senegal sante
17.0K views | +0 today
Follow
senegal sante
Actualité de la santé au sénégal et dans le monde
Curated by Makhtar Loum
Your new post is loading...
Your new post is loading...
Scooped by Makhtar Loum
Scoop.it!

Migrants - Daniel Bréhier : « Le parcours d'émigration les a cabossés »

Migrants - Daniel Bréhier : « Le parcours d'émigration les a cabossés » | senegal sante | Scoop.it
Discuter avec lui, c'est un peu comme cartographier la répression à travers le monde, situer les conflits politiques, ethniques ou religieux en cours. Il pourrait être analyste en géopolitique, Daniel Bréhier. Mais il est psychiatre. Chaque jour, il consulte au Centre d'accueil de soin et d'orientation (CASO) de Médecins du monde à Saint-Denis, en Île-de-France. Retraité de la fonction publique en 2011, il travaille depuis pour cette ONG, fondée en 1980 par des anciens de Médecins sans frontières. À cette époque, une bande de médecins et journalistes veut rendre plus visible la situation des « boat people » vietnamiens, et leur venir en aide.

La prise en charge médicale des migrants s'est perpétuée tout au long de l'histoire de Médecins du monde. Elle intègre une aide psychologique. À son arrivée en 2011, Daniel Bréhier recevait des Pakistanais menacés par les talibans, quelques réfugiés d'Inde et du Bangladesh, et des Ivoiriens « craignant des exactions d'anciens chefs rebelles », dans le sillage de la crise politique ivoirienne de 2010-2011. À cette période, les routes migratoires à travers le Sahara et la Méditerranée existaient déjà. « Mais on en parlait moins », dit-il. Aujourd'hui, ses patients sont surtout des migrants originaires du continent africain, passés par la Libye. Pour Le Point Afrique, il revient sur les maux dont ils souffrent, et sur ce périple destructeur.


Daniel Bréhier est médecin psychiatre au Centre d’Accueil de Soins et d’Orientation (CASO) de Saint Denis, et responsable de la Mission mineurs étrangers à Paris de Médecins du monde. © DR

Le Point Afrique : Comment se déroulent les consultations au CASO de Saint-Denis (93), où vous travaillez ?

Daniel Bréhier : les patients nous connaissent par le bouche-à-oreille ou sont envoyés par des associations. Dans la plupart des cas, ils ont des douleurs multiples. Ils voient d'abord une infirmière, qui les renvoie éventuellement vers un médecin généraliste. Environ un quart des adultes et la moitié des mineurs nous sont ensuite adressés. Nous sommes trois psychiatres et une psychologue. On commence par parler de leur parcours. Pour la plupart d'entre eux, ce ne sont pas des migrants économiques comme on a tendance à les présenter. En général, ils ont subi des menaces ou des tortures pour des motifs politiques, mais pas seulement. En ce moment, nous voyons beaucoup de migrants qui ont dû fuir pour des causes de violences interethniques ou intrafamiliales.

Il y a par exemple des femmes qui refusent l'excision de leur fille ou fuient un mariage forcé. On reçoit aussi beaucoup de mineurs qui ont été fragilisés suite au décès d'un de leurs parents. Il arrive qu'ils soient moins bien traités dans leur nouveau cercle familial, voire rejetés. Donc ils s'en vont, se retrouvent SDF dans leur pays, et quelqu'un leur propose de partir. Ils quittent leur pays sans même savoir où ils vont aller. On rencontre enfin des homosexuels qui ont fait l'objet de menaces ou de violences.

En quoi le parcours d'émigration peut-il créer des troubles d'ordre psychique ?

En général, le trajet entre le pays d'origine et l'Europe, qui peut durer des années, est extrêmement chaotique. On a beaucoup parlé ces derniers temps des violences en Libye, qui sont en effet très importantes, mais une fois arrivés en Europe, les migrants se retrouvent souvent dans la rue.

Donc ce parcours est avant tout une errance, dans une très grande précarité, et est ponctué d'incertitudes. Où va-t-on manger dormir, se laver ? Il n'est pas toujours possible de satisfaire ces besoins élémentaires. Par exemple, en Libye, où ils sont détenus, ils ont à peine de quoi manger et sont obligés de travailler.

De nombreux migrants nous racontent aussi que lorsqu'on les conduit en mer sur les côtes libyennes, certaines personnes ont peur et refusent d'embarquer sur le Zodiac. Mais des hommes les menacent avec leurs armes et il n'est pas question de faire marche arrière. C'est « ou tu montes, ou je te descends ». Certains candidats à la traversée sont donc tués instantanément, sous leurs yeux. La mort est fréquente. Sur les routes du désert, dans les prisons libyennes, en mer... Ils côtoient la mort. C'est un psychotraumatisme, et chaque nouveau traumatisme entraîne une réminiscence des précédents.

Comment se manifestent ces psychotraumatismes ?

Nos patients se plaignent d'abord de maux de tête. Bien souvent, ils sont submergés par leurs pensées, par des images qui remontent. Tout se mélange. Il y a donc une lutte interne pour essayer de mettre ces traumatismes à distance. C'est ce qui se joue dans ce mal de tête. Cela entraîne des troubles du sommeil, des cauchemars, et de la fatigue. Ils parlent d' « épuisement ». On observe aussi des troubles de l'attention et de la mémoire. Ils ont beaucoup de mal à se concentrer.

Enfin, ils doivent aussi s'adapter à d'autres cultures, ce qui requiert beaucoup d'efforts. Or, vu qu'ils vivent pour la plupart dans la rue, ils n'ont pas les clés pour s'intégrer. Cela ajoute à la confusion. Ils nous disent qu'ils n'arrivent pas à « se retrouver ». J'entends souvent : « Je ne me reconnais plus. »

Tous ces aspects sont des manifestations de la souffrance psychique, qui dépassent le simple cadre du stress post-traumatique. On est dans quelque chose de beaucoup plus vaste.

Quels sont les remèdes à ces souffrances psychiques ?

Notre rôle consiste à poser des mots sur ce qu'ils ont vécu, et surtout à remettre du lien. Bien souvent, ils ne parviennent plus à articuler les événements. Les dates, les lieux, tout est confus. On essaie de créer de la continuité dans leur existence, de revenir sur le passé, et sur le présent. C'est un travail important, qui leur sera utile lorsqu'ils devront faire le récit de leur parcours, au moment de la demande d'asile. On leur oppose souvent que leur discours n'est pas cohérent. Donc nous devons prendre le temps de les écouter, pour les aider à reconstituer une certaine unité.

Certains éprouvent enfin de la culpabilité, car ils sont partis en laissant d'autres personnes au pays. Des femmes, par exemple, ont confié leurs enfants à des proches, et ont le sentiment de les avoir abandonnés. D'autres sont habités par la honte, par rapport à ce qu'ils ont vécu au cours de la traversée. Ils ont vécu des atteintes à leur intégrité physique.

Donc nous devons leur rappeler qu'ils n'y sont pour rien, qu'ils sont avant tout des victimes. C'est le parcours d'émigration qui les a cabossés.
more...
No comment yet.
Scooped by Makhtar Loum
Scoop.it!

Vidéo- Financement de la santé: Macky Sall invite les maires à soutenir les mutuelles... - YouTube

more...
No comment yet.
Scooped by Makhtar Loum
Scoop.it!

Santé : dépistage de la drépanocytose

La drépanocytose touche 10% de la population de Guyane. Le dépistage de cette maladie est important
more...
No comment yet.
Rescooped by Makhtar Loum from Le numérique au service de la santé à domicile et de l’autonomie
Scoop.it!

Santé connectée : lancement de la premiere grande étude française sur les risques cardiovasculaires

Santé connectée : lancement de la premiere grande étude française sur les risques cardiovasculaires | senegal sante | Scoop.it

Dans le cadre de cette étude, un appel à volontaires est lancé du 20 novembre 2017 au 20 janvier 2018 pour recruter 5 000 personnes souhaitant évaluer leur risque cardiovasculaire.

Un programme leur sera ensuite proposé pour améliorer la gestion de leurs facteurs de risque tels que l'hypertension, le diabète ou les problèmes de cholestérol.

Cette étude, dont les premiers résultats sont attendus en septembre 2018, est ouverte à tout public adulte francophone.
L'objectif de ce programme est de savoir s'il peut aider à la prise en charge du risque cardiovasculaire, en particulier chez les personnes ne prenant pas le temps de consulter régulièrement leur médecin traitant ou encore chez celles qui ont un accès limité aux soins, notamment dans les déserts médicaux.


LA SANTÉ CONNECTÉE AU BANC D'ESSAI
La santé connectée, dans son sens le plus large (télémédecine, objets connectés, applications de télésuivi et d'e-coaching…), apporte des solutions potentiellement efficaces voire indispensables pour la prise en charge médicale optimale de demain ...


