Stories of plants and its enermies
261 views | +0 today
Follow
Your new post is loading...
Your new post is loading...
Scooped by linzhang
Scoop.it!

Symbiosis genes for immunity and vice versa

Symbiosis genes for immunity and vice versa | Stories of plants and its enermies | Scoop.it

Highlights

• Several LysM receptor proteins have a dual function in symbiosis and immunity.
• Symbiotic transcription factors can also control pathogen infection.
• Genes of hormonal pathways regulate both pathogen and symbiont colonisation.
• Crosstalk between symbiosis and immunity also occurs within the flavonoid pathway.

Basic molecular knowledge on plant–pathogen interactions has largely been gained from reverse and forward genetics in Arabidopsis thaliana. However, as this model plant is unable to establish endosymbiosis with mycorrhizal fungi or rhizobia, plant responses to mutualistic symbionts have been studied in parallel in other plant species, mainly legumes. The resulting analyses led to the identification of gene networks involved in various functions, from microbe recognition to signalling and plant responses, thereafter assigned to either mutualistic symbiosis or immunity, according to the nature of the initially inoculated microbe. The increasing development of new pathosystems and genetic resources in model legumes and the implementation of reverse genetics in plants such as rice and tomato that interact with both mycorrhizal fungi and pathogens, have highlighted the dual role of plant genes previously thought to be specific to mutualistic or pathogenic interactions. The next challenges will be to determine whether such genes have similar functions in both types of interaction and if not, whether the perception of microbial compounds or the involvement of specific plant signalling components is responsible for the appropriate plant responses to the encountered microorganisms.

more...
No comment yet.
Rescooped by linzhang from Plant Pathogenomics
Scoop.it!

Current Opinion Microbiology: The birth and death of effectors in rapidly evolving filamentous pathogen genomes (2018)

Current Opinion Microbiology: The birth and death of effectors in rapidly evolving filamentous pathogen genomes (2018) | Stories of plants and its enermies | Scoop.it
• Plant pathogens produce effectors to interfere with host defences and metabolism.• Effector genes are among the most rapidly evolving genes in pathogen populations.• Transcriptional control evolved in tandem with the chromosomal location of effectors.• Chromosomal rearrangements are at the origin of high effector gain and loss rates.

Plant pathogenic fungi and oomycetes are major risks to food security due to their evolutionary success in overcoming plant defences. Pathogens produce effectors to interfere with host defences and metabolism. These effectors are often encoded in rapidly evolving compartments of the genome. We review how effector genes emerged and were lost in pathogen genomes drawing on the links between effector evolution and chromosomal rearrangements. Some new effectors entered pathogen genomes via horizontal transfer or introgression. However, new effector functions also arose through gene duplication or from previously non-coding sequences. The evolutionary success of an effector is tightly linked to its transcriptional regulation during host colonization. Some effectors converged on an epigenetic control of expression imposed by genomic defences against transposable elements. Transposable elements were also drivers of effector diversification and loss that led to mosaics in effector presence–absence variation. Such effector mosaics within species was the foundation for rapid pathogen adaptation.


Via Kamoun Lab @ TSL
more...
No comment yet.
Rescooped by linzhang from Host-Microbe Interactions. Plant Biology.
Scoop.it!

Design of synthetic bacterial communities for predictable plant phenotypes

Design of synthetic bacterial communities for predictable plant phenotypes | Stories of plants and its enermies | Scoop.it
Author summary Symbiotic microbes influence host development and health, but predicting which microbes or groups of microbes will have a helpful or harmful effect is a major challenge in microbiome research. In this article, we describe a new method to design and predict bacterial communities that alter the plant host response to phosphate starvation. The method uses plant–bacterium binary-association assays to define groups of bacteria that elicit similar effects on the host plant. By constructing partially overlapping bacterial communities, we demonstrated that it is possible to modify phosphate accumulation in the plant shoot and the induction of plant phosphate starvation genes in a controlled manner. We found that bacterial colonization of the plant root does not predict the capacity to produce this phenotype. We evaluated the predictive performance of different statistical models and identified one best able to predict the behavior of untested communities. Our work demonstrates that studying a subset of all possible bacterial communities is sufficient to anticipate the outcome of novel bacterial combinations, and we establish that it is possible to deduce causality between microbiome composition and host phenotypes in complex systems.

Via Tatsuya Nobori
more...
No comment yet.
Scooped by linzhang
Scoop.it!

