agent-based simulation
1.7K views | +0 today
Follow
agent-based simulation
I'm an economist always reasoning about his profession
Curated by Pietro Terna
Your new post is loading...
Your new post is loading...
Scooped by Pietro Terna
Scoop.it!

Temporal Exponential Random Graph Models (TERGMs) for dynamic network modeling in statnet

No comment yet.
Scooped by Pietro Terna
Scoop.it!

Adaptive Susceptible-Infectious-Removed Model for Continuous Estimation of the COVID-19 Infection Rate and Reproduction Number in the United States: Modeling Study

Adaptive Susceptible-Infectious-Removed Model for Continuous Estimation of the COVID-19 Infection Rate and Reproduction Number in the United States: Modeling Study | agent-based simulation | Scoop.it
Background: The dynamics of the COVID-19 pandemic vary owing to local population density and policy measures. During decision-making, policymakers consider an estimate of the effective reproduction number Rt, which is the expected number of secondary infections spread by a single infected...
No comment yet.
Scooped by Pietro Terna
Scoop.it!

The Impact of Vaccination to Control COVID-19 Burden in the United States: A Simulation Modeling Approach | medRxiv

medRxiv - The Preprint Server for Health Sciences...
No comment yet.
Scooped by Pietro Terna
Scoop.it!

Agentpy - Agent-based modeling in Python — agentpy 0.0.7.dev0 documentation

Agentpy - Agent-based modeling in Python — agentpy 0.0.7.dev0 documentation | agent-based simulation | Scoop.it
Agentpy - Agent-based modeling in Python Agentpy is an open-source library for the development and analysis of agent-based models in Python. The framework integrates the tasks of model design, numerical experiments, and data analysis within a single environment, and is optimized for interactive computing with IPython and Jupyter. If you have questions or ideas for improvements, please visit the discussion forum or subscribe to the agentpy mailing list. Quick orientation To get started, please take a look at Installation and Overview. For a simple demonstration, check out the Wealth transfer tutorial in the Model Library. For a detailled description of all classes and functions, refer to API Reference. To learn how agentpy compares with other frameworks, take a look at Comparison. Example A screenshot of Jupyter Lab with two interactive tutorials from the model library: Table of contents Indices and tables Index Search Page
No comment yet.
Scooped by Pietro Terna
Scoop.it!

Towards Dynamic lockdown strategies controlling pandemic spread under healthcare resource budget | Applied Network Science | Full Text

Towards Dynamic lockdown strategies controlling pandemic spread under healthcare resource budget | Applied Network Science | Full Text | agent-based simulation | Scoop.it
COVID-19 is one of the deadliest pandemics in modern human history that has killed nearly a million people and rapidly inundated the healthcare resources around the world. Current lockdown measures to curb infection spread are threatening to bring the world economy to a halt, necessitating dynamic...
No comment yet.
Scooped by Pietro Terna
Scoop.it!

Agent-Based Simulation of Covid-19 Vaccination Policies in CovidSIMVL | medRxiv

medRxiv - The Preprint Server for Health Sciences...
No comment yet.
Scooped by Pietro Terna
Scoop.it!

Policy simulation: How to build an economy-wide digital twin¹ | by Lucidminds AI

Policy simulation: How to build an economy-wide digital twin¹ | by Lucidminds AI | agent-based simulation | Scoop.it
Agent-based simulation models can be an extremely useful tool for policy makers, in particular for predictive analytics, scenario analyses, and plausibility testing.Lucidminds.ai is at the forefront…...
No comment yet.
Scooped by Pietro Terna
Scoop.it!

Agent-based simulation of city-wide autonomous ride-pooling and the impact on traffic noise - ScienceDirect

Agent-based simulation of city-wide autonomous ride-pooling and the impact on traffic noise - ScienceDirect | agent-based simulation | Scoop.it
Pooled on-demand services promise to provide a convenient mobility experience and increase efficiency of road transport.We apply an established ride-…...
No comment yet.
Scooped by Pietro Terna
Scoop.it!

Exploring the effectiveness of a COVID-19 contact tracing app using an agent-based model

Exploring the effectiveness of a COVID-19 contact tracing app using an agent-based model | agent-based simulation | Scoop.it
A contact-tracing strategy has been deemed necessary to contain the spread of COVID-19 following the relaxation of lockdown measures. Using an agent-based model, we explore one of the technology-based strategies proposed, a contact-tracing smartphone app.
No comment yet.
Scooped by Pietro Terna
Scoop.it!

[2011.11453] A realistic agent-based simulation model for COVID-19 based on a traffic simulation and mobile phone data

Epidemiological simulations as a method are used to better understand and
predict the spreading of infectious diseases, for example of COVID-19. This paper presents an approach that combines person-centric data-driven human mobility modelling with a mechanistic infection model and a person-centric...
No comment yet.
Scooped by Pietro Terna
Scoop.it!

Synthetic Reproduction and Augmentation of COVID-19 Case Reporting Data by Agent-Based Simulation | medRxiv

medRxiv - The Preprint Server for Health Sciences...
No comment yet.
Scooped by Pietro Terna
Scoop.it!