Via France Silver Eco
more...
France Silver Eco's curator insight, November 28, 6:28 AM

our évaluer l'intérêt de la santé connectée dans la prévention des maladies cardiovasculaires, une équipe de recherche en santé connectée coordonnée par le Dr Boris Hansel et le Pr Ronan Roussel, du service d'endocrinologie diabétologie et nutrition de l'hôpital Bichat – Claude -Bernard, AP-HP, le Dr Didier Letourneur, directeur de l'unité INSERM U-1148 et Steeve Reisberg, directeur de l'IUT de l'université Paris Diderot lancent une étude observationnelle à l'échelle nationale.

Scooped by Makhtar Loum
Scoop.it!

Technologies Change Health Insurance: The Most Innovative Ventures - The Medical Futurist

Technologies Change Health Insurance: The Most Innovative Ventures - The Medical Futurist | senegal sante | Scoop.it
According to OECD predictions, exceeding budgets on health spending remains an issue for OECD countries. Maintaining today’s healthcare systems and funding future medical advances will be difficult without major reforms. Public expenditure on health and long-term care in OECD countries is set to increase from around 6 percent of GDP today to almost 9 percent in 2030 and 14 percent by 2060.

Moreover, in 2011 a study of the World Economic Forum estimated that the global economic impact of the five leading chronic diseases — cancer, diabetes, mental illness, heart disease, and respiratory disease — could reach $47 trillion over the next 20 years. The estimated cumulative output loss caused by the illnesses, which together already kill more than 36 million people a year and are predicted to kill tens of millions more in the future, represents around 4 percent of annual global GDP over the coming two decades, the study said.



These are conditions mostly due to bad lifestyle choices: excessive use of tobacco, alcohol, unhealthy food and no sports. With the aging of the population in Western countries, the shift in the burden of disease toward chronic conditions has further accelerated. Even in the developing world, increases in the prevalence of chronic disease are outstripping reductions in acute infectious diseases.

These phenomena push governments and private companies to change the financial structure of healthcare systems as well as the hundred-year-old idea of treating acute diseases instead of concentrating on prevention.

Health data multiplies through disruptive technologies

Technologies that allow collecting and storing data and connecting systems make it possible to move from reactive care towards preventive and personalized care, and it will be more and more so in the future. The spread of electronic medical records, the connectivity of data systems and big data analytics help collect, store and analyze more and more health data. Moreover, piles of data will be augmented with information stemming from health sensors, wearables, and trackers – which enable data collection about lifestyle choices.

The latter is very important. While we already generate mountains of health data, its majority has nothing to do with what we choose to do for our health on a daily basis. Measuring blood pressure or taking a pulse may be routine practice, and it could even be registered in the healthcare system, but there is no way to know whether patients are looking after themselves outside of official care. Whether they keep a lifestyle appropriate to their personal health risks or ignore the doctor’s recommendations altogether.



Around a hundred million wearable units to measure health parameters were sold in 2015. It is predicted that 245 million wearable devices will be sold in 2019. While it is still considered an emerging marketplace, digital preventative medicine currently stands as an $8 billion industry. And this is just the beginning. Digital tattoos will measure data and notify the user when medical supervision is needed without the user’s active participation. When A.I.-based algorithms start to browse patients’ health data, they will discover new correlations and long-term consequences.

What will health insurance make of personalized health data?

It is no question that this immense amount of health data will be utilized by health insurance companies. The question is rather how they will do it. Will they leverage on data to make premiums higher for high-risk patients or to reduce their business risks by alerting patients about bad lifestyle choices? What will happen to patients’ private data? Should we prepare for Dr. Big Brother? How will the relationship between employers, employees and health insurance companies change in the light of easily obtainable personal fitness and health data?

Beyond all these valid questions, we also have to acknowledge that health insurance companies and large employers with employee wellness programs are still struggling with how to capitalize on disruptive technologies. According to a survey of the US data analytics company, HealthMine, 83 percent of consumers say they use digital health tools; but only 22% say health plans are utilizing the data to give guidance. The findings are based on a survey of 750 insured consumers who have sponsored health insurance. Moreover, one of their reports revealed that most health plan members believe their plan’s communications are impersonal and centered around bills rather than healthcare guidance.



Insurance companies and employers partnering with digital health

In spite of the initial difficulties, many health insurance companies and huge international firms committed to workplace health and wellness are making steps towards including digital health into their solutions. In September 2017, Fujitsu decided that Fitbit’s wearable devices and services will be soon incorporated into the company’s corporate wellness program. The program will offer 10,000 employees a chance to earn redeemable fitness points using the Fitbit Charge 2 and a cloud-based data system, thereby making it one of Fitbit’s largest corporate wellness agreements in Japan.

Insurance firm Collinson Group has partnered with digital health company Babylon Health to give its customers free global video or telephone access to a doctor anytime anywhere. Users of the babylon app can also access a symptom checker and prescriptions can be issued to nearby pharmacies if possible. In 2016, Highmark Health Plan announced a partnership with connected behavioral health company Quartet Health providing mental health services. Members can use Quartet Health to communicate with a psychiatrist via video or phone, participate in online treatment programs to help manage conditions, view resources, and health information to learn about cognitive conditions and connect with peers.



Reimbursing digital health solutions

The practice of insurance companies giving reimbursement for preventive and reactive digital health solutions also seems to be spreading throughout the industry. In Germany, Berlin-based Caterna Vision Therapy rolled out the first mobile medical app to be prescribed to patients by physicians in 2014. Caterna’s online program for children with amblyopia, a visual impairment condition, is reimbursed by health insurance provider Barmer GEK.

In another quite encouraging case from 2016, a US health insurance plan implemented a medical policy with ReWalk Robotics’ powered exoskeletons in its coverage, saying that these devices for ambulation in patients with lower limb disabilities are considered medically necessary when certain patient-specific medical criteria have been met.

Omada Health, a Silicon Valley start-up established in 2011, developed a program called Prevent, which is reimbursed by the US Center for Medicare and Medicaid Services (CMS). It aims to help prevent chronic conditions such as type-2 diabetes. CMS estimated that diabetes prevention programs such as Prevent can save nearly $2,650 per beneficiary over 15 months!



The most innovative health insurance start-ups and solutions

Yet, there are many insurance companies who go one step further and choose to invest heavily in digital health start-ups betting on their even more widespread use in the future. This strategy could prove to be fruitful in the future, as they are combining insurance companies’ expertise with innovative solutions. But this is just one business model next to many on the buzzing health insurance market.

Disruptive start-ups or companies with new healthcare solutions are ready to transform the stage, as well, while huge international Here, I collected the most promising start-ups and innovative solutions of the health insurance scene.

1) Oscar Health

Oscar is a New York-based health insurance company with more than 40,000 users that has employed technology, design, and data to humanize healthcare since 2013. The venture was founded with the vision of “changing the user interface of health insurance”. This means health care plans and benefits that are easy to understand, tools such as smartwatches and fitness monitors that save you time and discounted health insurance premiums. Oscar is already available in New York, New Jersey, Texas, and California.

Its user-friendly website allows subscribers to track and manage medical bills, while Oscar collects data from customers’ visits with doctors, analyzes how much they cost and offers the results. Moreover, their patients in the US get Amazon gift cards as rewards for achieving their daily goals as measured by Fitbit wearables. As a great success for the innovative health insurance start-up, in June 2017 Cleveland Clinic and Oscar announced, they are teaming up on a new health plan.



2) Alan

The first French digital health insurance start-up was launched in 2016 – the first one on the country’s stagnant market for decades! One of its founders, Jean-Charles Samuelian, on the venture’s own blog wrote that their “objective is to modernise health insurance by focusing heavily on improving user experience while providing an excellent price-quality ratio health plan”. The monthly price depends on the salary as well as other factors as age, and the insured will not be locked into long-term contracts.

Moreover, the company wants to completely cut out paperwork – it operates entirely without paper. You can send documents using your smartphone and pay online. Employees get their own dashboard. Alan automates all the paperwork for your accountants and sends data directly to your payroll provider. In September 2017, they launched a mobile app, and with its help, users can send Alan their bills, inform the insurer about their state and contact the company directly. Huge step for insurance!



3) Coya AG

Berlin-based Coya AG adopts a customer-first approach and a tech-driven insurance business model. The start-up aims to launch its services in Germany in 2018 and has already filed a license application with German regulator Bundesanstalt für Finanzdienstleistungsaufsicht (BaFin) to become a fully licensed and regulated European insurer.

It is a hopeful future player on the German market, it already raised a seed investment of over $10 million from leading global investors including Valar Ventures (the venture fund backed by Peter Thiel). 