Genomic changes associated with the evolutionary transitions of Nostoc to a plant symbiont

Genomic changes associated with the evolutionary transitions of Nostoc to a plant symbiont | Stories of plants and its enermies | Scoop.it

The cyanobacteria belonging to the genus Nostoc comprise free-living strains but also facultative plant-symbionts. Symbiotic strains can enter into symbiosis with taxonomically diverse range of host plants. Little is known about genomic changes associated with evolutionary transition of Nostoc from free-living to plant symbiont. Here we compared the genomes derived from eleven symbiotic Nostoc strains isolated from different host plants and infer phylogenetic relationships between strains. Phylogenetic reconstructions of 89 Nostocales showed that symbiotic Nostoc strains with a broad host range, entering epiphytic and intracellular or extracellular endophytic interactions, form a monophyletic clade indicating a common evolutionary history. A polyphyletic origin was found for Nostoc strains which enter only extracellular symbioses, and inference of transfer events implied that this trait was likely acquired several times in the evolution of the Nostocales. Symbiotic Nostoc strains showed enriched functions in transport and metabolism of organic sulfur, chemotaxis and motility, as well as the uptake of phosphate, branched-chain amino acid, and ammonium. The genomes of the intracellular clade differ from that of other Nostoc strains, with a gain/enrichment of genes encoding proteins to generate L-methionine from sulfite and pathways for the degradation of the plant metabolites vanillin and vanillate, and of the macromolecule xylan present in plant cell-walls. These compounds could function as C sources for members of the intracellular clade. Molecular clock analysis indicated that the intracellular clade emerged ca. 600 million years ago, suggesting that intracellular Nostoc symbioses predate the origin of land plants and the emergence of their extant hosts.

more...
No comment yet.
Rescooped by linzhang from Adaptive Evolution and Speciation
Scoop.it!

Tracing the role of human civilization in the globalization of plant pathogens - ISME

Tracing the role of human civilization in the globalization of plant pathogens - ISME | Stories of plants and its enermies | Scoop.it
Co-evolution between plants and parasites, including herbivores and pathogens, has arguably generated much of Earth’s biological diversity. Within an ecosystem, co-evolution of plants and pathogens is a stepwise reciprocal evolutionary interaction: epidemics result in intense selection pressures on both host and pathogen populations, ultimately allowing long-term persistence and ecosystem stability. Historically, plants, and pathogens evolved in unique regional assemblages, largely isolated from other assemblages by geographical barriers. When barriers are broken, non-indigenous pathogenic organisms are introduced into new environments, potentially finding suitable hosts lacking resistance genes and environments favouring pathogenic behavior; this process may result in epidemics of newly emerging diseases. Biological invasions are tightly linked to human activities and have been a constant feature throughout human history. Several pathways enable pathogens to enter new environments, the great majority being human mediated.

Via Ronny Kellner
more...
No comment yet.
Rescooped by linzhang from Adaptive Evolution and Speciation
Scoop.it!

Major New Microbial Groups Expand Diversity and Alter our Understanding of the Tree of Life - Cell

Major New Microbial Groups Expand Diversity and Alter our Understanding of the Tree of Life - Cell | Stories of plants and its enermies | Scoop.it
The tree of life is arguably the most important organizing principle in biology and perhaps the most widely understood depiction of the evolutionary process. It explains to us how we are related to other organisms and where we may have come from. The tree has undergone some tremendous revolutions since the first version was sketched by Charles Darwin. A major innovation was the construction of phylogenetic trees using DNA sequence information, which opened the way for classification of microbial life. As implemented by Carl Woese and collaborators, this work enabled the definition of three domains: Bacteria, Archaea, and Eukaryotes (Woese and Fox, 1977, Woese et al., 1990). More recently, the three-domain topology has been questioned, and eukaryotes—our own branch of life—potentially relocated into the archael domain (Spang et al., 2015, Williams et al., 2013). Beyond this, and as described here, cultivation-independent genomic methods that access sequences from laboratory-intractable organisms have added many new lineages to the tree. Their inclusion completely clarifies the extreme minority of life’s diversity that is represented by macroscopic organisms and underscores that our place in biology is dwarfed by bacteria and archaea.

Via Matt Agler, Steve Marek, Ronny Kellner
more...
No comment yet.
Rescooped by linzhang from Adaptive Evolution and Speciation
Scoop.it!