Parallel Programming Approaches for an Agent-based Simulation of Conc…

Highlighted notes while preparing for project on Computational Epidemics: Parallel Programming Approaches for an Agent-based Simulation of Concurrent Pandemic …...
No comment yet.
Scooped by Pietro Terna
Scoop.it!

Agent-based simulation of pedestrian dynamics for exposure time estimation in epidemic risk assessment

Agent-based simulation of pedestrian dynamics for exposure time estimation in epidemic risk assessment | agent-based simulation | Scoop.it
The results of this study give insight into how physical distancing as a protective measure can be carried out more efficiently to help reduce the spread of COVID-19.
No comment yet.
Scooped by Pietro Terna
Scoop.it!

[2103.12476] Differentiable Agent-Based Simulation for Gradient-Guided Simulation-Based Optimization

Simulation-based optimization using agent-based models is typically carried
out under the assumption that the gradient describing the sensitivity of the
simulation output to the input cannot be evaluated directly.
No comment yet.
Scooped by Pietro Terna
Scoop.it!

Robotics | Free Full-Text | Multi-Agent Collaborative Path Planning Based on Staying Alive Policy

Robotics | Free Full-Text | Multi-Agent Collaborative Path Planning Based on Staying Alive Policy | agent-based simulation | Scoop.it
Modern mobile robots tend to be used in numerous exploration and search and rescue applications. Essentially they are coordinated by human operators and collaborate with inspection or rescue teams. Over the time, robots became more advanced and capable for various autonomous collaborative scenarios.
No comment yet.
Scooped by Pietro Terna
Scoop.it!

Combining social network analysis and agent-based modelling to explore dynamics of human interaction: A review | Socio-Environmental Systems Modelling

