen
Scoop.it!

Clinical features which predict neuronal surface autoantibodies in new-onset focal epilepsy: implications for immunotherapies | Journal of Neurology, Neurosurgery & Psychiatry

Introduction Neuronal surface-directed antibodies (NSAbs) are considered pathogenic in patients with autoimmune encephalitis (AE). AE commonly presents with prominent seizures and neuropsychiatric features and shows a preferential response to immunotherapies versus anti-seizure medications (ASMs).1–4 This has prompted the introduction of ‘epilepsy of immune aetiology’ within the International League Against Epilepsy (ILAE) 2017 classification.5 The same NSAbs, as well as high levels of antibodies to intraneuronal glutamic acid decarboxylase-65 (GAD65), are also described in the serum of people with more isolated forms of epilepsy, without core features of encephalitis.6–8 In this context, their clinical, aetiological and therapeutic relevance is unclear, but of major potential importance to all neurologists who manage new-onset epilepsy. In our large, prospective, real-world study of new-onset focal epilepsy, we predicted that formes frustes of AE would help identify clinical features suggesting the presence of NSAbs and asked whether detection of these NSAbs should alter patient management. Materials and methods Between 9 December 2011 and 4 November 2015, consecutive adult patients (≥18 years) with a diagnosis of new-onset focal epilepsy and their first seizure within the previous 12 months were prospectively recruited from the routine practice of two epileptologists at the Oxford University Hospitals NHS Foundation Trust. Written informed consent and sera were obtained (Ethical approvals: Oxfordshire RECA 07/Q160X/28 and REC16/YH/0013). Clinical data gathered at onset (online supplemental table 1) included detailed phenotype and investigation results, Quality of Life in Epilepsy-31, Hospital Anxiety and Depression Score, Addenbrooke’s Cognitive Examination (ACE) and modified Rankin Score (mRS); as well as information to inform the Antibody Prevalence in Epilepsy and Encephalopathy (APE2) score (online supplemental table 2)9 10 and diagnostic criteria for possible or definite AE.11 Subsequently, 1-year and 3-year mRS were ascertained from patients with NSAbs. Supplemental material For NSAbs, sera were tested against autoantigen-expressing live HEK293 cells (live cell-based assay; online supplemental table 3), and for reactivity with the surface of live cultured hippocampal neurons, using sensitive protocols.12 13 Autoantibodies to GAD65 were determined using a commercial radioimmunoprecipitation assay. Statistical analysis was conducted in R (V.3.6.1). Dimensionality reduction was performed using Multiple Factor Analysis in ‘FactoMineR’ with up to 10% missing data imputed using missForest. Stepwise Bayesian general linear modelling analysis was undertaken using ‘arm’. Wilson 95% CIs with continuity correction were calculated using ‘DescTools’. Results NSAb findings Of 241 recruited patients, 22 were excluded (online supplemental table 4). Of the remaining 219, median age was 49 years (range 16–91) and 109 (49.8%) were female. In 23/219 (10.5%) patients, serum NSAbs were detected across candidate and novel autoantigens (table 1) including roughly equal frequencies against leucine-rich glioma inactivated-1 (LGI1), contactin-associated protein-like 2 (CASPR2), plus the N-methyl-d-aspartate receptor (NMDAR) and γ-aminobutyric acid A/B receptors (GABAAR and GABABR). An additional five patients had antibodies to the surface of live neurons, without an established autoantigen. Autoantibodies to contactin-2, the glycine receptor and the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) were each found in one patient. No dipeptidyl-peptidase-like protein 6 (DPPX) or high-titre GAD65 antibodies were detected. Overall, from the 23 people with NSAbs, 9 had a clinical diagnosis of AE (7/9 fulfilling published criteria).11 By contrast, none of the 196 without NSAbs had a clinical diagnosis of AE (p<0.0001; Fisher’s exact test). VIEW INLINE VIEW POPUP Table 1 Clinical and laboratory features of patients with epilepsy and positive neuronal surface autoantibodies Factors associated with the presence of NSAbs and AE Dimensionality reduction with multiple factor analysis showed that patients were highly heterogeneous and the modest clustering of those with NSAbs was largely driven by a clinical diagnosis of AE (figure 1A,B). Univariate analysis identified 11 clinical parameters that differed significantly between patients with and without NSAbs: age (p=0.04), ictal piloerection (p=0.02), lesional MRI (p=0.04), self-reported mood disturbance (p=0.007), ACE attention domain (p=0.01), ACE total score (p=0.04), QOLIE-31 score (p=0.02), self-reported neuropsychiatric features (p=0.03), epilepsy risk factors (p=0.05), inflammatory cerebrospinal fluid (CSF; p=0.004) and limbic system lesions on MRI (p=0.0002). A multivariate stepwise regression model allocated weighted scores to six of these: age ≥54 years=+1, self-reported mood disturbance=+1, limbic system lesions on MRI=+2, ictal piloerection=+2.5, ACE attention score ≥16=−1.5 and epilepsy risk factors=−1.5 (figure 1C). The probability of NSAb positivity increased with higher scores (Spearman’s ρ=0.99, p<0.0001; figure 1C) and receiver operating characteristic (ROC) analysis confirmed these