Gene Flow between Divergent Cereal- and Grass-Specific Lineages of the Rice Blast Fungus Magnaporthe oryzae - mBio

Gene Flow between Divergent Cereal- and Grass-Specific Lineages of the Rice Blast Fungus Magnaporthe oryzae - mBio | Stories of plants and its enermies | Scoop.it
IMPORTANCE Infection of novel hosts is a major route for disease emergence by pathogenic microorganisms. Understanding the evolutionary history of multihost pathogens is therefore important to better predict the likely spread and emergence of new diseases. Magnaporthe oryzae is a multihost fungus that causes serious cereal diseases, including the devastating rice blast disease and wheat blast, a cause of growing concern due to its recent spread from South America to Asia. Using whole-genome analysis of 76 fungal strains from different hosts, we have documented the divergence of M. oryzae into numerous lineages, each infecting a limited number of host species. Our analyses provide evidence that interlineage gene flow has contributed to the genetic makeup of multiple M. oryzae lineages within the same species. Plant health surveillance is therefore warranted to safeguard against disease emergence in regions where multiple lineages of the fungus are in contact with one another.

Via Steve Marek, Ronny Kellner
more...
No comment yet.
Rescooped by linzhang from Adaptive Evolution and Speciation
Scoop.it!

Influence of resistance breeding in common bean on rhizosphere microbiome composition and function - ISME

Influence of resistance breeding in common bean on rhizosphere microbiome composition and function - ISME | Stories of plants and its enermies | Scoop.it
The rhizosphere microbiome has a key role in plant growth and health, providing a first line of defense against root infections by soil-borne pathogens. Here, we investigated the composition and metabolic potential of the rhizobacterial community of different common bean (Phaseolus vulgaris) cultivars with variable levels of resistance to the fungal root pathogen Fusarium oxysporum (Fox). For the different bean cultivars grown in two soils with contrasting physicochemical properties and microbial diversity, rhizobacterial abundance was positively correlated with Fox resistance. Pseudomonadaceae, bacillaceae, solibacteraceae and cytophagaceae were more abundant in the rhizosphere of the Fox-resistant cultivar. Network analyses showed a modular topology of the rhizosphere microbiome of the Fox-resistant cultivar, suggesting a more complex and highly connected bacterial community than in the rhizosphere of the Fox-susceptible cultivar. Metagenome analyses further revealed that specific functional traits such as protein secretion systems and biosynthesis genes of antifungal phenazines and rhamnolipids were more abundant in the rhizobacterial community of the Fox-resistant cultivar. Our findings suggest that breeding for Fox resistance in common bean may have co-selected for other unknown plant traits that support a higher abundance of specific beneficial bacterial families in the rhizosphere with functional traits that reinforce the first line of defense.

Via Ronny Kellner
more...
No comment yet.
Rescooped by linzhang from Plant Pathogens
Scoop.it!

A role for small RNA in regulating innate immunity during plant growth

A role for small RNA in regulating innate immunity during plant growth | Stories of plants and its enermies | Scoop.it
Author summary In plants, nucleotide-binding (NB) leucine-rich repeat (LRR) receptors (NLR) mediate pathogen-specific effector triggered immunity and are widely used in breeding to generate pathogen-resistant crops. However, dysregulation of NLR expression can inhibit plant growth and how NLR expression and function are regulated in different stages of plant growth is poorly understood. Using a high-throughput sequencing and bioinformatics approach, we found an overall increase in NLR expression, but expression of NLR-targeting sRNA during plant growth was decreased. We also used resistance to tobacco mosaic virus (TMV) mediated by the resistance gene N as a model system to study the biological significance of growth regulation of NLR by miRNAs. We found that N-mediated TMV immunity strengthened and N transcript levels increased during plant maturation. Using genetic analysis, we showed that up-regulation of N was due to transcriptional down-regulation of the N-targeting miR6019/6020 cluster during plant growth. We also showed that sRNA-mediated growth regulation of N expression and function was conserved between tobacco and tomato plants. This study therefore reveals a role for miRNAs in regulating innate immunity during plant growth.