Combining social network analysis and agent-based modelling to explore dynamics of human interaction: A review | Socio-Environmental Systems Modelling | agent-based simulation | Scoop.it
Albert, R., & Barabási, A.-L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74(1), 47–97. doi:10.1103/RevModPhys.74.47 Amblard, F., Bouadjio-Boulic, A., Sureda Gutiérrez, C., & Gaudou, B. (2015). Which models are used in social simulation to generate social networks? A review of 17 years of publications in JASSS. Winter Simulation Conference Proceedings (pp. 4021–4032). doi:10.1109/wsc.2015.7408556 Amini, M., Wakolbinger, T., Racer, M., & Nejad, M. G. (2012). Alternative supply chain production–sales policies for new product diffusion: An agent-based modeling and simulation approach. European Journal of Operational Research, 216(2), 301–311. doi:10.1016/j.ejor.2011.07.040 Andre, F. E., Booy, R., Bock, H. L., Clemens, J., Datta, S. K., John, T. J., Lee, B. W., Lolekha, S., Peltola, H., Ruff, T. A., Santosham, M., & Schmitt, H. J. (2008). Vaccination greatly reduces disease, disability, death and inequity worldwide. Bulletin of the World Health Organization, 86(2), 140–146. doi:10.2471/BLT.07.040089 Araújo, T., & Banisch, S. (2016). Multidimensional Analysis of Linguistic Networks. In A. Mehler, A. Lücking, S. Banisch, P. Blanchard, & B. Job (Eds.), Towards a Theoretical Framework for Analyzing Complex Linguistic Networks (pp. 107–131). Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-662-47238-5_5 Arneth, A., Brown, C., & Rounsevell, M. D. A. (2014). Global models of human decision-making for land-based mitigation and adaptation assessment. Nature Climate Change, 4(7), 550–557. doi:10.1038/nclimate2250 Baggio, J. A., & Hillis, V. (2018). Managing ecological disturbances: Learning and the structure of social-ecological networks. Environmental Modelling & Software, 109, 32–40. doi:10.1016/j.envsoft.2018.08.002 Beretta, E., Fontana, M., Guerzoni, M., & Jordan, A. (2018). Cultural dissimilarity: Boon or bane for technology diffusion? Technological Forecasting and Social Change, 133, 95–103. doi:10.1016/j.techfore.2018.03.008 Bianchi, F., & Squazzoni, F. (2015). Agent-based models in sociology. Wiley Interdisciplinary Reviews: Computational Statistics, 7(4), 284–306. doi:10.1002/wics.1356 Biondo, A. E., Pluchino, A., & Rapisarda, A. (2018). Modeling surveys effects in political competitions. Physica A: Statistical Mechanics and its Applications, 503, 714–726. doi:10.1016/j.physa.2018.02.211 Bodin, Ö., Ramirez-Sanchez, S., Ernstson, H., & Prell, C. (2011). A social relational approach to natural resource governance. In C. Prell & Ö. Bodin (Eds.), Social Networks and Natural Resource Management: Uncovering the Social Fabric of Environmental Governance (pp. 3–28). Cambridge, UK: Cambridge University Press. doi:10.1017/CBO9780511894985.002 Bohlmann, J. D., Calantone, R. J., & Zhao, M. (2010). The Effects of Market Network Heterogeneity on Innovation Diffusion: An Agent-Based Modeling Approach. Journal of Product Innovation Management, 27(5), 741–760. doi:10.1111/j.1540-5885.2010.00748.x Bonabeau, E. (2002). Agent-based modeling: Methods and techniques for simulating human systems. Proceedings of the National Academy of Sciences of the United States of America, 99(suppl 3), 7280–7287. doi:10.1073/pnas.082080899 Borgatti, S. P. (2006). Identifying sets of key players in a social network. Computational & Mathematical Organization Theory, 12(1), 21–34. doi:10.1007/s10588-006-7084-x Borgatti, S. P., & Foster, P. C. (2003). The Network Paradigm in Organizational Research: A Review and Typology. Journal of Management, 29(6), 991–1013. doi:10.1016/S0149-2063_03_00087-4 Borgatti, S. P., Mehra, A., Brass, D. J., & Labianca, G. (2009). Network Analysis in the Social Sciences. Science, 323(5916), 892–895. doi:10.1126/science.1165821 Bravo, G., Squazzoni, F., & Boero, R. (2012). Trust and partner selection in social networks: An experimentally grounded model. Social Networks, 34(4), 481–492. doi:10.1016/j.socnet.2012.03.001 Bruch, E., & Atwell, J. (2015). Agent-Based Models in Empirical Social Research. Sociological Methods & Research, 44(2), 186–221. doi:10.1177/0049124113506405 Butts, C. T. (2009). Revisiting the Foundations of Network Analysis. Science, 325(5939), 414–416. doi:10.1126/science.1171022 Carley, K. M. (2009). Computational modeling for reasoning about the social behavior of humans. Computational & Mathematical Organization Theory, 15(1), 47–59. doi:10.1007/s10588-008-9048-9 Castellano, C., Fortunato, S., & Loreto, V. (2009). Statistical physics of social dynamics. Reviews of Modern Physics, 81(2), 591–646. doi:10.1103/RevModPhys.81.591 Chareunsy, A. K. (2018). Diffusion of development initiatives in a southern Lao community: An agent based evaluation. Journal of Asian Economics, 54, 53–68. doi:10.1016/j.asieco.2017.12.004 Chen, J., Taylor, J. E., & Wei, H. H. (2012). Modeling building occupant network energy consumption decision-making: The interplay between network structure and conservation. Energy and Buildings, 47, 515–524. doi:10.1016/j.enbuild.2011.12.026 Chica, M., Chiong, R., Kirley, M., & Ishibuchi, H. (2018). A Networked N-Player Trust Game and Its Evolutionary Dynamics. IEEE Transactions on Evolutionary Computation, 22(6), 866–878. doi:10.1109/TEVC.2017.2769081 Chowell, G., & Nishiura, H. (2014). Transmission dynamics and control of Ebola virus disease (EVD): a