features strongly predicted NSAb status (area under the curve (AUC)=0.83; total score ≥0; sensitivity=66.7%, specificity=84.9%; figure 1D). By contrast, the APE2 score performed less well in predicting NSAb status (sensitivity 43.5%, specificity 79.1%, AUC=0.68) and more accurately predicted criteria-defined AE, particularly if associated with NSAbs (sensitivity 85.7%, specificity 78.8%, AUC=0.94; figure 1E). Figure 1 Clinical phenotypes associated with NSAb status in new-onset focal epilepsy. The first two dimensions are shown, highlighting: (A) NSAb-positive (red) or NSAb-negative (grey) status and (B) NSAb-positive (pale red) or NSAb-negative (grey) without encephalitis (dots), or NSAb-positive (dark red) with clinically diagnosed autoimmune encephalitis (triangles). (C) The proportion of patients by total model score. Error bars show 95% CIs. The inset shows the weighting and SE of each factor within the regression model. (D) Receiver operator characteristic (ROC) curve of the total model score for predicting NSAb status across all patients. (E) ROC curve of the APE2 score for predicting NSAb status across all patients (black), patients not meeting the criteria for autoimmune encephalitis (blue), patients meeting the criteria for autoimmune encephalitis (red) and predicting NSAb-positive criteria-confirmed autoimmune encephalitis across all patients. (F) Scatter plot of modified Rankin score in NSAb-positive patients by immunotherapy status over time (Mann-Whitney U test p values<0.05). AE, autoimmune encephalitis; APE2, Antibody Prevalence in Epilepsy and Encephalopathy; epilepsy RF, epilepsy risk factors; MRI limbic Δ, changes within the limbic system on MRI. Comparisons of those with and without AE From 23 patients with NSAbs (table 1), a comparison of those with (n=9) and without (n=14) a clinical diagnosis of AE revealed several differences in the AE cohort: more ASMs (median of 3 vs 1; p=0.0073), more frequent immunotherapies (7/9 vs 0/14, p=0.0001), higher APE2 scores (median of 6 vs 2; p<0.0001), more frequent MRI limbic inflammation (6/9 vs 0/14; p=0.0008) and a trend towards greater positivity of serum IgGs targeting the surface of live neurons (7/9 vs 5/14, p=0.09). Compared with the seven patients administered immunotherapy, those with NSAbs who were not administered immunotherapy showed lower disability after 1 and 3 years (both p<0.05), and 11/16 (68.8%) were asymptomatic at 3-year follow-up (mRS=0 ; figure 1F). Hence, despite no immunotherapy, patients with NSAbs, but without AE, generally showed good outcomes. Discussion In this prospective study of 219 consecutive adults with new-onset focal epilepsy, NSAb status was best predicted by a combination of clinical parameters which closely resemble features observed in AE. Almost half of our patients with NSAbs were diagnosed with AE, and ~30% fulfilled stringent criteria for AE.11 Of those with NSAbs and more isolated forms of epilepsy, without individual features of AE, almost all were treated with ASMs alone and typically remained asymptomatic at long-term follow-up. Overall, these findings suggest that detection of NSAbs in patients with new-onset seizures, but without features of AE, should not alter current clinical management. Our observations should help guide the frequent clinical dilemma of which patients with new-onset seizures to test for autoantibodies and subsequently treat with immunotherapy. Taken together, our data suggest the clinical phenotype is paramount in guiding the relevance of autoantibody results, and provide data to address an outstanding question from a recent ILAE consensus statement.7 This ILAE statement also highlighted controversy over the term ‘autoimmune epilepsy’.7 In routine clinical practice, this nomenclature acts as a valuable signpost and aide memoire when seeing patients with seizures.2 14 However, ‘epilepsy’ carries several social stigmata and is defined by an enduring tendency to seizures. In AE, this lifelong risk is refuted by a recent study,4 despite several forms of AE commonly leading to hippocampal atrophy.2–4 7 10 The alternative concept of acute symptomatic seizures may more accurately capture the nature of seizures in patients with AE. Data-driven modifications to nomenclature will benefit from longer-term follow-up studies. Ictal piloerection, low mood and attention and MRI limbic system changes are recognised features of late-onset AE, particularly in association with LGI1 antibodies.2 4 14 15 The absence of movement disorders or more diffuse cognitive impairment as predictive factors in our model suggests the overall syndrome may reflect a formes frustes of AE. This contrasts with APE2 score parameters,9 which appear to largely reflect more florid features seen in classical AE. Our observational study has several limitations. These include limited CSF autoantibody measurements, which reflected UK practice particularly at the start of the study period. Yet,w ithout this valuable parameter, a diagnosis of NMDAR-antibody encephalitis is still possible.11 Yet, two of our four patients with serum NMDAR antibodies did not have features consistent with encephalitis, likely suggesting detection of clinically unrelated serum antibodies in these cases. In addition, our series in total only identified nine AE cases, although this may be considered substantial given the largely outpatient-based