4) Provata Health

The Portland, US-based venture, established in 2013, is not a health insurance company, but rather helps workplaces streamline their wellness programs to reduce insurance premiums, thus healthcare costs as well as create a healthier workplace. The company’s digital health program is based on $46 million in funding from the Center for Disease Control and Prevention and National Institutes of Health for clinical trials conducted by Provata physicians to test the effectiveness of their intervention paradigm.

Provata offers team-based digital healthcare programs for companies where there hasn’t been any wellness initiative or where the workplace health plan did not bring the coveted results. One of their main tools is the inclusion of colleagues as teams in the wellness program which greatly increases engagement.



Technology will soon offer the opportunity for truly personalized care, tailored to our medical background and lifestyle data. The future of health insurance should guarantee we each have access to it, while at the same time it should guarantee to keep the privacy of our personal lives intact.
more...
No comment yet.
Scooped by Makhtar Loum
Scoop.it!

SudOnLine - Le Portail de Sud Quotidien SENEGAL | L’UNIVERSITE DE BAMBEYE POUR LA MISE EN PLACE D’UNE LICENCE ONE HEALTH

SudOnLine - Le Portail de Sud Quotidien SENEGAL | L’UNIVERSITE DE BAMBEYE POUR LA MISE EN PLACE D’UNE LICENCE ONE HEALTH | senegal sante | Scoop.it

La  1ère « Journée mondiale Une seule santé», a été célébrée le 3 novembre à l’Université Alioune Diop de Bambey, en présence des différents professionnels des domaines de la santé humaine, animale et environnementale.  Cette journée vise à sensibiliser  le public et les professionnels sur cette approche par le biais de la collaboration entre les différentes disciplines de la santé humaine, animale et environnementale. Et cela  aussi bien au niveau institutionnel que de la recherche et l’enseignement.
 
Dans la mise en œuvre du Programme d’action pour la sécurité sanitaire mondiale (Passm), au titre du projet soutien du programme de sécurité mondiale (Ghsa) dans la lutte contre les zoonoses et le renforcement de la santé animale en Afrique, financé  par l’Usaid, la Fao s’évertue à traduire le souhait mondial de permettre aux Etats de pouvoir faire face aux menaces anémiques émergentes et réémergentes. On estime que 60 % des maladies humaines infectieuses connues sont d’origine animale, de même que 75%  des maladies humaines  émergentes.
 
Le Dr commandant Babacar Youm de la Direction des parcs nationaux au ministère de l’environnement et du développement durable, membre de la Tasck Force de la plateforme à la primature explique que «One Heath est un concept qu’on a commencé à institutionnaliser au Sénégal depuis 2016, lequel concept est né des suites des crises sanitaires qui ont eu lieu en l’occurrence la grippe aviaire, et Ebola. L’organisation internationale de la santé, l’organisation internationale de la santé animale, la Fao ont voulu  ensemble mettre leurs efforts ensemble pour traiter les maladies de manière générale.
more...
No comment yet.
Rescooped by Makhtar Loum from E-Santé, M-Santé, Télémedecine, Applications, Objets connectés, Intelligence artificielle
Scoop.it!

Mapui Labs, la market-place entre hôpitaux du médicament

Mapui Labs, la market-place entre hôpitaux du médicament | senegal sante | Scoop.it
La plate-forme collaborative de Mapui Labs facilite les échanges de médicaments entre pharmacies hospitalières. Après avoir développé sa plate-forme et évangélisé son public, la start-up entre dans une phase de monétisation. 
« Parfois

Via Vigipharm
more...
No comment yet.
Scooped by Makhtar Loum
Scoop.it!

New Ways Discovered to Fight Deadly Malaria

New Ways Discovered to Fight Deadly Malaria | senegal sante | Scoop.it
Malaria parasites don't survive for long outside red blood cells, so if they get stuck on their way out, they might die before they have a chance to infect.
more...
No comment yet.
Scooped by Makhtar Loum
Scoop.it!

L'internet des objets: Comment change-t-elle la profession médicale? 

L'internet des objets: Comment change-t-elle la profession médicale?  | senegal sante | Scoop.it
L’avenir des professionnels de la santé se présente ainsi de nos jours :un patient atteint d’asthme se réveille et regarde son smartphone qui lui dit « Bonjour. Comment est votre respiration? ». Le patient enregistre quelques réponses qui sont envoyées à son médecin et stockées sur un serveur qui analyse les résultats et déclenche une alerte si quelque chose est anormal.

Les médecins peuvent fournir un service plus personnalisé en étant capables d’analyser des informations spécifiques pour trouver des causes et déclencheurs et fournir un diagnostic précis. Ils n’ont pas besoin de parcourir physiquement des tonnes de recherches, des résultats de tests et les dossiers des patients.

Je ne suis pas médecin certes, mais j’imagine que les professionnels de la santé ont choisi ce domaine parce qu’ils veulent aider les gens et s’intéressent à la physiologie et à l’anatomie; et non pas parce qu’ils rêvent de passer en revue des masses de documents. Pourtant, pour de nombreux médecins, c’est une réalité, et se concentrer sur le patient est parfois difficile.

Les infirmières aussi croulent sous les tâches administratives et une myriade de règlementations, plutôt que de s’occuper des soins aux patients. Mais la transformation numérique est en train de changer tout cela. Depuis des systèmes qui suivent automatiquement l’historique du patient, jusqu’aux projections virtuelles, en passant par l’ADN et les dossiers médicaux, il existe de nombreux avantages au-delà de la simple réduction de la paperasse.

L’Internet des objets est en train de rendre les patients plus intelligents

L’essentiel de la transformation numérique dans l’espace médical est porté par l’Internet des objets, ce qui permet aux patients d’effectuer leurs propres tests à la maison. Par exemple, l’information sur le taux de sucre dans le sang peut être transmise à une base de données via un patch détenu par un diabétique. En fait, le segment du marché des soins de santé via l’Internet des objets devrait atteindre 117 milliards de dollars d’ici à 2020 (rapport MarketResearch.com).

Un autre exemple est CellScope, qui se connecte au smartphone d’un utilisateur, et qui permet de réaliser des analyses peu coûteuses de grains de beauté, d’éruptions cutanées ou d’infection de l’oreille. Ces images sont envoyées à un médecin et stockées sur un serveur qui traite le scan, analyse et détecte des résultats anormaux. Bientôt, les patients seront en mesure d’effectuer leurs propres tests électrocardiogrammes chez eux. La plupart des maladies cardiaques ne sont identifiées qu’après avoir subi une crise cardiaque. Les personnes qui effectuent leurs propres tests ne réduisent pas seulement le coût et les obstacles pour un examen coûteux, mais vont permettre d’identifier et de prédire les épisodes avant leur apparition grâce à une technologie d’apprentissage automatique.

Au Cameroun, Cardiopad est capable d’effectuer des cardiogrammes avec une tablette. L’application GiftedMom,multi-récompensée, rappelle aux femmes les dates essentielles pour elles et leurs enfants pendant et après la grossesse et des médecins répondent à leurs questions en quelques minutes.Matibabu, en Ouganda, permet aux gens de diagnostiquer le paludisme en utilisant un clip digital connecté à leur smartphone. Le clip utilise la lumière et le magnétisme pour analyser la composition des globules sanguins.

En Côte d’Ivoire, Pharmacy CI géolocalise les pharmacies, vous guide jusqu’à elles, vous donne le prix des médicaments et des informations sur les assurances santé.

Au Sénégal, JokkoSanté est une plateforme de partage de médicaments  qui permet aux plus démunis l’accès aux soins de santé via des récoltes et dons de médicaments. Le système contribue également à lutter contre les contrefaçons. Les donateurs reçoivent des points via leur téléphone mobile et une application gère les données récoltées qui pourront servir à l’Etat pour des études épidémiologiques.

Alors, que vont devenir les professionnels de la santé?
Avoir toutes ces données est une chose, mais les médecins ne vont pas disparaître pour autant. En effet, on prévoit qu’ily aura un besoin de planificateurs de données médicales, ou de gestionnaires de cas, dont le travail consiste à comprendre les données et à assurer la liaison avec les patients. Le médecin assumera un rôle de supervision plutôt que de fournir des soins directs. Les médecins pourraient apparaître moins souvent au chevet des patients, avec des infirmières susceptibles de revenir au rôle principal de prestataires de soins. Et maintenant, les appareils intelligents peuvent rendre le travail des infirmières beaucoup plus facile. Par exemple, il y a eu un moment où l’attention constante d’une infirmière était requise pour surveiller le flux régulier d’une intraveineuse (IV). Maintenant, les IV sont surveillées électroniquement et les erreurs sont automatiquement envoyées à l’appareil de l’infirmière via une surveillance à distance.