review. BMC Medicine, 12(196). doi:10.1186/s12916-014-0196-0 Cointet, J. P., & Roth, C. (2007). How Realistic Should Knowledge Diffusion Models Be? Journal of Artificial Societies and Social Simulation, 10(3), 5. Retrieved from http://jasss.soc.surrey.ac.uk/10/3/5.html Costenbader, E., & Valente, T. W. (2003). The stability of centrality measures when networks are sampled. Social Networks, 25(4), 283–307. doi:10.1016/S0378-8733(03)00012-1 Crooks, A., Castle, C., & Batty, M. (2008). Key challenges in agent-based modelling for geo-spatial simulation. Computers, Environment and Urban Systems, 32(6), 417–430. doi:10.1016/j.compenvurbsys.2008.09.004 Cumming, G. S. (2016). Heterarchies: Reconciling Networks and Hierarchies. Trends in Ecology & Evolution, 31(8), 622–632. doi:10.1016/j.tree.2016.04.009 Davey, V. J., Glass, R. J., Min, J. H., Beyeler, W. E., & Glass, L. M. (2008). Effective, Robust Design of Community Mitigation for Pandemic Influenza: A Systematic Examination of Proposed US Guidance. PLoS ONE, 3(7). doi:10.1371/journal.pone.0002606 El-Sayed, A. M., Scarborough, P., Seemann, L., & Galea, S. (2012). Social network analysis and agent-based modeling in social epidemiology. Epidemiologic Perspectives & Innovations, 9. doi:10.1186/1742-5573-9-1 Emirbayer, M., & Goodwin, J. (1994). Network Analysis, Culture, and the Problem of Agency. American Journal of Sociology, 99(6), 1411–1454. doi:10.1086/230450 Erdlenbruch, K., & Bonte, B. (2018). Simulating the dynamics of individual adaptation to floods. Environmental Science & Policy, 84, 134–148. doi:10.1016/j.envsci.2018.03.005 Erdős, P., & Rényi, A. (1959). On random graphs I. Publicationes Mathematicae Debrecen, 6, 290–297. Retrieved from http://www.renyi.hu/ p_erdos/Erdos.html#1959-11 Eubank, S., Guclu, H., Anil Kumar, V. S., Marathe, M. V., Srinivasan, A., Toroczkai, Z., & Wang, N. (2004). Modelling disease outbreaks in realistic urban social networks. Nature, 429(6988), 180–184. doi:10.1038/nature02541 Fetta, A., Harper, P., Knight, V., & Williams, J. (2018). Predicting adolescent social networks to stop smoking in secondary schools. European Journal of Operational Research, 265(1), 263–276. doi:10.1016/j.ejor.2017.07.039 Flache, A., & Macy, M. W. (2011). Small Worlds and Cultural Polarization. Journal of Mathematical Sociology, 35(1-3), 146–176. doi:10.1080/0022250X.2010.532261 Flache, A., & Snijders, T. A. B. (2008). Die Modellierung komplexer Netzwerke: zum Nutzen agentenbasierter Modelle in der neuen Netzwerkforschung. In K.-S. Rehberg (Ed.), Die Natur der Gesellschaft: Verhandlungen des 33. Kongresses der Deutschen Gesellschaft für Soziologie in Kassel 2006. Teilbd. 1 u. 2 (pp. 781–797). Frankfurt: Campus Verlag. Retrieved from https://nbn-resolving.org/urn:nbn:de:0168-ssoar-153088 Flache, A., Mäs, M., Feliciani, T., Chattoe-Brown, E., Deffuant, G., Huet, S., & Lorenz, J. (2017). Models of Social Influence: Towards the Next Frontiers. Journal of Artificial Societies and Social Simulation, 20(4), 2. doi:10.18564/jasss.3521 Frank, K. A., Xu, R., & Penuel, W. R. (2018). Implementation of Evidence-Based Practice in Human Service Organizations: Implications from Agent-Based Models. Journal of Policy Analysis and Management, 37(4), 867–895. doi:10.1002/pam.22081 Freeman, L. C. (1979). Centrality in Social Networks Conceptual Clarification. Social Networks, 1(3), 215–239. doi:10.1016/0378-8733(78)90021-7 Friedkin, N. E. (1991). Theoretical Foundations for Centrality Measures. American Journal of Sociology, 96(6), 1478–1504. doi:10.1086/229694 Fu, F., Rosenbloom, D. I., Wang, L., & Nowak, M. A. (2011). Imitation dynamics of vaccination behaviour on social networks. Proceedings of the Royal Society B: Biological Sciences, 278(1702), 42–49. doi:10.1098/rspb.2010.1107 Fu, Z., & Hao, L. (2018). Agent-based modeling of China’s rural–urban migration and social network structure. Physica A: Statistical Mechanics and its Applications, 490, 1061–1075. doi:10.1016/j.physa.2017.08.145 Garcia, L. M. T., Roux, A. V. D., Martins, A. C. R., Yang, Y., & Florindo, A. A. (2018). Exploring the emergence and evolution of population patterns of leisure-time physical activity through agent-based modelling. International Journal of Behavioral Nutrition and Physical Activity, 15(1), 112. doi:10.1186/s12966-018-0750-9 Garlaschelli, D., & Loffredo, M. I. (2005). Structure and evolution of the world trade network. Physica A: Statistical Mechanics and its Applications, 355(1), 138–144. doi:10.1016/j.physa.2005.02.075 Gereffi, G. (1999). International trade and industrial upgrading in the apparel commodity chain. Journal of International Economics, 48(1), 37–70. doi:10.1016/S0022-1996(98)00075-0 Gilbert, N. (2008). Agent-Based Models. Thousand Oaks, CA: SAGE Publications. doi:10.4135/9781412983259 Goldenberg, J., Libai, B., Moldovan, S., & Muller, E. (2007). The NPV of bad news. International Journal of Research in Marketing, 24(3), 186–200. doi:10.1016/j.ijresmar.2007.02.003 Goldstone, R. L., & Janssen, M. A. (2005). Computational models of collective behavior. Trends in Cognitive Sciences, 9(9), 424–430. doi:10.1016/j.tics.2005.07.009 Gore, R. J., Lemos, C., Shults, F. L., & Wildman, W. (2018). Forecasting Changes in Religiosity and Existential Security with an Agent-Based Model. Journal of Artificial Societies and Social Simulation, 21(1), 4. doi:10.18564/jasss.3596 Granovetter, M. (1978). Threshold Models of Collective