recruitment. This, and the high (~10%) seroprevalence rate, may reflect a referral bias given Oxford’s interest in AE, but is well aligned with other available estimates.6 9 10 Our serological data identified some samples with NSAbs proven by live cell-based assays, but without concomitant cell surface neuronal reactivities. This was especially evident in the cohort without a clinical diagnosis of AE, and perhaps these antibodies reflect low-affinity or low-titre autoantibodies which are not disease relevant. Their specificity, however, remains reassuring given their typical selectivity for just one of eight surface-expressed autoantigens. In the future, our prediction model will benefit from validation in independent, larger studies which may compare the risk of enduring seizures in the NSAb-positive versus NSAb-negative populations, with and without AE, something which we did not survey at follow-up. Hence, we cannot comment on long-term seizure status in the 5/16 patients (31%) who had NSAbs, no diagnosis of AE and 3-year mRS >0. In these patients, it remains possible that immunotherapy would have led to a greater benefit. However, in our view, this finding is more likely to be consistent with the predicted ~30% of all people with epilepsy who are known to become ASM resistant: this provides a testable hypothesis for a future randomised controlled trial. Overall, our observations support the concept that, in patients who present with new-onset focal seizures, clinical features which are consistent with a ‘mild encephalitis’ helps identify those with NSAbs which should alter patient management. This clinico-serological syndrome appeared characteristic and its recognition will improve detection and treatment of these patients. These findings should discourage widespread screening strategies to identify patients with autoantibodies among unselected seizure cohorts. References ↵Irani SR, Michell AW, Lang B, et al. Faciobrachial dystonic seizures precede Lgi1 antibody limbic encephalitis. Ann Neurol 2011;69:892–900.doi:10.1002/ana.22307 ↵Thompson J, Bi M, Murchison AG, et al. The importance of early immunotherapy in patients with faciobrachial dystonic seizures. Brain 2018;141:348–56.doi:10.1093/brain/awx323OpenUrlCrossRef ↵Geis C, Planagumà J, Carreño M, et al. Autoimmune seizures and epilepsy. J Clin Invest 2019;129:926–40.doi:10.1172/JCI125178OpenUrlPubMed ↵de Bruijn MAAM, van Sonderen A, van Coevorden-Hameete MH, et al. Evaluation of seizure treatment in anti-LGI1, anti-NMDAR, and anti-GABABR encephalitis. Neurology 2019;92:e2185–96.doi:10.1212/WNL.0000000000007475pmid:30979857OpenUrlPubMed ↵Scheffer IE, Berkovic S, Capovilla G, et al. ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia 2017;58:512–21.doi:10.1111/epi.13709pmid:http://www.ncbi.nlm.nih.gov/pubmed/28276062OpenUrlPubMed ↵Brenner T, Sills GJ, Hart Y, et al. Prevalence of neurologic autoantibodies in cohorts of patients with new and established epilepsy. Epilepsia 2013;54:1028–35.doi:10.1111/epi.12127pmid:http://www.ncbi.nlm.nih.gov/pubmed/23464826OpenUrlCrossRefPubMed ↵Steriade C, Britton J, Dale RC, et al. Acute symptomatic seizures secondary to autoimmune encephalitis and autoimmune-associated epilepsy: conceptual definitions. Epilepsia 2020;61:1341–51.doi:10.1111/epi.16571pmid:http://www.ncbi.nlm.nih.gov/pubmed/32544279OpenUrlPubMed ↵von Podewils F, Suesse M, Geithner J, et al. Prevalence and outcome of late-onset seizures due to autoimmune etiology: a prospective observational population-based cohort study. Epilepsia 2017;58:1542–50.doi:10.1111/epi.13834pmid:http://www.ncbi.nlm.nih.gov/pubmed/28681401OpenUrlPubMed ↵Dubey D, Alqallaf A, Hays R, et al. Neurological autoantibody prevalence in epilepsy of unknown etiology. JAMA Neurol 2017;74:397–402.doi:10.1001/jamaneurol.2016.5429pmid:http://www.ncbi.nlm.nih.gov/pubmed/28166327OpenUrlPubMed ↵Dubey D, Kothapalli N, McKeon A, et al. Predictors of neural-specific autoantibodies and immunotherapy response in patients with cognitive dysfunction. J Neuroimmunol 2018;323:62–72.doi:10.1016/j.jneuroim.2018.07.009pmid:http://www.ncbi.nlm.nih.gov/pubmed/30196836OpenUrlPubMed ↵Graus F, Titulaer MJ, Balu R, et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol 2016;15:391–404.doi:10.1016/S1474-4422(15)00401-9pmid:http://www.ncbi.nlm.nih.gov/pubmed/26906964OpenUrlCrossRefPubMed ↵Makuch M, Wilson R, Al-Diwani A, et al. N-Methyl-D-aspartate receptor antibody production from germinal center reactions: therapeutic implications. Ann Neurol 2018;83:553–61.doi:10.1002/ana.25173pmid:http://www.ncbi.nlm.nih.gov/pubmed/29406578OpenUrlPubMed ↵Ramberger M, Berretta A, Tan JMM, et al. Distinctive binding properties of human monoclonal LGI1 autoantibodies determine pathogenic mechanisms. Brain 2020;143:1731–45.doi:10.1093/brain/awaa104pmid:http://www.ncbi.nlm.nih.gov/pubmed/32437528OpenUrlPubMed ↵Quek AML, Britton JW, McKeon A, et al. Autoimmune epilepsy: clinical characteristics and response to immunotherapy. Arch Neurol 2012;69:582–93.doi:10.1001/archneurol.2011.2985pmid:http://www.ncbi.nlm.nih.gov/pubmed/22451162OpenUrlCrossRefPubMed ↵Rocamora R, Becerra JL, Fossas P, et al. Pilomotor seizures: an autonomic semiology of limbic encephalitis? Seizure 2014;23:670–3.doi:10.1016/j.seizure.2014.04.013pmid:http://www.ncbi.nlm.nih.gov/pubmed/24890932OpenUrlCrossRefPubMed
No comment yet.
Scooped by Nesrin Shaheen
Scoop.it!