Tel médecin tel ordinateur

Certains dans le domaine suggèrent qu’une grande partie de ce qu’un médecin peut accomplir, puisse être remplacée par des ordinateurs. Un médecin doitpenser comme un ordinateur : analyser les informations des tests, des données sur les maladies et l’histoire du patient. Ensuite, après avoir tenu compte de tous ces facteurs, il effectue un diagnostic. Avec des capteurs permettant aux patients d’enregistrer leurs propres résultats de test et des serveurs cloud pour analyser toutes les données, les ordinateurs peuvent effectuer des diagnostics beaucoup plus rapidement.

L’avenir de la santé repose sur la notion d’Intelligence Artificielle (IA), ou la capacité des systèmes informatiques de découvrir le monde, de comprendre, d’agir et d’apprendre. Un ordinateur peut facilement analyser 5 000 articles de recherche sur le diabète alors que les limitations cognitives d’un humain les empêchent de se souvenir des plus de 10 000 maladies que les humains peuvent contracter.

Déjà dans l’industrie du transport aérien, les ordinateurs sont en mesure de faire le travail d’un pilote où un jugement humain est nécessaire. Les négociants du marché utilisent des algorithmes pour prédire le marché boursier, et les voitures autonomes commencent à afficher zéro incident. Les ordinateurs peuvent et vont commencer à faire des diagnostics précis. Déjà, une étude de Lifecom a montré que les essais cliniques, avec des assistants médicaux utilisant un moteur de diagnostic, avaient une précision de 91% sans utiliser de laboratoire, d’imagerie ou d’examens.

Nous entrons dans une nouvelle ère où les expériences numériques reflètent la façon dont les gens interagissent les uns avec les autres et nous passons d’un monde où nous devons comprendre les ordinateurs à un monde où ils nous comprennent, ainsi que notre intention, et peuvent être proactifs. Les systèmes d’intelligence transformeront de manière endémique la façon dont nous innovons et nous transformons pour améliorer les résultats et la manière dont nous optimisons les processus cliniques et opérationnels. Les personnes à travers le continuum de soins de santé sont en mesure de collaborer et d’utiliser l’apprentissage par des machines pour trouver des moyens d’améliorer les résultats pour les patients.

Cependant, les ordinateurs ne peuvent pas remplacer les nuances émotionnelles, porter un  jugement, et la nature complexe et intuitive impliquée dans les soins aux patients, qui vont plus loin que le traitement des données. Les médecins devront simplement améliorer leurs compétences numériques et travailler de concert avec la technologie. Déjà, l’outil principal d’un chirurgien n’est plus un couteau. Ils doivent fonctionner aux côtés de consoles informatiques et de poignets robotiques, tout en regardant un écran haute résolution.

C’est une réalité, et une chose passionnante. L’avenir des soins de santé semble brillant, avec des soins intelligents, précis et accessibles qui libèrent les professionnels de la santé pour faire ce qu’ils ont prévu en premier lieu.

Simon Ouattara – Responsable Secteur public, Microsoft Afrique de l’Ouest, de l’Est et centrale
more...
No comment yet.
Scooped by Makhtar Loum
Scoop.it!

Xenius - Le jeune : une recette miracle

Le jeûne, reconnu depuis longtemps comme une méthode efficace contre le diabète, la migraine, les rhumatismes ou l'hypertension, est également testé en tan
more...
No comment yet.
Scooped by Makhtar Loum
Scoop.it!

Alimentation de complément chez le jeune enfant : les nouvelles recommandations européennes - CERIN

Alimentation de complément chez le jeune enfant : les nouvelles recommandations européennes - CERIN | senegal sante | Scoop.it
Les nouvelles recommandations européennes liées à la diversification alimentaire chez le jeune enfant mettent en avant l’importance de la période d’allaitement maternel exclusif ainsi que le besoin d’introduire des aliments variés, y compris des allergènes, dès le début de la diversification. La prise en compte par les parents des signaux de faim et de satiété de l’enfant est un autre élément clé de ces recommandations.

La Société Européenne de Gastroentérologie, Hépatologie et Nutrition Pédiatrique met à jour ses recommandations concernant l’alimentation de complément chez le jeune enfant. Ces recommandations sont issues d’une revue systématique de littérature et concernent les enfants européens, nés à terme et en bonne santé, au cours de leur première année de vie. Par alimentation de complément, les auteurs désignent tout aliment, solide ou liquide, autre que le lait maternel ou le lait infantile.

Les premières recommandations sont liées à l’âge d’introduction de l’alimentation de complément :
L’allaitement maternel est recommandé pendant les 4 premiers mois de la vie de l’enfant de façon exclusive et pendant les 6 premiers mois, de façon exclusive ou prédominante.
L’introduction des aliments de complément devrait se faire après l’âge de 4 mois et ne devrait pas être retardée après 6 mois.
Par ailleurs, de nombreuses autres recommandations concernent le contenu de l’alimentation de complément :
La poursuite de l’allaitement maternel est recommandée pendant l’introduction des aliments de complément.
Les aliments de complément doivent être adaptés à la culture de la population et doivent être variés en termes de textures et de goûts. L’accent est mis sur l’importance d’introduire des légumes verts au goût amer.
Le lait de vache peut être introduit en petite quantité, mais il ne doit pas représenter la boisson principale de l’enfant avant l’âge de 1 an.
Les aliments allergènes peuvent être proposés dès le début de la diversification. Le gluten peut être introduit entre 4 et 12 mois, en évitant les charges élevées en gluten, tant dans les premières semaines après l’introduction que, plus globalement, durant l’enfance. Chez les enfants à haut risque d’allergie à l’arachide, celle-ci doit être introduite entre 4 et 11 mois, sous la supervision d’un professionnel.
L’alimentation de complément doit comporter des aliments naturellement riches en fer, tels que des produits carnés, ou des aliments enrichis en fer.
Le sucre et le sel ne devraient pas être introduits à l’alimentation de complément. Les jus de fruits et les boissons sucrées devraient également être évités.
Une diversification alimentaire de type végétarienne ou végétalienne n’est pas formellement proscrite. Elle doit cependant être mise en place sous contrôle médical ou diététique afin d’éviter les carences en vitamines B12 et D, en fer, zinc, folate, calcium, acides gras polyinsaturés oméga-3 à longue chaîne et en protéines. Les auteurs mettent en garde les parents souhaitant faire suivre ces régimes alimentaires à leur enfant sur les graves conséquences pouvant être liées au non-suivi des prescriptions de suppléments alimentaires.
Enfin, les dernières recommandations concernent les stratégies générales à adopter par les parents en termes de méthode d’alimentation :
L’utilisation prolongée d’aliments en purée est à proscrire. L’introduction des textures doit suivre le développement de l’enfant ; par exemple l’introduction des textures grumeleuses est recommandée entre 8 et 10 mois.
L’enfant doit être amené à manger progressivement par lui-même. A partir de 12 mois, il devrait principalement boire avec un verre ou une tasse d’apprentissage.
Les parents sont encouragés à nourrir leur enfant en réponse aux signaux de faim et de satiété de celui-ci, en évitant d’utiliser l’alimentation comme un réconfort ou une récompense.
Les auteurs de ces recommandations insistent sur l’importance qu’elles atteignent en particulier les populations à risque telles que les familles présentant les niveaux socio-économiques les plus bas. Par ailleurs, le professionnel qui relaie ces recommandations aux familles devraient en profiter pour donner d’autres conseils de santé, tels que la promotion des opportunités de jeux favorisant l’activité physique chez l’enfant.
more...
No comment yet.
Scooped by Makhtar Loum
Scoop.it!

What Is Living With An Artificial Pancreas Like? - The Medical Futurist

What Is Living With An Artificial Pancreas Like? - The Medical Futurist | senegal sante | Scoop.it
Diabetes management faces extraordinary times with sensors and digital contact lenses but that positive future requires innovators like Dana Lewis who uses a DIY pancreas system.

Traditionally, to monitor blood sugar levels successfully, diabetes patients use insulin pumps and monitors, which send alarms if the glucose levels are too low or too high. More often than not, however, these alarms are quite inefficient. For example, they are often unable to wake up diabetes patients during the night to correct their glucose levels, risking death in their sleep.

This is exactly the reason why diabetes patients have been waiting for a long time for the so-called artificial pancreas – a closed-loop system that constantly measures blood glucose levels, that is able to administer insulin and glucagon in the right amount at the right time – so patients with this chronic illness are able to go to sleep without any worries.

There are already great examples how technology enables patients with diabetes to manage their lives easier in a sustainable way. Look at the example of Dana Lewis. She was 14 when she was diagnosed with diabetes. She, as a digital health analyist, together with her husband, Scott Leibrand, a former Twitter engineer and an expert in computer networks, decided to defy existing technology and fate and started hacking together a homemade ‘artificial pancreas’ to help Dana manage her disease.