Via Yogesh Gupta
more...
No comment yet.
Rescooped by linzhang from Plant Pathogenomics
Scoop.it!

bioRxiv: Dominant integration locus drives continuous diversification of plant immune receptors with exogenous domain fusions (2017)

bioRxiv: Dominant integration locus drives continuous diversification of plant immune receptors with exogenous domain fusions (2017) | Stories of plants and its enermies | Scoop.it

The plant immune system is innate, encoded in the germline. Using it efficiently, plants are capable of recognizing a diverse range of rapidly evolving pathogens. A recently described phenomenon shows that plant immune receptors are able to recognize pathogen effectors through the acquisition of exogenous protein domains from other plant genes. We showed that plant immune receptors with integrated domains are distributed unevenly across their phylogeny in grasses. Using phylogenetic analysis, we uncovered a major integration clade, whose members underwent repeated independent integration events producing diverse fusions. This clade is ancestral in grasses with members often found on syntenic chromosomes. Analyses of these fusion events revealed that homologous receptors can be fused to diverse domains. Furthermore, we discovered a 43 amino acids long motif that was associated with this dominant integration clade and was located immediately upstream of the fusion site. Sequence analysis revealed that DNA transposition and/or ectopic recombination are the most likely mechanisms of NLR-ID formation. The identification of this subclass of plant immune receptors that is naturally adapted to new domain integration will inform biotechnological approaches for generating synthetic receptors with novel pathogen baits.


Via Kamoun Lab @ TSL
more...
No comment yet.
Rescooped by linzhang from Plant Pathogenomics
Scoop.it!

BMC Genomics: Genome analysis of the foxtail millet pathogen Sclerospora graminicola reveals the complex effector repertoire of graminicolous downy mildews (2017)

BMC Genomics: Genome analysis of the foxtail millet pathogen Sclerospora graminicola reveals the complex effector repertoire of graminicolous downy mildews (2017) | Stories of plants and its enermies | Scoop.it

Background. Downy mildew, caused by the oomycete pathogen Sclerospora graminicola, is an economically important disease of Gramineae crops including foxtail millet (Setaria italica). Plants infected with S. graminicola are generally stunted and often undergo a transformation of flower organs into leaves (phyllody or witches’ broom), resulting in serious yield loss. To establish the molecular basis of downy mildew disease in foxtail millet, we carried out whole-genome sequencing and an RNA-seq analysis of S. graminicola.

 

Results. Sequence reads were generated from S. graminicola using an Illumina sequencing platform and assembled de novo into a draft genome sequence comprising approximately 360 Mbp. Of this sequence, 73% comprised repetitive elements, and a total of 16,736 genes were predicted from the RNA-seq data. The predicted genes included those encoding effector-like proteins with high sequence similarity to those previously identified in other oomycete pathogens. Genes encoding jacalin-like lectin-domain-containing secreted proteins were enriched in S. graminicola compared to other oomycetes. Of a total of 1220 genes encoding putative secreted proteins, 91 significantly changed their expression levels during the infection of plant tissues compared to the sporangia and zoospore stages of the S. graminicola lifecycle.

 

Conclusions. We established the draft genome sequence of a downy mildew pathogen that infects Gramineae plants. Based on this sequence and our transcriptome analysis, we generated a catalog of in planta-induced candidate effector genes, providing a solid foundation from which to identify the effectors causing phyllody.


Via Kamoun Lab @ TSL
more...
No comment yet.
Scooped by linzhang
Scoop.it!

Plasmodesmal regulation during plant–pathogen interactions

Plasmodesmal regulation during plant–pathogen interactions | Stories of plants and its enermies | Scoop.it
Plasmodesmata (PD) are plasma membrane-lined pores that connect neighbouring plant cells, bridging the cell wall and establishing cytoplasmic and membrane continuity between cells. PD are dynamic structures regulated by callose deposition in a variety of stress and developmental contexts. This process crudely controls the aperture of the pore and thus the flux of molecules between cells. During pathogen infection, plant cells initiate a range of immune responses and it was recently identified that, following perception of fungal and bacterial pathogens, plant cells initially close their PD. Systemic defence responses depend on the spread of signals between cells, raising questions about whether PD are in different functional states during different immune responses. It is well established that viral pathogens exploit PD to spread between cells, but it has more recently been identified that protein effectors secreted by fungal pathogens can spread between host cells via PD. It is possible that many classes of pathogens specifically target PD to aid infection, which would infer antagonistic regulation of PD by host and pathogen. How PD regulation benefits both host immune responses and pathogen infection is an important question and demands that we examine the multicellular nature of plant–pathogen interactions.
more...
No comment yet.
Rescooped by linzhang from Host-Microbe Interactions. Plant Biology.
Scoop.it!

A Bacterial Type III Effector Targets the Master Regulator of Salicylic Acid Signaling, NPR1, to Subvert Plant Immunity

A Bacterial Type III Effector Targets the Master Regulator of Salicylic Acid Signaling, NPR1, to Subvert Plant Immunity | Stories of plants and its enermies | Scoop.it
NPR1, as the key transcriptional regulator of salicylic acid signaling, plays a pivotal
role in plant local and systemic immunity. Chen et al. find that Pseudomonas syringae
type III effector AvrPtoB directly targets the activated form of NPR1 for ubiquitination-mediated
degradation to inhibit target gene expression, thereby dampening plant immunity.