Sleep disorders in autoimmune encephalitis

Sleep disorders in autoimmune encephalitis | AntiNMDA | Scoop.it
Sleep disorders in people with autoimmune encephalitis have received little attention,
probably overshadowed by the presence of other neurological and psychiatric symptoms
in this group of conditions.
No comment yet.
Scooped by Nesrin Shaheen
Scoop.it!

Cerebrospinal fluid CD20 positive B-cell expansion in a case of anti-NMDAR encephalitis - ScienceDirect

Cerebrospinal fluid CD20 positive B-cell expansion in a case of anti-NMDAR encephalitis - ScienceDirect | AntiNMDA | Scoop.it
Anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis is a potentially fatal autoimmune encephalitis with a strong B-cell response. We measured the …
No comment yet.
Scooped by Nesrin Shaheen
Scoop.it!

Clinical, cognitive and neuroanatomical associations of serum NMDAR autoantibodies in people at clinical high risk for psychosis

Clinical, cognitive and neuroanatomical associations of serum NMDAR autoantibodies in people at clinical high risk for psychosis | AntiNMDA | Scoop.it
Serum neuronal autoantibodies, such as those to the NMDA receptor (NMDAR), are detectable in a subgroup of patients with psychotic disorders. It is not known if they are present before the onset of psychosis or whether they are associated with particular clinical features or outcomes. In a case–control study, sera from 254 subjects at clinical high risk (CHR) for psychosis and 116 healthy volunteers were tested for antibodies against multiple neuronal antigens implicated in CNS autoimmune disorders, using fixed and live cell-based assays (CBAs). Within the CHR group, the relationship between NMDAR antibodies and symptoms, cognitive function and clinical outcomes over 24 month follow-up was examined. CHR subjects were not more frequently seropositive for neuronal autoantibodies than controls (8.3% vs. 5.2%; OR = 1.50; 95% CI: 0.58–3.90). The NMDAR was the most common target antigen and NMDAR IgGs were more sensitively detected with live versus fixed CBAs (p < 0.001). Preliminary phenotypic analyses revealed that within the CHR sample, the NMDAR antibody seropositive subjects had higher levels of current depression, performed worse on the Rey Auditory Verbal Learning Task (p < 0.05), and had a markedly lower IQ (p < 0.01). NMDAR IgGs were not more frequent in subjects who later became psychotic than those who did not. NMDAR antibody serostatus and titre was associated with poorer levels of functioning at follow-up (p < 0.05) and the presence of a neuronal autoantibody was associated with larger amygdala volumes (p < 0.05). Altogether, these findings demonstrate that NMDAR autoantibodies are detectable in a subgroup of CHR subjects at equal rates to controls. In the CHR group, they are associated with affective psychopathology, impairments in verbal memory, and overall cognitive function: these findings are qualitatively and individually similar to core features of autoimmune encephalitis and/or animal models of NMDAR antibody-mediated CNS disease. Overall the current work supports further evaluation of NMDAR autoantibodies as a possible prognostic biomarker and aetiological factor in a subset of people already meeting CHR criteria.
No comment yet.
Scooped by Nesrin Shaheen
Scoop.it!

What the acute physician needs to know about Anti-NMDA receptor encephalitis: two case presentations. - The University of Liverpool Repository

What the acute physician needs to know about Anti-NMDA receptor encephalitis: two case presentations. - The University of Liverpool Repository | AntiNMDA | Scoop.it
These case reports look at two patients with anti-N-methyl-D-aspartate receptor (NMDAr) encephalitis presenting to the same acute medical unit within a month of each other. The following covers the characteristic signs, symptoms and timeline associated with this condition and discusses whether we...
No comment yet.
Scooped by Nesrin Shaheen
Scoop.it!

Clinical features which predict neuronal surface autoantibodies in new-onset focal epilepsy: implications for immunotherapies | Journal of Neurology, Neurosurgery & Psychiatry