And it worked amazingly well! So they started to contemplate about how they could spread the great experience around. As they realized that the only obstacle in helping others suffering from the same condition is regulation – completing clinical trials, becoming FDA-approved and commercialized through traditional processes takes too much time (so it is not only an urban legend that regulation slows down innovation) – they established an open source community to offer know-how and a helping hand to anyone who is interested in creating the DYI ‘artificial pancreas’. There is also a Twitter-feed documenting the community’s efforts to make the lives of diabetes patients easier.

I got really interested in Dana’s experiences and I reached out to her to discuss how the life of a diabetes patient can change with an artificial pancreas and what challenges they face daily.

Managing diabetes is demanding and complicated. An artificial pancreas system would definitely be welcomed by the diabetes community. Why did you start working on yours? 
Artificial pancreas is one of many names for an artificial pancreas – i.e. a system that can integrate an insulin pump and CGM data and be automated to take action to help better manage changes in blood glucose levels.

I did not originally set out to create one, though – three years ago, I originally wanted to solve the problem of not hearing the alarms on my CGM. I knew that if I could get the data from my CGM in real-time (this was before Dexcom SHARE or MiniMed Connect or even Nightscout existed), I could send data to my phone or computer to make louder alarms than was possible on the existing medical device. Once I did that, I realized I wanted to share my data with others, and added buttons to prevent waking them up unnecessarily if I was taking action (thus only alarming them if I wasn’t waking up to take action).

Once I was entering data about actions I was taking, the next obvious step was building a prediction algorithm to make the alarms smarter. This enabled the system (which we called #DIYPS) to only alarm if I needed to take additional action, rather than being purely reactive and alarming without the context of other data, which is still currently the standard of diabetes care today. And a year later, we realized that combining our algorithm with other open source code to communicate and send commands directly to the pump would enable us to “close the loop”. That’s how I went from building a system to better wake me up at night to building an artificial pancreas system that allows me to sleep without having to wake up and take action for diabetes.

I knew I did not want to be the only one who has this kind of device while we are waiting for these kinds of systems to reach the commercial market in 2017-2018 and beyond. That’s why, with the partnership of the open source diabetes community who helped us get to the point of building this system, we decided to find a way to make it open source. That’s how OpenAPS, which is how we refer to the open source artificial pancreas system, was created. This enables anyone with the compatible diabetes devices and motivation to build their own system to be able to learn how to build such a system for themselves.



Can you please describe your device and how it works? Also, how does it get incorporated into your everyday life?
A DIY artificial pancreas is not a medical device in and of itself. It is a system that takes your existing diabetes devices (insulin pump and CGM) and a small smart computer (Raspberry Pi, Intel Edison, or the like) and a radio stick to allow you to read data, run it through an algorithm, and send commands automatically back to the pump to adjust basal insulin rates.

You can read the reference design online and see how the OpenAPS algorithm reacts if a BG level is rising or dropping, if BG data is missing or “jumpy”, and what happens if you go out of range of the system. Because this is a DIY effort and not integrated into all-in-one device, there are many ways where you might lose communication. As a result, we specifically designed the system with all of this in mind, and only issue temporary basal rate commands to make micro-adjustments to baseline insulin levels. We never issue a “bolus” (burst of insulin at one time) through the automated system, and we calculate conservatively so that every adjustment the system makes is the safest possible thing that can be done at the time, even if that ends up being the last command it is able to send.

And if any of those issues happen and the system is powered down or you go out of range, the system reverts back to the pre-programmed basal rates. By reverting back to the “standard of care” therapy in the case of failure, you are not adding any additional risk to the equation that is life with diabetes, and you are minimizing risk when the system is operating.

An OpenAPS-based system is what is considered to be a “hybrid closed loop”. This means that users still perform meal boluses manually, to better match the timing of insulin (which often peaks around 60-90 minutes) with the timing of food (which hits the blood stream after 15 minutes). Some users choose not to perform meal boluses and allow the loop to “catch up”, but those of us seeking to eliminate meal spikes will still choose to do a meal bolus.

While I continue to issue meal boluses, OpenAPS mostly eliminates the need to do manual “correction” boluses of additional insulin, and greatly reduces the number of times I need to eat extra sugar to correct a low blood sugar level. If I keep a loop “rig” (the small computer, battery, and radio stick) in range of my pump throughout the day, or at the bedside at night, it reacts to any fluctuations by making those small adjustments, much like a normal pancreas does. This enables my BG to stay in range as much as 90-100% of the time, which is a big improvement from what I was able to achieve before I had this technology – and with a lot less effort.

I have several “rigs” – one that lives by my desk at work, one by the bedside at home, and one that I clip to my jeans whenever I am out and about; together, these enable me to be “looping” most of the time. This allows me to spend significantly less time checking my BGs and avoid making hundreds of small manual corrections or behaviour changes a day in order to help keep my BGs in my preferred target range.



How did it improve your diabetes management and how can you measure the outcomes?
My diabetes management was significantly improved with my smart alarm system (#DIYPS), but having a closed loop system took it to the next level and significantly reduced the amount of effort required to achieve those outcomes. There are two obvious clinical outcomes: reduced average glucose level (or A1c) and increased amount of time in target range. But another important set of outcomes, by which we should be measuring medical technology are quality of life metrics like reduced time spent dealing with diabetes on the go, improved sleep, reduced stress levels, and improvement in overall quality of life.



These outcomes are not unique to me, though. OpenAPS is now (as of end of July, 2016) (n=1)*103+ people around the world using these types of DIY closed loop systems. We recently presented a self-reported study with outcomes from 18 of the first adopters of this type of system, and the outcomes (reported here, and as recently cited in a recent comment in Nature, and in this Letter to the Editor in the Journal of Diabetes Science and Technology) aligned with my personal experiences of A1c reduction, time in range increases, and quality of life improvements for the whole family .

In your post, you mention that you cannot distribute your device to others due to the lack of FDA regulations. What could be the solution for it?
The FDA regulates commercially-distributed medical devices, and I have not been interested in creating a company and distributing a “product”. There have been others who have done so – both Bigfoot Biomedical and Beta Bionics are two newcomer companies that have stemmed from parents in the diabetes community who were determined to bring an artificial pancreas solution to the market to help people with diabetes – and there are traditional companies that also have artificial pancreas systems in clinical trials. However, when I started this work three years ago, these systems were far off from being in the hands of people with diabetes. (In fact, they’re still not here yet – the earliest will reach the market in mid-2017, and multiple options will be 2018 and beyond.)

Our goal with OpenAPS was instead to help make safe and effective artificial pancreas technology more widely available and more quickly. We decided we will best achieve this by supporting the community through an open source approach, but not by distributing a medical device. To us, this seems to be making a bigger difference to the community than if we had launched yet another commercial APS effort, even though we are not an FDA-approved solution and are not able to “distribute” something. We have learned a lot from the community’s work: collectively we all have 240,000+ hours of closed loop experience, and individually I have personally been using a closed loop for more than 600 days. We have been sharing what we’ve learned with every commercial vendor who is interested in improving the artificial pancreas technology they are creating or helping shape the user experience and “onboarding” process to help future users of a commercial product switch from the current standard of care to a closed loop system. And in the meantime, the hundreds of users who have built their own closed loop artificial pancreas systems will continue to educate their healthcare providers and other patients on what they can expect when similar commercial systems are finally approved.

 

Dana’s example is one of the best precedents of how medical professionals could learn from their patients and also supports the statement I made previously with the help of Kubrick. Namely, physicians, care delivery experts and regulators all believe they know what’s best for patients, and almost everything, from hospital processes to new healthcare technologies is designed based on input solely from people inside the healthcare industry. However, truly visionary solutions can only be designed by the right mix of industry insiders and outside experts. Technology is already changing how we manage diseases and health – just look at the exponentially increasing number of health trackers and sensors! -, thus it is high time to learn how to get the most out of it.

The other great take-away for medical professionals should be the fact that innovation outpaces regulatory agencies and they must step their game up – otherwise such solutions as the existence of open source communities will take their place.
more...
No comment yet.
Scooped by Makhtar Loum
Scoop.it!

Effect of early tranexamic acid administration on mortality, hysterectomy, and other morbidities in women with post-partum haemorrhage (WOMAN): an international, randomised, double-blind, placebo-c...

Effect of early tranexamic acid administration on mortality, hysterectomy, and other morbidities in women with post-partum haemorrhage (WOMAN): an international, randomised, double-blind, placebo-c... | senegal sante | Scoop.it
Summary

Background
Post-partum haemorrhage is the leading cause of maternal death worldwide. Early administration of tranexamic acid reduces deaths due to bleeding in trauma patients. We aimed to assess the effects of early administration of tranexamic acid on death, hysterectomy, and other relevant outcomes in women with post-partum haemorrhage.