Via Tatsuya Nobori
more...
No comment yet.
Scooped by linzhang
Scoop.it!

YODA MAP3K kinase regulates plant immune responses conferring broad‐spectrum disease resistance - Sopeña‐Torres - 2018 - New Phytologist -

YODA MAP3K kinase regulates plant immune responses conferring broad‐spectrum disease resistance - Sopeña‐Torres - 2018 - New Phytologist - | Stories of plants and its enermies | Scoop.it
Mitogen‐activated protein kinases (MAPKs) cascades play essential roles in plants by transducing developmental cues and environmental signals into cellular responses. Among the latter are microbe‐associated molecular patterns perceived by pattern recognition receptors (PRRs), which trigger immunity.
We found that YODA (YDA) – a MAPK kinase kinase regulating several Arabidopsis developmental processes, like stomatal patterning – also modulates immune responses. Resistance to pathogens is compromised in yda alleles, whereas plants expressing the constitutively active YDA (CA‐YDA) protein show broad‐spectrum resistance to fungi, bacteria, and oomycetes with different colonization modes. YDA functions in the same pathway as ERECTA (ER) Receptor‐Like Kinase, regulating both immunity and stomatal patterning.
ER‐YDA‐mediated immune responses act in parallel to canonical disease resistance pathways regulated by phytohormones and PRRs. CA‐YDA plants exhibit altered cell‐wall integrity and constitutively express defense‐associated genes, including some encoding putative small secreted peptides and PRRs whose impairment resulted in enhanced susceptibility phenotypes. CA‐YDA plants show strong reprogramming of their phosphoproteome, which contains protein targets distinct from described MAPKs substrates.
Our results suggest that, in addition to stomata development, the ER‐YDA pathway regulates an immune surveillance system conferring broad‐spectrum disease resistance that is distinct from the canonical pathways mediated by described PRRs and defense hormones.
more...
No comment yet.
Scooped by linzhang
Scoop.it!

Extracellular vesicles as key mediators of plant–microbe interactions

Extracellular vesicles as key mediators of plant–microbe interactions | Stories of plants and its enermies | Scoop.it
Extracellular vesicles (EVs) are lipid compartments capable of trafficking proteins, lipids, RNA and metabolites between cells. Plant cells have been shown to secrete EVs during immune responses, but virtually nothing is known about their formation, contents or ultimate function. Recently developed methods for isolating plant EVs have revealed that these EVs are enriched in stress response proteins and signaling lipids, and appear to display antifungal activity. Comparison to work on animal EVs, and the observation that host-derived small interfering RNAs and microRNAs can silence fungal genes, suggests that plant EVs may also mediate trans-kingdom RNA interference. Many fundamental questions remain, however, regarding how plant EVs are produced, how they move, and if and how they are taken up by target cells.
more...
No comment yet.
Scooped by linzhang
Scoop.it!

Out of Water: The Origin and Early Diversification of Plant R-Genes

Out of Water: The Origin and Early Diversification of Plant R-Genes | Stories of plants and its enermies | Scoop.it
During plant-pathogen interactions, plants use intracellular proteins with nucleotide-binding site and leucine-rich repeat (NBS-LRR) domains to detect pathogens. NBS-LRR proteins represent a major class of plant disease resistance genes (R-genes). Whereas R-genes have been well characterized in angiosperms, little is known about their origin and early diversification. Here we perform comprehensive evolutionary analyses of R-genes in plants and report the identification of R-genes in basal-branching streptophytes, including charophytes, liverworts, and mosses. Phylogenetic analyses suggest that plant R-genes originated in charophytes and R-proteins diversified into TIR-NBS-LRR proteins (TNLs) and non-TIR-NBS-LRR proteins (nTNLs) in charophytes. Moreover, we show that plant R-proteins evolved in a modular fashion through frequent gain or loss of protein domains. Most of the R-genes in basal-branching streptophytes underwent adaptive evolution, indicating an ancient involvement of R-genes in plant-pathogen interactions. Our findings provide novel insights into the origin and evolution of R-genes and the mechanisms underlying colonization of terrestrial environments by plants.
more...
No comment yet.
Rescooped by linzhang from Adaptive Evolution and Speciation
Scoop.it!