Introduction Neuronal surface-directed antibodies (NSAbs) are considered pathogenic in patients with autoimmune encephalitis (AE). AE commonly presents with prominent seizures and neuropsychiatric features and shows a preferential response to immunotherapies versus anti-seizure medications (ASMs).1–4 This has prompted the introduction of ‘epilepsy of immune aetiology’ within the International League Against Epilepsy (ILAE) 2017 classification.5 The same NSAbs, as well as high levels of antibodies to intraneuronal glutamic acid decarboxylase-65 (GAD65), are also described in the serum of people with more isolated forms of epilepsy, without core features of encephalitis.6–8 In this context, their clinical, aetiological and therapeutic relevance is unclear, but of major potential importance to all neurologists who manage new-onset epilepsy. In our large, prospective, real-world study of new-onset focal epilepsy, we predicted that formes frustes of AE would help identify clinical features suggesting the presence of NSAbs and asked whether detection of these NSAbs should alter patient management. Materials and methods Between 9 December 2011 and 4 November 2015, consecutive adult patients (≥18 years) with a diagnosis of new-onset focal epilepsy and their first seizure within the previous 12 months were prospectively recruited from the routine practice of two epileptologists at the Oxford University Hospitals NHS Foundation Trust. Written informed consent and sera were obtained (Ethical approvals: Oxfordshire RECA 07/Q160X/28 and REC16/YH/0013). Clinical data gathered at onset (online supplemental table 1) included detailed phenotype and investigation results, Quality of Life in Epilepsy-31, Hospital Anxiety and Depression Score, Addenbrooke’s Cognitive Examination (ACE) and modified Rankin Score (mRS); as well as information to inform the Antibody Prevalence in Epilepsy and Encephalopathy (APE2) score (online supplemental table 2)9 10 and diagnostic criteria for possible or definite AE.11 Subsequently, 1-year and 3-year mRS were ascertained from patients with NSAbs. Supplemental material For NSAbs, sera were tested against autoantigen-expressing live HEK293 cells (live cell-based assay; online supplemental table 3), and for reactivity with the surface of live cultured hippocampal neurons, using sensitive protocols.12 13 Autoantibodies to GAD65 were determined using a commercial radioimmunoprecipitation assay. Statistical analysis was conducted in R (V.3.6.1). Dimensionality reduction was performed using Multiple Factor Analysis in ‘FactoMineR’ with up to 10% missing data imputed using missForest. Stepwise Bayesian general linear modelling analysis was undertaken using ‘arm’. Wilson 95% CIs with continuity correction were calculated using ‘DescTools’. Results NSAb findings Of 241 recruited patients, 22 were excluded (online supplemental table 4). Of the remaining 219, median age was 49 years (range 16–91) and 109 (49.8%) were female. In 23/219 (10.5%) patients, serum NSAbs were detected across candidate and novel autoantigens (table 1) including roughly equal frequencies against leucine-rich glioma inactivated-1 (LGI1), contactin-associated protein-like 2 (CASPR2), plus the N-methyl-d-aspartate receptor (NMDAR) and γ-aminobutyric acid A/B receptors (GABAAR and GABABR). An additional five patients had antibodies to the surface of live neurons, without an established autoantigen. Autoantibodies to contactin-2, the glycine receptor and the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) were each found in one patient. No dipeptidyl-peptidase-like protein 6 (DPPX) or high-titre GAD65 antibodies were detected. Overall, from the 23 people with NSAbs, 9 had a clinical diagnosis of AE (7/9 fulfilling published criteria).11 By contrast, none of the 196 without NSAbs had a clinical diagnosis of AE (p<0.0001; Fisher’s exact test). VIEW INLINE VIEW POPUP Table 1 Clinical and laboratory features of patients with epilepsy and positive neuronal surface autoantibodies Factors associated with the presence of NSAbs and AE Dimensionality reduction with multiple factor analysis showed that patients were highly heterogeneous and the modest clustering of those with NSAbs was largely driven by a clinical diagnosis of AE (figure 1A,B). Univariate analysis identified 11 clinical parameters that differed significantly between patients with and without NSAbs: age (p=0.04), ictal piloerection (p=0.02), lesional MRI (p=0.04), self-reported mood disturbance (p=0.007), ACE attention domain (p=0.01), ACE total score (p=0.04), QOLIE-31 score (p=0.02), self-reported neuropsychiatric features (p=0.03), epilepsy risk factors (p=0.05), inflammatory cerebrospinal fluid (CSF; p=0.004) and limbic system lesions on MRI (p=0.0002). A multivariate stepwise regression model allocated weighted scores to six of these: age ≥54 years=+1, self-reported mood disturbance=+1, limbic system lesions on MRI=+2, ictal piloerection=+2.5, ACE attention score ≥16=−1.5 and epilepsy risk factors=−1.5 (figure 1C). The probability of NSAb positivity increased with higher scores (Spearman’s ρ=0.99, p<0.0001; figure 1C) and receiver operating characteristic (ROC) analysis confirmed these features strongly predicted NSAb status (area under the curve (AUC)=0.83; total score ≥0; sensitivity=66.7%, specificity=84.9%; figure 1D). By contrast, the APE2 score performed less well in predicting NSAb status (sensitivity 43.5%, specificity 79.1%, AUC=0.68) and more accurately predicted criteria-defined AE, particularly if associated with NSAbs (sensitivity 85.7%, specificity 78.8%, AUC=0.94; figure 1E). Figure 1 Clinical phenotypes associated with NSAb status in new-onset focal epilepsy. The first two dimensions are shown, highlighting: (A) NSAb-positive (red) or NSAb-negative (grey) status and (B) NSAb-positive (pale red) or NSAb-negative (grey) without encephalitis (dots), or NSAb-positive (dark red) with clinically diagnosed autoimmune encephalitis (triangles). (C) The proportion of patients by total model score. Error bars show 95% CIs. The inset shows the weighting and SE of each factor within the regression model. (D) Receiver operator characteristic (ROC) curve of the total model score for predicting NSAb status across all patients. (E) ROC curve of the APE2 score for predicting NSAb status across all patients (black), patients not meeting the criteria for autoimmune encephalitis (blue), patients meeting the criteria for autoimmune encephalitis (red) and predicting NSAb-positive criteria-confirmed autoimmune encephalitis across all patients. (F) Scatter plot of modified Rankin score in NSAb-positive patients by immunotherapy status over time (Mann-Whitney U test p values<0.05). AE, autoimmune encephalitis; APE2, Antibody Prevalence in Epilepsy and Encephalopathy; epilepsy RF, epilepsy risk factors; MRI limbic Δ, changes within the limbic system on MRI. Comparisons of those with and without AE From 23 patients with NSAbs (table 1), a comparison of those with (n=9) and without (n=14) a clinical diagnosis of AE revealed several differences in the AE cohort: more ASMs (median of 3 vs 1; p=0.0073), more frequent immunotherapies (7/9 vs 0/14, p=0.0001), higher APE2 scores (median of 6 vs 2; p<0.0001), more frequent MRI limbic inflammation (6/9 vs 0/14; p=0.0008) and a trend towards greater positivity of serum IgGs targeting the surface of live neurons (7/9 vs 5/14, p=0.09). Compared with the seven patients administered immunotherapy, those with NSAbs who were not administered immunotherapy showed lower disability after 1 and 3 years (both p<0.05), and 11/16 (68.8%) were asymptomatic at 3-year follow-up (mRS=0 ; figure 1F). Hence, despite no immunotherapy, patients with NSAbs, but without AE, generally showed good outcomes. Discussion In this prospective study of 219 consecutive adults with new-onset focal epilepsy, NSAb status was best predicted by a combination of clinical parameters which closely resemble features observed in AE. Almost half