Behavior. American Journal of Sociology, 83(6), 1420–1443. doi:10.1086/226707 Granovetter, M. (1985). Economic Action and Social Structure: The Problem of Embeddedness. American Journal of Sociology, 91(3), 481–510. doi:10.1086/228311 Granovetter, M. (2005). The Impact of Social Structure on Economic Outcomes. Journal of Economic Perspectives, 19(1), 33–50. doi:10.1257/0895330053147958 Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., Goss-Custard, J., Grand, T., Heinz, S. K., Huse, G., Huth, A., Jepsen, J. U., Jørgensen, C., Mooij, W. M., Müller, B., Pe’er, G., Piou, C., Railsback, S. F., Robbins, A. M., Robbins, M. M., Rossmanith, E., Rüger, N., Strand, E., Souissi, S., Stillman, R. A., Vabø, R., Visser, U., & DeAngelis, D. L. (2006). A standard protocol for describing individual-based and agent-based models. Ecological Modelling, 198(1–2), 115–126. doi:10.1016/j.ecolmodel.2006.04.023 Grimm, V., Berger, U., DeAngelis, D. L., Polhill, J. G., Giske, J., & Railsback, S. F. (2010). The ODD protocol: A review and first update. Ecological Modelling, 221(23), 2760–2768. doi:10.1016/j.ecolmodel.2010.08.019 Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W. M., Railsback, S. F., Thulke, H.-H., Weiner, J., Wiegand, T., & DeAngelis, D. L. (2005). Pattern-Oriented Modeling of Agent-Based Complex Systems: Lessons from Ecology. Science, 310(5750), 987. doi:10.1126/science.1116681 Groeneveld, J., Müller, B., Buchmann, C. M., Dressler, G., Guo, C., Hase, N., Hoffmann, F., John, F., Klassert, C., Lauf, T., Liebelt, V., Nolzen, H., Pannicke, N., Schulze, J., Weise, H., & Schwarz, N. (2017). Theoretical foundations of human decision-making in agent-based land use models – A review. Environmental Modelling & Software, 87, 39–48. doi:10.1016/j.envsoft.2016.10.008 Gross, T., & Blasius, B. (2008). Adaptive coevolutionary networks: a review. Journal of the Royal Society Interface, 5(20), 259–271. doi:10.1098/rsif.2007.1229 Growiec, K., Growiec, J., & Kaminski, B. (2018). Social network structure and the trade-off between social utility and economic performance. Social Networks, 55, 31–46. doi:10.1016/j.socnet.2018.05.002 Hadzibeganovic, T., Stauffer, D., & Han, X. P. (2018). Interplay between cooperation-enhancing mechanisms in evolutionary games with tag-mediated interactions. Physica A: Statistical Mechanics and its Applications, 496, 676–690. doi:10.1016/j.physa.2017.12.113 Haenlein, M., & Libai, B. (2013). Targeting Revenue Leaders for a New Product. Journal of Marketing, 77(3), 65–80. doi:10.1509/jm.11.0428 Heinrich, T. (2018). A Discontinuity Model of Technological Change: Catastrophe Theory and Network Structure. Computational Economics, 51(3), 407–425. doi:10.1007/s10614-016-9609-9 Hornbeck, T., Naylor, D., Segre, A. M., Thomas, G., Herman, T., & Polgreen, P. M. (2012). Using Sensor Networks to Study the Effect of Peripatetic Healthcare Workers on the Spread of Hospital-Associated Infections. Journal of Infectious Diseases, 206(10), 1549–1557. doi:10.1093/infdis/jis542 Hu, H. H., Lin, J., Qian, Y. J., & Sun, J. (2018). Strategies for new product diffusion: Whom and how to target? Journal of Business Research, 83, 111–119. doi:10.1016/j.jbusres.2017.10.010 Huétink, F. J., Vooren, A. V. der, & Alkemade, F. (2010). Initial infrastructure development strategies for the transition to sustainable mobility. Technological Forecasting and Social Change, 77(8), 1270–1281. doi:10.1016/j.techfore.2010.03.012 Jackson, M. O. (2010). Social and Economic Networks. Princeton, NJ: Princeton University Press. doi:10.2307/j.ctvcm4gh1 Jager, W., & Amblard, F. (2005). Uniformity, Bipolarization and Pluriformity Captured as Generic Stylized Behavior with an Agent-Based Simulation Model of Attitude Change. Computational & Mathematical Organization Theory, 10(4), 295–303. doi:10.1007/s10588-005-6282-2 Janssen, M. A. (2017). The Practice of Archiving Model Code of Agent-Based Models. Journal of Artificial Societies and Social Simulation, 20(1), 2. doi:10.18564/jasss.3317 Janssen, M. A., & Jager, W. (2001). Fashions, habits and changing preferences: Simulation of psychological factors affecting market dynamics. Journal of Economic Psychology, 22(6), 745–772. doi:10.1016/S0167-4870(01)00063-0 Janssen, M. A., & Jager, W. (2003). Simulating Market Dynamics: Interactions between Consumer Psychology and Social Networks. Artificial Life, 9(4), 343–356. doi:10.1162/106454603322694807 Kaplan, A. M., & Haenlein, M. (2010). Users of the world, unite! The challenges and opportunities of Social Media. Business Horizons, 53(1), 59–68. doi:10.1016/j.bushor.2009.09.003 Kaufmann, P., Stagl, S., & Franks, D. W. (2009). Simulating the diffusion of organic farming practices in two New EU Member States. Ecological Economics, 68(10), 2580–2593. doi:10.1016/j.ecolecon.2009.04.001 Ke, J., Gong, T., & Wang, W. S. Y. (2008). Language change and social networks. Communications in Computational Physics, 3(4), 935–949. Retrieved from http://www.global-sci.com/intro/article_detail/cicp/7882.html Keijzer, M. A., Mas, M., & Flache, A. (2018). Communication in Online Social Networks Fosters Cultural Isolation. Complexity. doi:10.1155/2018/9502872 Kiesling, E., Günther, M., Stummer, C., & Wakolbinger, L. M. (2012). Agent-based simulation of innovation diffusion: a review. Central European Journal of Operations Research, 20(2), 183–230. doi:10.1007/s10100-011-0210-y Kjeldahl, E. M., & Hendricks, V. F. (2018). The sense of