Genomic changes associated with the evolutionary transitions of Nostoc to a plant symbiont - MBE

Genomic changes associated with the evolutionary transitions of Nostoc to a plant symbiont - MBE | Stories of plants and its enermies | Scoop.it

The cyanobacteria belonging to the genus Nostoc comprise free-living strains but also facultative plant-symbionts. Symbiotic strains can enter into symbiosis with taxonomically diverse range of host plants. Little is known about genomic changes associated with evolutionary transition of Nostoc from free-living to plant symbiont. Here we compared the genomes derived from eleven symbiotic Nostoc strains isolated from different host plants and infer phylogenetic relationships between strains. Phylogenetic reconstructions of 89 Nostocales showed that symbiotic Nostoc strains with a broad host range, entering epiphytic and intracellular or extracellular endophytic interactions, form a monophyletic clade indicating a common evolutionary history. A polyphyletic origin was found for Nostoc strains which enter only extracellular symbioses, and inference of transfer events implied that this trait was likely acquired several times in the evolution of the Nostocales. Symbiotic Nostoc strains showed enriched functions in transport and metabolism of organic sulfur, chemotaxis and motility, as well as the uptake of phosphate, branched-chain amino acid, and ammonium. The genomes of the intracellular clade differ from that of other Nostoc strains, with a gain/enrichment of genes encoding proteins to generate L-methionine from sulfite and pathways for the degradation of the plant metabolites vanillin and vanillate, and of the macromolecule xylan present in plant cell-walls. These compounds could function as C sources for members of the intracellular clade. Molecular clock analysis indicated that the intracellular clade emerged ca. 600 million years ago, suggesting that intracellular Nostoc symbioses predate the origin of land plants and the emergence of their extant hosts.


Via Ronny Kellner
more...
No comment yet.
Rescooped by linzhang from Adaptive Evolution and Speciation
Scoop.it!

Tracing the role of human civilization in the globalization of plant pathogens - ISME

Tracing the role of human civilization in the globalization of plant pathogens - ISME | Stories of plants and its enermies | Scoop.it
Co-evolution between plants and parasites, including herbivores and pathogens, has arguably generated much of Earth’s biological diversity. Within an ecosystem, co-evolution of plants and pathogens is a stepwise reciprocal evolutionary interaction: epidemics result in intense selection pressures on both host and pathogen populations, ultimately allowing long-term persistence and ecosystem stability. Historically, plants, and pathogens evolved in unique regional assemblages, largely isolated from other assemblages by geographical barriers. When barriers are broken, non-indigenous pathogenic organisms are introduced into new environments, potentially finding suitable hosts lacking resistance genes and environments favouring pathogenic behavior; this process may result in epidemics of newly emerging diseases. Biological invasions are tightly linked to human activities and have been a constant feature throughout human history. Several pathways enable pathogens to enter new environments, the great majority being human mediated.

Via Ronny Kellner
more...
No comment yet.
Rescooped by linzhang from Adaptive Evolution and Speciation
Scoop.it!

Genomic features of bacterial adaptation to plants - Nature Genetics

Genomic features of bacterial adaptation to plants - Nature Genetics | Stories of plants and its enermies | Scoop.it
Plants intimately associate with diverse bacteria. Plant-associated bacteria have ostensibly evolved genes that enable them to adapt to plant environments. However, the identities of such genes are mostly unknown, and their functions are poorly characterized. We sequenced 484 genomes of bacterial isolates from roots of Brassicaceae, poplar, and maize. We then compared 3,837 bacterial genomes to identify thousands of plant-associated gene clusters. Genomes of plant-associated bacteria encode more carbohydrate metabolism functions and fewer mobile elements than related non-plant-associated genomes do. We experimentally validated candidates from two sets of plant-associated genes: one involved in plant colonization, and the other serving in microbe–microbe competition between plant-associated bacteria. We also identified 64 plant-associated protein domains that potentially mimic plant domains; some are shared with plant-associated fungi and oomycetes. This work expands the genome-based understanding of plant–microbe interactions and provides potential leads for efficient and sustainable agriculture through microbiome engineering.

Via Ronny Kellner
more...
No comment yet.
Rescooped by linzhang from Adaptive Evolution and Speciation
Scoop.it!