of our patients with NSAbs were diagnosed with AE, and ~30% fulfilled stringent criteria for AE.11 Of those with NSAbs and more isolated forms of epilepsy, without individual features of AE, almost all were treated with ASMs alone and typically remained asymptomatic at long-term follow-up. Overall, these findings suggest that detection of NSAbs in patients with new-onset seizures, but without features of AE, should not alter current clinical management. Our observations should help guide the frequent clinical dilemma of which patients with new-onset seizures to test for autoantibodies and subsequently treat with immunotherapy. Taken together, our data suggest the clinical phenotype is paramount in guiding the relevance of autoantibody results, and provide data to address an outstanding question from a recent ILAE consensus statement.7 This ILAE statement also highlighted controversy over the term ‘autoimmune epilepsy’.7 In routine clinical practice, this nomenclature acts as a valuable signpost and aide memoire when seeing patients with seizures.2 14 However, ‘epilepsy’ carries several social stigmata and is defined by an enduring tendency to seizures. In AE, this lifelong risk is refuted by a recent study,4 despite several forms of AE commonly leading to hippocampal atrophy.2–4 7 10 The alternative concept of acute symptomatic seizures may more accurately capture the nature of seizures in patients with AE. Data-driven modifications to nomenclature will benefit from longer-term follow-up studies. Ictal piloerection, low mood and attention and MRI limbic system changes are recognised features of late-onset AE, particularly in association with LGI1 antibodies.2 4 14 15 The absence of movement disorders or more diffuse cognitive impairment as predictive factors in our model suggests the overall syndrome may reflect a formes frustes of AE. This contrasts with APE2 score parameters,9 which appear to largely reflect more florid features seen in classical AE. Our observational study has several limitations. These include limited CSF autoantibody measurements, which reflected UK practice particularly at the start of the study period. Yet,w ithout this valuable parameter, a diagnosis of NMDAR-antibody encephalitis is still possible.11 Yet, two of our four patients with serum NMDAR antibodies did not have features consistent with encephalitis, likely suggesting detection of clinically unrelated serum antibodies in these cases. In addition, our series in total only identified nine AE cases, although this may be considered substantial given the largely outpatient-based recruitment. This, and the high (~10%) seroprevalence rate, may reflect a referral bias given Oxford’s interest in AE, but is well aligned with other available estimates.6 9 10 Our serological data identified some samples with NSAbs proven by live cell-based assays, but without concomitant cell surface neuronal reactivities. This was especially evident in the cohort without a clinical diagnosis of AE, and perhaps these antibodies reflect low-affinity or low-titre autoantibodies which are not disease relevant. Their specificity, however, remains reassuring given their typical selectivity for just one of eight surface-expressed autoantigens. In the future, our prediction model will benefit from validation in independent, larger studies which may compare the risk of enduring seizures in the NSAb-positive versus NSAb-negative populations, with and without AE, something which we did not survey at follow-up. Hence, we cannot comment on long-term seizure status in the 5/16 patients (31%) who had NSAbs, no diagnosis of AE and 3-year mRS >0. In these patients, it remains possible that immunotherapy would have led to a greater benefit. However, in our view, this finding is more likely to be consistent with the predicted ~30% of all people with epilepsy who are known to become ASM resistant: this provides a testable hypothesis for a future randomised controlled trial. Overall, our observations support the concept that, in patients who present with new-onset focal seizures, clinical features which are consistent with a ‘mild encephalitis’ helps identify those with NSAbs which should alter patient management. This clinico-serological syndrome appeared characteristic and its recognition will improve detection and treatment of these patients. These findings should discourage widespread screening strategies to identify patients with autoantibodies among unselected seizure cohorts. References ↵Irani SR, Michell AW, Lang B, et al. Faciobrachial dystonic seizures precede Lgi1 antibody limbic encephalitis. Ann Neurol 2011;69:892–900.doi:10.1002/ana.22307 ↵Thompson J, Bi M, Murchison AG, et al. The importance of early immunotherapy in patients with faciobrachial dystonic seizures. Brain 2018;141:348–56.doi:10.1093/brain/awx323OpenUrlCrossRef ↵Geis C, Planagumà J, Carreño M, et al. Autoimmune seizures and epilepsy. J Clin Invest 2019;129:926–40.doi:10.1172/JCI125178OpenUrlPubMed ↵de Bruijn MAAM, van Sonderen A, van Coevorden-Hameete MH, et al. Evaluation of seizure treatment in anti-LGI1, anti-NMDAR, and anti-GABABR encephalitis. Neurology 2019;92:e2185–96.doi:10.1212/WNL.0000000000007475pmid:30979857OpenUrlPubMed ↵Scheffer IE, Berkovic S, Capovilla G, et al. ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia 2017;58:512–21.doi:10.1111/epi.13709pmid:http://www.ncbi.nlm.nih.gov/pubmed/28276062OpenUrlPubMed ↵Brenner T, Sills GJ, Hart Y, et al. Prevalence of neurologic autoantibodies in cohorts of patients with new and established epilepsy. Epilepsia 2013;54:1028–35.doi:10.1111/epi.12127pmid:http://www.ncbi.nlm.nih.gov/pubmed/23464826OpenUrlCrossRefPubMed ↵Steriade C, Britton J, Dale RC, et al. Acute symptomatic seizures secondary to autoimmune encephalitis and autoimmune-associated epilepsy: conceptual definitions. Epilepsia 2020;61:1341–51.doi:10.1111/epi.16571pmid:http://www.ncbi.nlm.nih.gov/pubmed/32544279OpenUrlPubMed ↵von Podewils F, Suesse M, Geithner J, et al. Prevalence and outcome of late-onset seizures due to autoimmune etiology: a prospective observational population-based cohort study. Epilepsia 2017;58:1542–50.doi:10.1111/epi.13834pmid:http://www.ncbi.nlm.nih.gov/pubmed/28681401OpenUrlPubMed ↵Dubey D, Alqallaf A, Hays R, et al. Neurological autoantibody prevalence in epilepsy of unknown etiology. JAMA Neurol 2017;74:397–402.doi:10.1001/jamaneurol.2016.5429pmid:http://www.ncbi.nlm.nih.gov/pubmed/28166327OpenUrlPubMed ↵Dubey D, Kothapalli N, McKeon A, et al. Predictors of neural-specific autoantibodies and immunotherapy response in patients with cognitive dysfunction. J Neuroimmunol 2018;323:62–72.doi:10.1016/j.jneuroim.2018.07.009pmid:http://www.ncbi.nlm.nih.gov/pubmed/30196836OpenUrlPubMed ↵Graus F, Titulaer MJ, Balu R, et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol 2016;15:391–404.doi:10.1016/S1474-4422(15)00401-9pmid:http://www.ncbi.nlm.nih.gov/pubmed/26906964OpenUrlCrossRefPubMed ↵Makuch M, Wilson R, Al-Diwani A, et al. N-Methyl-D-aspartate receptor antibody production from germinal center reactions: therapeutic implications. Ann Neurol 2018;83:553–61.doi:10.1002/ana.25173pmid:http://www.ncbi.nlm.nih.gov/pubmed/29406578OpenUrlPubMed ↵Ramberger M, Berretta A, Tan JMM, et al. Distinctive binding properties of human monoclonal LGI1 autoantibodies determine pathogenic mechanisms. Brain 2020;143:1731–45.doi:10.1093/brain/awaa104pmid:http://www.ncbi.nlm.nih.gov/pubmed/32437528OpenUrlPubMed ↵Quek AML, Britton JW, McKeon A, et al. Autoimmune epilepsy: clinical characteristics and response to immunotherapy. Arch Neurol 2012;69:582–93.doi:10.1001/archneurol.2011.2985pmid:http://www.ncbi.nlm.nih.gov/pubmed/22451162OpenUrlCrossRefPubMed ↵Rocamora R, Becerra JL, Fossas P, et al. Pilomotor seizures: an autonomic semiology of limbic encephalitis? Seizure 2014;23:670–3.doi:10.1016/j.seizure.2014.04.013pmid:http://www.ncbi.nlm.nih.gov/pubmed/24890932OpenUrlCrossRefPubMed
No comment yet.
Scooped by Nesrin Shaheen
Scoop.it!