social influence: pluralistic ignorance in climate change. EMBO reports, 19(11). doi:10.15252/embr.201847185 Klabunde, A., & Willekens, F. (2016). Decision-Making in Agent-Based Models of Migration: State of the Art and Challenges. European Journal of Population, 32(1), 73–97. doi:10.1007/s10680-015-9362-0 Laatabi, A., Marilleau, N., Nguyen-Huu, T., Hbid, H., & Ait Babram, M. (2018). ODD+2D: An ODD Based Protocol for Mapping Data to Empirical ABMs. Journal of Artificial Societies and Social Simulation, 21(2), 9. doi:10.18564/jasss.3646 Laifa, M., Akrouf, S., & Mammeri, R. (2018). Forgiveness and trust dynamics on social networks. Adaptive Behavior, 26(2), 65–83. doi:10.1177/1059712318762733 Levin, S. A. (1992). The Problem of Pattern and Scale in Ecology: The Robert H. MacArthur Award Lecture. Ecology, 73(6), 1943–1967. doi:10.2307/1941447 Libai, B., Muller, E., & Peres, R. (2013). Decomposing the Value of Word-of-Mouth Seeding Programs: Acceleration versus Expansion. Journal of Marketing Research, 50(2), 161–176. doi:10.1509/jmr.11.0305 Lou-Magnuson, M., & Onnis, L. (2018). Social Network Limits Language Complexity. Cognitive Science, 42(8), 2790–2817. doi:10.1111/cogs.12683 Lozano, P., Antonioni, A., Tomassini, M., & Sánchez, A. (2018). Cooperation on dynamic networks within an uncertain reputation environment. Scientific Reports, 8, 9093. doi:10.1038/s41598-018-27544-5 Lu, Q., Korniss, G., & Szymanski, B. K. (2009). The Naming Game in social networks: community formation and consensus engineering. Journal of Economic Interaction and Coordination, 4(2), 221–235. doi:10.1007/s11403-009-0057-7 Macy, M. W., & Willer, R. (2002). From Factors to Actors: Computational Sociology and Agent-Based Modeling. Annual Review of Sociology, 28(1), 143–166. doi:10.1146/annurev.soc.28.110601.141117 Moglia, M., Podkalicka, A., & McGregor, J. (2018). An Agent-Based Model of Residential Energy Efficiency Adoption. Journal of Artificial Societies and Social Simulation, 21(3), 3. doi:10.18564/jasss.3729 Moradianzadeh, N., Zadeh, P. M., Kobti, Z., Hansen, S., & Pfaff, K. (2018). Using social network analysis to model palliative care. Journal of Network and Computer Applications, 120, 30–41. doi:10.1016/j.jnca.2018.07.004 Müller, B., Bohn, F., Dreßler, G., Groeneveld, J., Klassert, C., Martin, R., Schlüter, M., Schulze, J., Weise, H., & Schwarz, N. (2013). Describing human decisions in agent-based models – ODD + D, an extension of the ODD protocol. Environmental Modelling & Software, 48, 37–48. doi:10.1016/j.envsoft.2013.06.003 Namatame, A., & Chen, S. H. (2016). Agent-Based Modeling and Network Dynamics. Oxford, UK: Oxford University Press. doi:10.1093/acprof:oso/9780198708285.001.0001 Neal, Z. P., & Neal, J. W. (2014). The (In)compatibility of Diversity and Sense of Community. American Journal of Community Psychology, 53(1-2), 1–12. doi:10.1007/s10464-013-9608-0 Negahban, A., & Smith, J. S. (2018). A joint analysis of production and seeding strategies for new products: an agent-based simulation approach. Annals of Operations Research, 268(1-2), 41–62. doi:10.1007/s10479-016-2389-8 Newman, M. E. J. (2003). The Structure and Function of Complex Networks. SIAM Review, 45(2), 167–256. doi:10.1137/S003614450342480 Niamir, L., Filatova, T., Voinov, A., & Bressers, H. (2018). Transition to low-carbon economy: Assessing cumulative impacts of individual behavioral changes. Energy Policy, 118, 325–345. doi:10.1016/j.enpol.2018.03.045 Pastor-Satorras, R., & Vespignani, A. (2001). Epidemic Spreading in Scale-Free Networks. Physical Review Letters, 86(14), 3200–3203. doi:10.1103/PhysRevLett.86.3200 Pearce, P., & Slade, R. (2018). Feed-in tariffs for solar microgeneration: Policy evaluation and capacity projections using a realistic agent-based model. Energy Policy, 116, 95–111. doi:10.1016/j.enpol.2018.01.060 Peres, R., Muller, E., & Mahajan, V. (2010). Innovation diffusion and new product growth models: A critical review and research directions. International Journal of Research in Marketing, 27(2), 91–106. doi:10.1016/j.ijresmar.2009.12.012 Perlroth, D. J., Glass, R. J., Davey, V. J., Cannon, D., Garber, A. M., & Owens, D. K. (2010). Health Outcomes and Costs of Community Mitigation Strategies for an Influenza Pandemic in the United States. Clinical Infectious Diseases, 50(2), 165–174. doi:10.1086/649867 Phan, T. Q., & Godes, D. (2018). The Evolution of Influence Through Endogenous Link Formation. Marketing Science, 37(2), 259–278. doi:10.1287/mksc.2017.1077 Piedrahita, P., Borge-Holthoefer, J., Moreno, Y., & Gonzalez-Bailon, S. (2018). The contagion effects of repeated activation in social networks. Social Networks, 54, 326–335. doi:10.1016/j.socnet.2017.11.001 Rahmandad, H., & Sterman, J. (2008). Heterogeneity and Network Structure in the Dynamics of Diffusion: Comparing Agent-Based and Differential Equation Models. Management Science, 54(5), 998–1014. doi:10.1287/mnsc.1070.0787 Rai, V., & Henry, A. D. (2016). Agent-based modelling of consumer energy choices. Nature Climate Change, 6(6), 556–562. doi:10.1038/nclimate2967 Railsback, S. F., & Grimm, V. (2012). Agent-Based and Individual-Based Modeling: A Practical Introduction. Princeton, NJ: Princeton University Press. Retrieved from https://press.princeton.edu/titles/9639.html Rand, W., & Rust, R. T. (2011). Agent-based modeling in marketing: Guidelines for rigor. International Journal of Research in Marketing, 28(3), 