Methods
In this randomised, double-blind, placebo-controlled trial, we recruited women aged 16 years and older with a clinical diagnosis of post-partum haemorrhage after a vaginal birth or caesarean section from 193 hospitals in 21 countries. We randomly assigned women to receive either 1 g intravenous tranexamic acid or matching placebo in addition to usual care. If bleeding continued after 30 min, or stopped and restarted within 24 h of the first dose, a second dose of 1 g of tranexamic acid or placebo could be given. Patients were assigned by selection of a numbered treatment pack from a box containing eight numbered packs that were identical apart from the pack number. Participants, care givers, and those assessing outcomes were masked to allocation. We originally planned to enrol 15 000 women with a composite primary endpoint of death from all-causes or hysterectomy within 42 days of giving birth. However, during the trial it became apparent that the decision to conduct a hysterectomy was often made at the same time as randomisation. Although tranexamic acid could influence the risk of death in these cases, it could not affect the risk of hysterectomy. We therefore increased the sample size from 15 000 to 20 000 women in order to estimate the effect of tranexamic acid on the risk of death from post-partum haemorrhage. All analyses were done on an intention-to-treat basis. This trial is registered with ISRCTN76912190 (Dec 8, 2008); ClinicalTrials.gov, number NCT00872469; and PACTR201007000192283.

Findings
Between March, 2010, and April, 2016, 20 060 women were enrolled and randomly assigned to receive tranexamic acid (n=10 051) or placebo (n=10 009), of whom 10 036 and 9985, respectively, were included in the analysis. Death due to bleeding was significantly reduced in women given tranexamic acid (155 [1·5%] of 10 036 patients vs 191 [1·9%] of 9985 in the placebo group, risk ratio [RR] 0·81, 95% CI 0·65–1·00; p=0·045), especially in women given treatment within 3 h of giving birth (89 [1·2%] in the tranexamic acid group vs 127 [1·7%] in the placebo group, RR 0·69, 95% CI 0·52–0·91; p=0·008). All other causes of death did not differ significantly by group. Hysterectomy was not reduced with tranexamic acid (358 [3·6%] patients in the tranexamic acid group vs 351 [3·5%] in the placebo group, RR 1·02, 95% CI 0·88–1·07; p=0·84). The composite primary endpoint of death from all causes or hysterectomy was not reduced with tranexamic acid (534 [5·3%] deaths or hysterectomies in the tranexamic acid group vs 546 [5·5%] in the placebo group, RR 0·97, 95% CI 0·87-1·09; p=0·65). Adverse events (including thromboembolic events) did not differ significantly in the tranexamic acid versus placebo group.

Interpretation
Tranexamic acid reduces death due to bleeding in women with post-partum haemorrhage with no adverse effects. When used as a treatment for postpartum haemorrhage, tranexamic acid should be given as soon as possible after bleeding onset.

Funding
London School of Hygiene & Tropical Medicine, Pfizer, UK Department of Health, Wellcome Trust, and Bill & Melinda Gates Foundation.

Introduction

Primary post-partum haemorrhage, usually defined as a blood loss of more than 500 mL within 24 h of giving birth, is the leading cause of maternal death worldwide, responsible for about 100 000 deaths every year.1, 2, 3 Most of the deaths occur soon after giving birth and almost all (99%) occur in low-income and middle-income countries.4, 5

Tranexamic acid reduces bleeding by inhibiting the enzymatic breakdown of fibrinogen and fibrin by plasmin.6 Findings of a systematic review of clinical trials of tranexamic acid in surgery showed that the drug reduces blood loss by about one third.7, 8 Tranexamic acid reduces death due to bleeding in patients with trauma. The CRASH-2 trial,9 which recruited 20 211 adults with acute traumatic bleeding, showed that tranexamic acid reduced death due to bleeding, with no apparent increase in vascular occlusive events. Planned subgroup analysis of the effect of tranexamic acid by time from injury to the start of treatment showed that early treatment is essential. In patients given treatment within 3 h of injury, tranexamic acid reduced death due to bleeding by nearly one third. However, when given after 3 h, there was no benefit.10 Early activation of fibrinolysis is common after trauma and is associated with increased mortality.11 Trauma triggers the release of tissue plasminogen activator, the enzyme that converts plasminogen to the fibrinolytic enzyme plasmin.12, 13

Research in context


Evidence before this study
Before the WOMAN trial, there was evidence that antifibrinolytics reduced surgical blood loss and re-operation to control bleeding. To assess the effects of anti-fibrinolytics in post-partum haemorrhage, we did a systematic review of randomised trials published in any language. We searched the following databases up to November, 2008: MEDLINE, PubMed, Embase, Cochrane Central Register of Controlled trials, Web of Science, metaRegister of controlled trials, LILACS, Reproductive Health Library, African Health-line, POPLINE, MedCarib, CINAHL, Clinicaltrials.gov, and the reference lists of eligible trials. Search terms have been published previously (Ferrer P, 2009). We found no trials of antifibrinolytics in post-partum haemorrhage. In 2010, while the WOMAN trial was underway, findings of an international multicentre randomised trial of 20 211 bleeding trauma patients (the CRASH-2 trial) showed that tranexamic acid reduced death due to bleeding with no apparent increase in vascular occlusive events. Subgroup analyses showed that tranexamic acid was only effective when given within 3 h of injury. In 2012, WHO guidelines recommended that tranexamic acid should be used for the treatment of post-partum haemorrhage when uterotonics fail to control the bleeding or when the bleeding is thought to be due to trauma. The evidence for this recommendation was extrapolated from trials in surgery and trauma showing that tranexamic acid was a safe option for the treatment of trauma-related bleeding.
Added value of this study
The WOMAN trial results show that the effect of tranexamic acid in post-partum haemorrhage is consistent with the effects recorded in surgery and trauma. There was a significant reduction in death due to bleeding and laparotomy to control bleeding with tranexamic acid and no evidence of any increased risk of thromboembolic events. With regards to time to treatment, when set in the context of results from trauma, early treatment also seems to be more effective. There is no evidence that the effect of tranexamic acid varies by cause of bleeding or type of birth. Tranexamic acid did not prevent hysterectomy possibly because this is done so soon after the onset of primary post-partum haemorrhage that there is little time for tranexamic acid to have an effect.
Implications of all the available evidence
Our results support the inclusion of tranexamic acid in WHO treatment guidelines for primary post-partum haemorrhage but suggest that treatment should be given as soon as possible after onset. Future research should assess the bioavailability of tranexamic acid after alternative (non-intravenous) routes of administration because this might facilitate its use in primary health-care settings.
Early activation of fibrinolysis is also recorded after childbirth. Within 1 h of giving birth, the serum concentration of tissue plasminogen activator doubles, possibly because of tissue damage during childbirth;14 thereafter, the concentration falls.14 On the basis of results of clinical trials in surgery and trauma, tranexamic acid is recommended for the treatment of primary post-partum haemorrhage if uterotonics fail to control the bleeding or if the bleeding is thought to be due to trauma.1 However, further trials of tranexamic acid in primary post-partum haemorrhage are needed.1 Here we aimed to address this research gap and assess the effects of early administration of tranexamic acid on death, hysterectomy, and other relevant outcomes in women with post-partum haemorrhage.

Methods

Study design and participants
The WOMAN (World Maternal Antifibrinolytic) trial is an international, randomised, double-blind placebo-controlled trial of women aged 16 years and older with a clinical diagnosis of post-partum haemorrhage after a vaginal birth or caesarean section done in 193 hospitals in 21 countries. Although the diagnosis was clinical, we specified that diagnosis of primary post-partum haemorrhage could be based on clinically estimated blood loss of more than 500 mL after vaginal birth or 1000 mL after caesarean section or any blood loss sufficient to compromise haemodynamic stability. The fundamental eligibility criterion was the clinician's uncertainty about whether to use tranexamic acid in a particular woman with post-partum haemorrhage. Patients received all usual care but were also randomly allocated to receive tranexamic acid or placebo.

The trial was done in accordance with the good clinical practice guidelines by the International Conference on Harmonisation.15 The consent procedures are described in detail in the protocol.16 The procedure at each site was approved by the relevant ethics committee and regulatory agencies. In summary, consent was obtained from women if their physical and mental capacity allowed (as judged by the treating clinician). If a woman was unable to give consent, proxy consent was obtained from a relative or representative. If a proxy was unavailable, then if permitted by local regulation, consent was deferred or waived. When consent was deferred or given by a proxy, the woman was informed about the trial as soon as possible, and consent was obtained for ongoing data collection, if needed.