Specialists and Care Centers for Autoimmune Encephalitis

Specialists and Care Centers for Autoimmune Encephalitis | AntiNMDA | Scoop.it
The Northwestern Medicine Autoimmune Encephalitis and Paraneoplastic Disorders clinic takes a multidiscplinary approach to the diagnosis and care of patients affected by these disorders.
No comment yet.
Scooped by Nesrin Shaheen
Scoop.it!

Neurologic Emergencies at the Extremes of Age

Neurologic Emergencies at the Extremes of Age | AntiNMDA | Scoop.it
The diagnosis and management of neurologic conditions are more complex at the extremes
of age than in the average adult. In the pediatric population, neurologic emergencies
are somewhat rare and some may require emergent consultation.
No comment yet.
Scooped by Nesrin Shaheen
Scoop.it!

(PDF) Anti-N-methyl-D-Aspartate (NMDA) Receptor Encephalitis: A Case Report

(PDF) Anti-N-methyl-D-Aspartate (NMDA) Receptor Encephalitis: A Case Report | AntiNMDA | Scoop.it
PDF | We report case of a 42 years old female who came with a constellation of behavioral symptoms, delirium, body stiffness, and fever for one week....| Find, read and cite all the research you need on ResearchGate...
No comment yet.
Scooped by Nesrin Shaheen
Scoop.it!

RACGP - Old doc, new disease: Anti-NMDA receptor encephalitis

RACGP - Old doc, new disease: Anti-NMDA receptor encephalitis | AntiNMDA | Scoop.it
Dr Casey Parker reflects on an intriguing presentation that made him ask: What else do I not know?
No comment yet.
Scooped by Nesrin Shaheen
Scoop.it!

Cost-Effectiveness of Routine Screening for Autoimmune Encephalitis in Patients With First-Episode Psychosis in the United States |J Clin Psychiatry

Autoimmune encephalitis (AE) is a highly treatable neurologic condition that can cause psychosis. This study estimated the cost-effectiveness of routine screening for AE compared with clinically targeted screening in first-episode psychosis patients.
No comment yet.
Scooped by Nesrin Shaheen
Scoop.it!

Unremitting diarrhoea in a girl diagnosed anti-N-methyl-D-aspartate-receptor encephalitis: A case report | Read by QxMD