181–193. doi:10.1016/j.ijresmar.2011.04.002 Rasoulkhani, K., Logasa, B., Reyes, M. P., & Mostafavi, A. (2018). Understanding Fundamental Phenomena Affecting the Water Conservation Technology Adoption of Residential Consumers Using Agent-Based Modeling. Water, 10(8). doi:10.3390/w10080993 Rockenbauch, T., & Sakdapolrak, P. (2017). Social networks and the resilience of rural communities in the Global South: a critical review and conceptual reflections. Ecology and Society, 22(1). doi:10.5751/ES-09009-220110 Schlaile, M. P., Knausberg, T., Mueller, M., & Zeman, J. (2018). Viral ice buckets: A memetic perspective on the ALS Ice Bucket Challenge’s diffusion. Cognitive Systems Research, 52, 947–969. doi:10.1016/j.cogsys.2018.09.012 Schmolke, A., Thorbek, P., DeAngelis, D. L., & Grimm, V. (2010). Ecological models supporting environmental decision making: a strategy for the future. Trends in Ecology & Evolution, 25(8), 479–486. doi:10.1016/j.tree.2010.05.001 Scott, J. (2011). Social network analysis: developments, advances, and prospects. Social Network Analysis and Mining, 1(1), 21–26. doi:10.1007/s13278-010-0012-6 Senbel, M., Ngo, V. D., & Blair, E. (2014). Social mobilization of climate change: University students conserving energy through multiple pathways for peer engagement. Journal of Environmental Psychology, 38, 84–93. doi:10.1016/j.jenvp.2014.01.001 Simão, J., & Todd, P. M. (2002). Modeling Mate Choice in Monogamous Mating Systems with Courtship. Adaptive Behavior, 10(2), 113–136. doi:10.1177/1059-712302-010002-03 Smith, K. P., & Christakis, N. A. (2008). Social Networks and Health. Annual Review of Sociology, 34(1), 405–429. doi:10.1146/annurev.soc.34.040507.134601 Snijders, T. A. B., & Steglich, C. E. G. (2015). Representing Micro-Macro Linkages by Actor-based Dynamic Network Models. Sociological Methods & Research, 44(2), 222–271. doi:10.1177/0049124113494573 Snijders, T. A. B., Bunt, G. G. van de, & Steglich, C. E. G. (2010). Introduction to stochastic actor-based models for network dynamics. Social Networks, 32(1), 44–60. doi:10.1016/j.socnet.2009.02.004 Son, J., & Rojas, E. M. (2011). Evolution of Collaboration in Temporary Project Teams: An Agent-Based Modeling and Simulation Approach. Journal of Construction Engineering and Management, 137(8), 619–628. doi:10.1061/(ASCE)CO.1943-7862.0000331 Squazzoni, F. (2010). The Impact of Agent-Based Models in the Social Sciences after 15 Years of Incursions. History of Economic Ideas, 18(2), 197–233. Retrieved from http://www.jstor.org/stable/23723517 Squazzoni, F., Jager, W., & Edmonds, B. (2014). Social Simulation in the Social Sciences: A Brief Overview. Social Science Computer Review, 32(3), 279–294. doi:10.1177/0894439313512975 Stumpf, M. P. H., Wiuf, C., & May, R. M. (2005). Subnets of scale-free networks are not scale-free: Sampling properties of networks. Proceedings of the National Academy of Sciences of the United States of America, 102(12), 4221–4224. doi:10.1073/pnas.0501179102 Talebian, A., & Mishra, S. (2018). Predicting the adoption of connected autonomous vehicles: A new approach based on the theory of diffusion of innovations. Transportation Research Part C: Emerging Technologies, 95, 363–380. doi:10.1016/j.trc.2018.06.005 Valente, T. W. (2005). Network Models and Methods for Studying the Diffusion of Innovations. In P. J. Carrington, J. Scott, & S. Wasserman (Eds.), Models and Methods in Social Network Analysis, Structural Analysis in the Social Sciences (pp. 98–116). Cambridge, UK: Cambridge University Press. doi:10.1017/CBO9780511811395.006 Verelst, F., Willem, L., & Beutels, P. (2016). Behavioural change models for infectious disease transmission: a systematic review (2010-2015). Journal of the Royal Society Interface, 13(125). doi:10.1098/rsif.2016.0820 Walker, B. H., Carpenter, S. R., Rockstrom, J., Crépin, A.-S., & Peterson, G. D. (2012). Drivers, “Slow” Variables, “Fast” Variables, Shocks, and Resilience. Ecology and Society, 17(3). doi:10.5751/es-05063-170330 Wang, G., Zhang, Q., Li, Y., & Li, H. L. (2018). Policy simulation for promoting residential PV considering anecdotal information exchanges based on social network modelling. Applied Energy, 223, 1–10. doi:10.1016/j.apenergy.2018.04.028 Wasserman, S., & Faust, K. (1994). Social Network Analysis: Methods and Applications. Cambridge, UK: Cambridge University Press. doi:10.1017/cbo9780511815478 Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ’small-world’ networks. Nature, 393(6684), 440–442. doi:10.1038/30918 Weng, L., Flammini, A., Vespignani, A., & Menczer, F. (2012). Competition among memes in a world with limited attention. Scientific Reports, 2, 335. doi:10.1038/srep00335 Zacharias, G. L., MacMillan, J., & Van Hemel, S. B. (2008). Behavioral Modeling and Simulation: From Individuals to Societies. (G. L. Zacharias, J. MacMillan, & S. B. Van Hemel, Eds.). Washington, D.C.: The National Academies Press. doi:10.17226/12169 Zhang, T., & Nuttall, W. J. (2011). Evaluating Government’s Policies on Promoting Smart Metering Diffusion in Retail Electricity Markets via Agent-Based Simulation. Journal of Product Innovation Management, 28(2), 169–186. doi:10.1111/j.1540-5885.2011.00790.x Zhuge, C. X., Shao, C. F., & Wei, B. R. (2018). An Agent-based Spatial Urban Social Network Generator: A Case Study of Beijing, China. Journal of Computational Science, 29, 46–58. doi:10.1016/j.jocs.2018.09.005
No comment yet.
Scooped by Pietro Terna
Scoop.it!