Influence of resistance breeding in common bean on rhizosphere microbiome composition and function - ISME

Influence of resistance breeding in common bean on rhizosphere microbiome composition and function - ISME | Stories of plants and its enermies | Scoop.it
The rhizosphere microbiome has a key role in plant growth and health, providing a first line of defense against root infections by soil-borne pathogens. Here, we investigated the composition and metabolic potential of the rhizobacterial community of different common bean (Phaseolus vulgaris) cultivars with variable levels of resistance to the fungal root pathogen Fusarium oxysporum (Fox). For the different bean cultivars grown in two soils with contrasting physicochemical properties and microbial diversity, rhizobacterial abundance was positively correlated with Fox resistance. Pseudomonadaceae, bacillaceae, solibacteraceae and cytophagaceae were more abundant in the rhizosphere of the Fox-resistant cultivar. Network analyses showed a modular topology of the rhizosphere microbiome of the Fox-resistant cultivar, suggesting a more complex and highly connected bacterial community than in the rhizosphere of the Fox-susceptible cultivar. Metagenome analyses further revealed that specific functional traits such as protein secretion systems and biosynthesis genes of antifungal phenazines and rhamnolipids were more abundant in the rhizobacterial community of the Fox-resistant cultivar. Our findings suggest that breeding for Fox resistance in common bean may have co-selected for other unknown plant traits that support a higher abundance of specific beneficial bacterial families in the rhizosphere with functional traits that reinforce the first line of defense.

Via Ronny Kellner
more...
No comment yet.
Scooped by linzhang
Scoop.it!

Function Identification Of miR482b, A Negative Regulator During Tomato Resistance To Phytophthora Infestans

Function Identification Of miR482b, A Negative Regulator During Tomato Resistance To Phytophthora Infestans | Stories of plants and its enermies | Scoop.it

Tomato is an important horticultural and economic crop cultivated worldwide. As Phytophthora infestans becomes a huge threat to tomato production, it is necessary to study the resistance mechanisms of tomato against P. infestans. Our previous research has found that miR482 might be involved in tomato–P. infestans interaction. In this study, miR482b precursor was cloned from Solanum pimpinellifolium “L3708” and miR482b was shown to decrease in abundance in tomato following P. infestans infection. Compared to wild-type tomato plants, tomato plants that overexpressed miR482b displayed more serious disease symptoms after P. infestans infection, with more necrotic cells, longer lesion diameters, and increased P. infestans abundance. Meanwhile, silencing of miR482b was performed by short tandem target mimic (STTM), resulting in enhancement of tomato resistance to P. infestans. Using miRNA and degradome data sets, NBS–LRR disease-resistance genes targeted by miR482b were validated. Negative correlation between the expression of miR482b and its target genes was found in all miR482b-overexpressing and -silencing tomato plants. Our results provide insight into tomato miR482b involved in the response to P. infestans infection, and demonstrate that miR482b–NBS–LRR is an important component in the network of tomato–P. infestans interaction.

more...
No comment yet.
Scooped by linzhang
Scoop.it!

Eudicot plant-specific sphingolipids determine host selectivity of microbial NLP cytolysins

Necrosis and ethylene-inducing peptide 1–like (NLP) proteins constitute a superfamily of proteins produced by plant pathogenic bacteria, fungi, and oomycetes. Many NLPs are cytotoxins that facilitate microbial infection of eudicot, but not of monocot plants. Here, we report glycosylinositol phosphorylceramide (GIPC) sphingolipids as NLP toxin receptors. Plant mutants with altered GIPC composition were more resistant to NLP toxins. Binding studies and x-ray crystallography showed that NLPs form complexes with terminal monomeric hexose moieties of GIPCs that result in conformational changes within the toxin. Insensitivity to NLP cytolysins of monocot plants may be explained by the length of the GIPC head group and the architecture of the NLP sugar-binding site. We unveil early steps in NLP cytolysin action that determine plant clade-specific toxin selectivity.

more...
No comment yet.
Rescooped by linzhang from Plant Pathogenomics
Scoop.it!

bioRxiv: Phytophthora methylomes modulated by expanded 6mA methyltransferases are associated with adaptive genome regions (2017)

bioRxiv: Phytophthora methylomes modulated by expanded 6mA methyltransferases are associated with adaptive genome regions (2017) | Stories of plants and its enermies | Scoop.it