Randomisation and masking
After eligibility was confirmed and consent procedures completed, baseline information was collected on the entry form. Patients were then randomly allocated to receive tranexamic acid or placebo by selection of the lowest numbered treatment pack from a box containing eight numbered packs that were identical apart from the pack number. The randomisation codes were generated and held by an independent statistical consultant from Sealed Envelope Ltd (UK). The codes were given to the drug packers so that treatment packs could be prepared in accordance with the randomisation list. Once the treatment pack was opened and the ampoules were confirmed as intact, the patient was considered to be randomly assigned. After randomisation, outcome data were obtained for every participant even if the treatment was not given. Participants, caregivers, and study staff (site investigators and trial coordinating centre staff) were masked to treatment allocation. An emergency un-blinding service was available via Sealed Envelope Ltd.

The tranexamic acid (cyklokapron injection) used in the trial was manufactured by Pfizer Ltd, Sandwich, UK. The matching placebo (sodium chloride 0·9%) was prepared by South Devon Healthcare NHS Trust, Devon, UK. Ampoules and packaging were identical in appearance. The masking was done by Brecon Pharmaceuticals Limited, Hereford, UK and involved the removal of the original manufacturer's label and replacement with the clinical trial label bearing the randomisation number, which was used as the pack identification. Apart from the randomisation number, all pack label texts were identical for tranexamic acid and placebo. Correct masking and coding of ampoules was checked by independent random testing of each batch by high-performance liquid chromatography to confirm the contents of the ampoules.

Procedures
Patients were randomly allocated to receive 1 g tranexamic acid or placebo by slow intravenous injection. Investigators were advised to give 1 g (10 mg/mL) of tranexamic acid intravenously at an approximate rate of 1 mL per min. If bleeding continued after 30 min or stopped and restarted within 24 h of the first dose, a second dose of 1 g of tranexamic acid or placebo could be given. Every patient was assigned a uniquely numbered treatment pack, containing four ampoules of 500 mg tranexamic acid or placebo, two syringes and needles, stickers with the trial details and randomisation number (for attaching to data forms and medical records) and instructions. Every box had information leaflets for participants and their representatives, consent forms, and data collection forms. The stickers, instructions, leaflets, and forms were translated into local languages. Outcome data were collected at death, discharge or 6 weeks (42 days) after randomisation (whichever occurred first). Adverse events were reported up to day 42.

Outcomes
The primary outcome was a composite of death from all causes or hysterectomy within 42 days of randomisation. Death was also assessed separately. Participating clinicians were requested to record the immediate cause of death (the final pathophysiological process leading to death) rather than the underlying cause of death and were trained accordingly. In the event that there was more than one cause, clinicians were asked to record the main cause. Because there was no reason to believe that tranexamic acid can reduce deaths from causes unrelated to bleeding, we planned to assess the effect of tranexamic acid on cause-specific mortality with death due to bleeding as the key secondary outcome. Other secondary outcomes were thromboembolic events (deep-vein thrombosis, pulmonary embolism, myocardial infarction, and stroke), surgical interventions (intrauterine tamponade, embolisation, brace sutures, arterial ligation, hysterectomy, and laparotomies done after randomisation to control bleeding and achieve haemostasis), complications (renal failure, cardiac failure, respiratory failure, hepatic failure, sepsis, and seizures), other untoward medical events (adverse events), quality of life measured using the EQ5D and status of any thromboembolic events in breastfed babies (assessed as per normal clinical practice with no special tests done). Outcomes were measured at hospital discharge or on day 42 if still in hospital. Data were sent to the trial coordinating centre by direct entry into an electronic database or by using encrypted data forms (which were sent by fax, email, or uploaded to a secure server). We monitored data quality using a combination of centralised consent monitoring, statistical data checking, and site visits at which patient data forms were compared with clinical case notes.

Statistical analysis
We published a statistical analysis plan before the allocation was unblinded.18 This plan included details of a protocol amendment to increase the sample size. Before the trial started, we anticipated a baseline event rate of 2·5% for death and 2·5% for hysterectomy. Assuming a control group event rate of 2·5% for death and 2·5% for hysterectomy and that 1% of women die after hysterectomy, we originally estimated that a trial with 15 000 women would have 90% power to detect a 25% reduction (from 4–3%) in the composite primary endpoint death or hysterectomy at the 5% significance level. However, during the trial it became apparent that the decision to conduct a hysterectomy was often made at the same time as randomisation. For example, in response to life-threatening bleeding during caesarean section, a clinician might decide to do a hysterectomy, and while the hysterectomy is underway, the woman is enrolled into the trial. Although tranexamic acid could affect the risk of death in these cases, it could not affect the risk of hysterectomy. To protect against the possibility that the effect of tranexamic acid on death and hysterectomy was different, the sample size was increased from 15 000 to 20 000 women. We estimated that a trial with 20 000 women should have sufficient power to detect a 25% reduction in mortality at the 5% significance level (3–2·25%). We hoped that the increased sample size might compensate for the dilution of the treatment effect from hysterectomies that were done at the same time as randomisation. We also refined the study hypothesis in view of new evidence that had become available since the trial was initiated. In particular, findings of the CRASH-2 trial10 had shown that tranexamic acid reduces death due to bleeding in trauma patients and that early treatment was more effective, with strong evidence of an interaction by time to treatment. In response, we pre-specified an analysis of cause-specific mortality with death due to bleeding as the main outcome. We also pre-specified subgroup analyses by time to treatment. These changes were made before un-blinding and without any knowledge of the trial results.

All analyses were done on an intention-to-treat basis. For each binary outcome, we calculated risk ratios and 95% CIs and two-sided p values. We did a complete case analysis with no imputation for missing data. To mitigate the risk that a chance imbalance in prognostic factors could affect the results, for the primary endpoint (death or hysterectomy) and the most important secondary endpoint (death due to bleeding), we pre-specified an analysis adjusted for baseline risk. The safety of trial participants was overseen by an independent data safety and monitoring committee, which reviewed seven un-blinded interim analyses.

We planned to report the effects of treatment on the primary outcome subdivided by three baseline characteristics: hours from giving birth to randomisation (<1, 1–3, >3 h); type of birth (vaginal or caesarean section); and primary cause of haemorrhage (uterine atony vs all others). To examine the hypothesis that tranexamic acid would be most effective when given soon after birth and less effective (possibly even harmful) when given several hours after giving birth, we pre-specified a subgroup analysis of the effect of tranexamic acid on death due to bleeding according to the time interval between giving birth and tranexamic acid treatment. The main analysis for the pre-specified subgroups was an unadjusted test of interaction in a logistic regression model to assess evidence for whether the effect of treatment differs across subgroup categories. Unless there was strong evidence against the null hypothesis of homogeneity of effects (ie, p<0·001), the overall relative risk was regarded as the most reliable guide to the approximate relative risks in all subgroups. However, because there was strong prior evidence to expect a time to treatment interaction, we pre-specified that we would set the results of this analysis in the context of all available data on the time to treatment interaction.18
After publication of the planned primary and secondary analyses, the trial data will be made available via our data sharing portal, The Free Bank of Injury and Emergency Research Data (freeBIRD) website. This will allow for maximum utilisation of the data to improve patient care and advance medical knowledge.

Role of the funding source
The funder of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. The corresponding authors had full access to all the data in the study and had final responsibility for the decision to submit for publication.

Results

Between March, 2010, and April, 2016, 20 060 women were enrolled and randomly assigned to receive tranexamic acid (n=10 051) or placebo (n=10 009), of whom 20 002 (99·7%) received the first dose of the allocated treatment (10 037 received tranexamic acid and 9975 received placebo; figure 1). Seven women withdrew their consent after randomisation and we excluded their data from the analyses (four in the tranexamic acid group and three in the placebo group). We were unable to obtain primary outcome data for 32 women and 12 patients did not fulfil the trial eligibility criteria. One patient in the tranexamic acid group was randomly assigned twice. The primary analysis includes data for 20 021 (99·8%) women. The baseline characteristics were similar between the treatment groups (table 1).


Figure 1
Trial profile

*Patients for whom there is no information about the primary endpoint.

View Large Image | View Hi-Res Image | Download PowerPoint Slide
Table 1 
Baseline characteristics of participants before randomisation



There were 483 maternal deaths of which 374 (77%) were within 24 h of randomisation and 43 (9%) were within 1 h of randomisation (figure 2). The appendix shows the distribution of deaths from hours since childbirth (appendix p 1). 346 (72%) deaths were due to bleeding. Table 2 shows the effect of tranexamic acid on maternal death. The risk of death due to bleeding was significantly reduced in patients who received tranexamic acid (155 [1·5%] of 10 036 vs 191 [1·9%] in the placebo group; risk ratio [RR] 0·81, 95% CI 0·65–1·00; p=0·045). After adjusting for baseline risk, the risk ratio for death due to bleeding with tranexamic acid was 0·78 (95% CI 0·62–0·98; p=0·03). Deaths from pulmonary embolism, organ failure, sepsis, eclampsia and other causes did not differ significantly between the tranexamic acid and the placebo group (table 2). We recorded fewer deaths from all causes with tranexamic acid but the reduction was not significant (227 [2·3%] in the tranexamic acid group vs 256 [2·6%] in the placebo group; RR 0·88, 95% CI 0·74–1·05; p=0·16).