COVID-19 vaccination alone may not end the pandemic

COVID-19 vaccination alone may not end the pandemic | agent-based simulation | Scoop.it
A simulation-based study conducted at the Miami University, USA, has revealed that vaccination of the general population against coronavirus disease 2019 (COVID-19) alone is not sufficient to control the pandemic, given the current availability and implementation strategies.
No comment yet.
Scooped by Pietro Terna
Scoop.it!

Brexit and financial stability: An agent-based simulation - ScienceDirect

Brexit and financial stability: An agent-based simulation - ScienceDirect | agent-based simulation | Scoop.it
As the UK and the EU prepare to start negotiations for Brexit, it is important for both sides to comprehend the full extent of the consequences of thi…...
No comment yet.
Scooped by Pietro Terna
Scoop.it!

UT students build Covid simulation of Horst - U-Today

How does the coronavirus spread in Horst? This question is answered by four UT students using a computerized simulation of the building.'Simple things like a face mask, social distancing and a lower building capacity make a big difference.'...
No comment yet.
Scooped by Pietro Terna
Scoop.it!

[2012.11903] Modelling Human Routines: Conceptualising Social Practice Theory for Agent-Based Simulation

Our routines play an important role in a wide range of social challenges such
as climate change, disease outbreaks and coordinating staff and patients in a
hospital. To use agent-based simulations (ABS) to understand the role of routines in social challenges we need an agent framework that...
No comment yet.
Scooped by Pietro Terna
Scoop.it!

Simulate a bank run with emotional responses, with Agent Based Economics

Simulate a bank run with emotional responses, with Agent Based Economics | agent-based simulation | Scoop.it
TL;DRThis article is based on my master thesis with my supervisor, assistant professor Ilias Sakellariou.The topic was to simulate a bank run scenario with agents that their emotions might change based on influences and end up in panic mode, cause of the fear that they will lose their money.…...
No comment yet.
Scooped by Pietro Terna
Scoop.it!

Assessing the Impacts of Autonomous Bus-on-Demand Based on Agent-Based Simulation: A Case Study of Fuyang, Zhejiang, China

Assessing the Impacts of Autonomous Bus-on-Demand Based on Agent-Based Simulation: A Case Study of Fuyang, Zhejiang, China | agent-based simulation | Scoop.it
This paper envisions and assesses the performance of an autonomous bus-on-demand (ABoD) system. We take Fuyang, Zhejiang, China, as the study area to investigate the spatiotemporal distribution of bus travel demand during workdays, and we propose replacing inefficient bus routes with the ABoD...
No comment yet.
Scooped by Pietro Terna
Scoop.it!

Superspreading events in the transmission dynamics of SARS-CoV-2: Opportunities for interventions and control

Superspreading events in the transmission dynamics of SARS-CoV-2: Opportunities for interventions and control | agent-based simulation | Scoop.it
This Essay discusses how the transmission of COVID-19 is dominated by superspreading events, proposing that finding ways to cut the long tail of secondary infections is important for controlling onward transmission.
No comment yet.