Unremitting diarrhoea in a girl diagnosed anti-N-methyl-D-aspartate-receptor encephalitis: A case report | Read by QxMD | AntiNMDA | Scoop.it
Create a free QxMD account to take advantage of the features offered by Read like saving your papers and creating collections. Get Started Unremitting diarrhoea in a girl diagnosed anti-N-methyl-D-aspartate-receptor encephalitis: A case report Norrapat Onpoaree, Montida Veeravigrom, Anapat Sanpavat, Narissara Suratannon, Palittiya Sintusek World Journal of Clinical Cases 2020 October 26, 8 (20): 4866-4875 BACKGROUND: Asymptomatic cytomegalovirus (CMV) infection is common in children; in contrast, in children with a weakened immune system, invasive CMV can occur. This is the first case report of a severe manifestation of CMV esophago-enterocolitis in a girl diagnosed with anti-N-methyl-D-aspartate-receptor (anti-NMDAR) encephalitis who received only a moderate dose of corticosteroid therapy. CASE SUMMARY: A 12-year-old-Thai girl presented with acute behavioural change and headache for 6 d. Electroencephalogram and positivity for NMDAR autoantibodies were compatible with anti-NMDAR encephalitis. Hence, she received pulse methylprednisolone 10 mg/kg per day for 4 d and continued with prednisolone 1.2 mg/kg per day. On day 42 of corticosteroid therapy, she developed unremitting vomiting and diarrhoea. Endoscopy showed multiple ulcers and erythaematous mucosa along the gastrointestinal tract. Tissue CMV viral load and viral-infected cells confirmed CMV esophago-enterocolitis. Therefore, the patient received ganciclovir 5 mg/kg per dose every 12 h for 3 wk and then 5 mg/kg per dose once daily for 3 wk. Unremitting diarrhoea slowly improved from stool output 1-4 L per day to 1-2 L per day after 3 wk of treatment. Pulse methylprednisolone 20 mg/kg for 5 d was initiated and continued with prednisolone 1 mg/kg per day. After this repeated pulse methylprednisolone treatment, surprisingly, diarrhoea subsided. Immunologic work-up was performed to rule out underlying immune deficiency with unremarkable results. CONCLUSION: Unremitting diarrhoea from CMV esophago-enterocolitis subsided with antiviral and methylprednisolone therapy, implying the immune and NMDAR dysregulation in anti-NMDAR encephalitis. Full Text Links We have located links that may give you full text access. Additional links Discussion You are not logged in. Sign Up or Log In to join the discussion. Trending Papers Colchicine in Patients with Chronic Coronary Disease. Stefan M Nidorf, Aernoud T L Fiolet, Arend Mosterd, John W Eikelboom, Astrid Schut, Tjerk S J Opstal, Salem H K The, Xiao-Fang Xu, Mark A Ireland, Timo Lenderink, Donald Latchem, Pieter Hoogslag, Anastazia Jerzewski, Peter Nierop, Alan Whelan, Randall Hendriks, Henk Swart, Jeroen Schaap, Aaf F M Kuijper, Maarten W J van Hessen, Pradyot Saklani, Isabel Tan, Angus G Thompson, Allison Morton, Chris Judkins, Willem A Bax, Maurits Dirksen, Marco M W Alings, Graeme J Hankey, Charley A Budgeon, Jan G P Tijssen, Jan H Cornel, Peter L Thompson New England Journal of Medicine 2020 August 31 Extracorporeal life support for adults with acute respiratory distress syndrome. Alain Combes, Matthieu Schmidt, Carol L Hodgson, Eddy Fan, Niall D Ferguson, John F Fraser, Samir Jaber, Antonio Pesenti, Marco Ranieri, Kathryn Rowan, Kiran Shekar, Arthur S Slutsky, Daniel Brodie Intensive Care Medicine 2020 November 2 Clinical strategies for implementing lung and diaphragm-protective ventilation: avoiding insufficient and excessive effort. Ewan C Goligher, Annemijn H Jonkman, Jose Dianti, Katerina Vaporidi, Jeremy R Beitler, Bhakti K Patel, Takeshi Yoshida, Samir Jaber, Martin Dres, Tommaso Mauri, Giacomo Bellani, Alexandre Demoule, Laurent Brochard, Leo Heunks Intensive Care Medicine 2020 November 2 Emergency Department Management of COVID-19: An Evidence-Based Approach. Nicholas M McManus, Ryan Offman, Jason D Oetman Western Journal of Emergency Medicine 2020 September 25 Glucocorticoids: surprising new findings on their mechanisms of actions. Frank Buttgereit Annals of the Rheumatic Diseases 2020 November 8 Prone position in ARDS patients: why, when, how and for whom. Claude Guérin, Richard K Albert, Jeremy Beitler, Luciano Gattinoni, Samir Jaber, John J Marini, Laveena Munshi, Laurent Papazian, Antonio Pesenti, Antoine Vieillard-Baron, Jordi Mancebo Intensive Care Medicine 2020 November 10 Severe organising pneumonia following COVID-19. István Vadász, Faeq Husain-Syed, Peter Dorfmüller, Fritz C Roller, Khodr Tello, Matthias Hecker, Rory E Morty, Stefan Gattenlöhner, Hans-Dieter Walmrath, Friedrich Grimminger, Susanne Herold, Werner Seeger Thorax 2020 November 11 Analgesia and sedation in patients with ARDS. Gerald Chanques, Jean-Michel Constantin, John W Devlin, E Wesley Ely, Gilles L Fraser, Céline Gélinas, Timothy D Girard, Claude Guérin, Matthieu Jabaudon, Samir Jaber, Sangeeta Mehta, Thomas Langer, Michael J Murray, Pratik Pandharipande, Bhakti Patel, Jean-François Payen, Kathleen Puntillo, Bram Rochwerg, Yahya Shehabi, Thomas Strøm, Hanne Tanghus Olsen, John P Kress Intensive Care Medicine 2020 November 10
No comment yet.
Scooped by Nesrin Shaheen
Scoop.it!

Possible coexistence of MOG-IgG-associated disease and anti-Caspr2 antibody-associated autoimmune encephalitis: a first case report

Possible coexistence of MOG-IgG-associated disease and anti-Caspr2 antibody-associated autoimmune encephalitis: a first case report | AntiNMDA | Scoop.it
Myelin oligodendrocyte glycoprotein antibody-associated disease has been proposed as a separate inflammatory demyelinating disease of the central nervous system (CNS) since the discovery of pathogenic antibodies against myelin oligodendrocyte glycoprotein ...
No comment yet.
Scooped by Nesrin Shaheen
Scoop.it!

The Anti-NMDA Receptor Encephalitis Foundation Newsletter

The Anti-NMDA Receptor Encephalitis Foundation Newsletter | AntiNMDA | Scoop.it
On your Marks, Get Set, Register for the WORLD ENCEPHALITIS DAY CONFERENCE 2021 From...
No comment yet.
Scooped by Nesrin Shaheen
Scoop.it!

Autoimmune encephalitis: When your body attacks your brain, and people think you’re going mad

Autoimmune encephalitis: When your body attacks your brain, and people think you’re going mad | AntiNMDA | Scoop.it
Four PhD candidates from Monash University, who are already Doctors of the medical kind, are conducting research on a rare and debilitating neurological illness affecting the Australian population. It’s described as feeling like your brain is on fire.
No comment yet.
Scooped by Nesrin Shaheen
Scoop.it!

Characteristics of internalization of NMDA-type GluRs with antibodies to GluN1 and GluN2B - ScienceDirect

Characteristics of internalization of NMDA-type GluRs with antibodies to GluN1 and GluN2B - ScienceDirect | AntiNMDA | Scoop.it
To characterize internalization of NMDA-type glutamate receptors (GluRs) by antibodies to NMDA-type GluRs, we produced rabbit antibodies to N-terminal…
No comment yet.