Filamentous plant pathogen genomes often display a bipartite architecture with gene sparse, repeat-rich compartments serving as a cradle for adaptive evolution. However, the extent to which this "two-speed" genome architecture is associated with genome-wide epigenetic modifications is unknown. Here, we show that the oomycete plant pathogens Phytophthora infestans and Phytophthora sojae possess functional adenine N6-methylation (6mA) methyltransferases that modulate patterns of 6mA marks across the genome. In contrast, 5-methylcytosine (5mC) could not be detected in the two Phytophthora species. Methylated DNA IP Sequencing (MeDIP-seq) of each species revealed that 6mA is depleted around the transcriptional starting sites (TSS) and is associated with low expressed genes, particularly transposable elements. Remarkably, genes occupying the gene-sparse regions have higher levels of 6mA compared to the remainder of both genomes, possibly implicating the methylome in adaptive evolution of Phytophthora. Among three putative adenine methyltransferases, DAMT1 and DAMT3 displayed robust enzymatic activities. Surprisingly, single knockouts of each of the 6mA methyltransferases in P. sojae significantly reduced in vivo 6mA levels, indicating that the three enzymes are not fully redundant. MeDIP-seq of the damt3 mutant revealed uneven patterns of 6mA methylation across genes, suggesting that PsDAMT3 may have a preference for gene body methylation after the TSS. Our findings provide evidence that 6mA modification is an epigenetic mark of Phytophthora genomes and that complex patterns of 6mA methylation by the expanded 6mA methyltransferases may be associated with adaptive evolution in these important plant pathogens.


Via Kamoun Lab @ TSL
more...
No comment yet.
Rescooped by linzhang from Adaptive Evolution and Speciation
Scoop.it!

Synima: a Synteny imaging tool for annotated genome assemblies - BMC Bioinformatics

Synima: a Synteny imaging tool for annotated genome assemblies - BMC Bioinformatics | Stories of plants and its enermies | Scoop.it

Background
Ortholog prediction and synteny visualization across whole genomes are valuable methods for detecting and representing a range of evolutionary processes such as genome expansion, chromosomal rearrangement, and chromosomal translocation. Few standalone methods are currently available to visualize synteny across any number of annotated genomes.

Results
Here, I present a Synteny Imaging tool (Synima) written in Perl, which uses the graphical features of R. Synima takes orthologues computed from reciprocal best BLAST hits or OrthoMCL, and DAGchainer, and outputs an overview of genome-wide synteny in PDF. Each of these programs are included with the Synima package, and a pipeline for their use. Synima has a range of graphical parameters including size, colours, order, and labels, which are specified in a config file generated by the first run of Synima – and can be subsequently edited. Synima runs quickly on a command line to generate informative and publication quality figures. Synima is open source and freely available from https://github.com/rhysf/Synima under the MIT License.

Conclusions
Synima should be a valuable tool for visualizing synteny between two or more annotated genome assemblies.


Via Ronny Kellner
more...
Rescooped by linzhang from Host-Microbe Interactions. Plant Biology.
Scoop.it!

Differential Regulation of Two-tiered Plant Immunity and Sexual Reproduction by ANXUR Receptor-like Kinases

Differential Regulation of Two-tiered Plant Immunity and Sexual Reproduction by ANXUR Receptor-like Kinases | Stories of plants and its enermies | Scoop.it
Plants have evolved two tiers of immune receptors to detect infections: cell surface-resident pattern recognition receptors (PRRs) that sense microbial signatures and intracellular nucleotide-binding domain leucine-rich repeat (NLR) proteins that recognize pathogen effectors. How PRRs and NLRs interconnect and activate the specific and overlapping plant immune responses remains elusive. A genetic screen for components controlling plant immunity identified ANXUR1 (ANX1), a malectin-like domain-containing receptor-like kinase, together with its homolog ANX2, as important negative regulators of both PRR- and NLR-mediated immunity in Arabidopsis thaliana. ANX1 constitutively associates with the bacterial flagellin receptor FLAGELLIN-SENSING 2 (FLS2) and its co-receptor BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1). Perception of flagellin by FLS2 promotes ANX1 association with BAK1, thereby interfering with FLS2-BAK1 complex formation to attenuate PRR signaling. In addition, ANX1 complexes with the NLR proteins RESISTANT TO PSEUDOMONAS SYRINGAE 2 (RPS2) and RESISTANCE TO P. SYRINGAE PV MACULICOLA 1 (RPM1). ANX1 promotes RPS2 degradation and attenuates RPS2-mediated cell death. Surprisingly, a mutation that affects ANX1 function in plant immunity does not disrupt its function in controlling pollen tube growth during fertilization. Our study thus reveals a molecular link between PRR and NLR protein complexes that both associate with cell surface-resident ANX1 and uncovers uncoupled functions of ANX1 and ANX2 during plant immunity and sexual reproduction.

Via Tatsuya Nobori
more...
No comment yet.