Figure 2
Cause of death by hours since randomisation (A) and cause of hysterectomy by hours since randomisation (B)

*Excludes data for 311 women who had a hysterectomy before randomisation.

View Large Image | View Hi-Res Image | Download PowerPoint Slide
Table 2 
Effect of tranexamic acid on maternal death



Data are n (%), unless otherwise indicated. RR=risk ratio.

In women given tranexamic acid within 3 h of giving birth, tranexamic acid substantially reduced the risk of death due to bleeding (89 [1·2%] women died in the tranexamic acid group vs 127 [1·7%] in the placebo group, RR 0·69, 95% CI 0·52–0·91; p=0·008). There was no apparent reduction when tranexamic acid was given after 3 h (66 [2·6%] tranexamic acid group vs 63 [2·5%] placebo group, RR 1·07, 95% CI 0·76–1·51; p=0·70). There was no heterogeneity in the effect by type of birth or cause of bleeding (figure 3).


Figure 3
Death from bleeding by subgroup

*Heterogeneity p value. †One patient excluded from subgroup analysis because of missing baseline data.

View Large Image | View Hi-Res Image | Download PowerPoint Slide
709 women had hysterectomies of which 608 (86%) were on the day of randomisation and 191 (27%) were within 1 h of randomisation (figure 2). The appendix shows the distribution of hysterectomy from hours since childbirth (appendix p 1). 578 (81%) of 709 hysterectomies were done to control bleeding. The risk of hysterectomy was not reduced with tranexamic acid (358 [3·6%] done in the tranexamic acid group vs 351 [3·5%] in the placebo group, RR 1·02, 95% CI 0·88–1·07; p=0·84). The risk of hysterectomy to control bleeding was not significantly reduced with tranexamic acid (283 [2·8%] tranexamic acid group vs 295 [3·0%] placebo group, RR 0·95, 95% CI 0·81–1·12; p=0·57).

The primary endpoint of death from all causes or hysterectomy within 42 days of giving birth occurred in 1080 women. Of these, 371 (34%) women died without undergoing a hysterectomy, 112 (10%) died after hysterectomy, and 597 (55%) survived after hysterectomy. The risk of death from all causes or hysterectomy was not reduced with tranexamic acid (534 [5·3%] tranexamic acid group vs 546 [5·6%] placebo group, RR 0·97, 95% CI 0·87–1·09; p=0·65). After adjusting for baseline risk, the risk ratio for death from all causes or hysterectomy was 0·98 (95% CI 0·87–1·10; p=0·75). There was no significant heterogeneity in the effect of tranexamic acid by time to treatment, type of birth or cause of bleeding (table 3).

Table 3 
Effect of tranexamic acid on composite primary endpoint (death or hysterectomy) by subgroup



Data are n (%) unless otherwise indicated.

*p value from likelihood ratio test.
The use of intrauterine tamponade, embolisation, manual removal of the placenta, and arterial ligation did not differ significantly between the tranexamic acid and the placebo group (table 4). Brace sutures were used more often in the tranexamic group (300 [3·0%] tranexamic acid group vs 250 [2·5%] placebo group; RR 1·19, 95% CI 1·01–1·41; p=0·035). 209 laparotomies were done after randomisation to control bleeding and achieve haemostasis of which 114 (55%) followed caesarean section births and 95 (45%) followed vaginal births. There was a significant reduction in laparotomy to control bleeding with tranexamic acid (82 [0·8%] tranexamic acid group vs 127 [1·3%] placebo group; RR 0·64, 95% CI 0·49-0·85; p=0·002). We recorded no significant heterogeneity in the effect of tranexamic acid on laparotomy to control bleeding by time since giving birth, type of birth, or cause of bleeding (figure 4). Blood product transfusions were given to 5461 (54%) of 10 036 patients allocated to tranexamic acid and 5426 (54%) of 9985 women allocated to placebo. Among women who were transfused, the mean number of blood units received did not differ significantly between patients in the tranexamic acid and placebo groups. Of the women who died, 37 (7·7%) did not receive any blood products. Of these, 18 (48·7%) were in the tranexamic acid group and 19 (51·4%) were in the placebo group.

Table 4 
Effect of tranexamic acid on need for surgical intervention



Data are n (%), unless otherwise indicated. RR=relative risk. p values from Pearson's χ2 test.


Figure 4
Laparotomy for bleeding by subgroup

*Heterogeneity p value.

View Large Image | View Hi-Res Image | Download PowerPoint Slide
The incidence of thromboembolic events (pulmonary embolism, deep-vein thrombosis, myocardial infarction, and stroke) did not differ significantly in the tranexamic acid versus the placebo group (table 5). The risk of organ failure (renal, cardiac, respiratory, and hepatic) and sepsis did not differ significantly between the tranexamic acid and the placebo group. 33 (0·33%) women in the tranexamic acid group had a seizure versus 43 (0·43%) in the placebo group. Eight women in the tranexamic acid group suffered the death of a breast-fed baby compared with seven women in the placebo group. No thromboembolic events were reported in breast-fed babies in either group. Of women who survived, there were no significant differences in quality of life measures. Of the women who survived, four (<1%) did not have a quality of life measure completed. 57 additional adverse events were reported (appendix p 2).

Table 5 
Effect of tranexamic acid on thromboembolic events, complications, use of uterotonics, and quality of life



Data are n (%), unless otherwise indicated.

*Fatal or non-fatal. RR=relative risk.
Discussion

The administration of tranexamic acid to women with post-partum haemorrhage reduces deaths due to bleeding and laparotomy to control bleeding with no evidence of any adverse effects or complications. When given soon after delivery, tranexamic acid reduces death due to bleeding by nearly one third.

Our study had several strengths but also some limitations. The randomisation method ensured that participating doctors had no foreknowledge of the treatment allocation. Baseline prognostic factors were well balanced and results adjusted for baseline risk were similar to the unadjusted analyses. Because almost all randomly assigned patients were followed up there is little potential for bias. We originally planned to enrol 15 000 women to assess the effect of tranexamic acid on a composite primary endpoint of death from all-causes or hysterectomy within 42 days of giving birth. However, during the trial it became apparent that the decision to conduct a hysterectomy was often made at the same time as the decision to enrol a women into the trial. Although we excluded hysterectomies done before randomisation, we could not exclude those in which the decision to conduct a hysterectomy was made at the same time as the decision to randomise or before the trial treatment had been received. We predicted that this would dilute the effect of tranexamic acid on the risk of hysterectomy. There would also be dilution from hysterectomies done several days after birth for reasons other than to prevent life-threatening bleeding. With these concerns in mind, we increased the sample size from 15 000 to 20 000 patients in the hope that the trial would have enough power to detect a reduction in post-partum haemorrhage death.17
There was a statistically significant reduction in death due to bleeding with tranexamic acid with no significant increase or decrease in any other cause of death. Because more than one quarter of deaths were not due to bleeding, the reduction in all-cause mortality with tranexamic acid, which is a weighted average of its effect on bleeding and non-bleeding deaths, was not statistically significant. Indeed, considering that one quarter of deaths after post-partum haemorrhage are not bleeding related, it would require trials many times larger than ours to show a statistically significant reduction in all-cause mortality.18 Nevertheless, because the relative contributions of bleeding and non-bleeding (eg, sepsis) deaths to all-cause mortality will vary by region or between hospitals, the effect on all-cause mortality is not generalisable. For example, tranexamic acid will have a larger effect on all-cause mortality in hospitals where sepsis death is rare than in hospitals where sepsis death is common. The effect of tranexamic acid on death due to bleeding is the generalisable measure.

Although tranexamic acid did not prevent hysterectomy, it substantially reduced the number of laparotomies to control bleeding. While hysterectomy might be a last resort to control bleeding in high-income settings, in Africa and Asia where many women are anaemic and blood supplies are limited,19, 20, 21 hysterectomy is often an early intervention to prevent death from exsanguination. Furthermore, there would probably have been a delay between randomisation and the administration of the trial treatment, so that even though the decision to randomise might have preceded the decision to do a hysterectomy, in some cases the trial treatment would not have been received when the hysterectomy decision was made. On the other hand, laparotomies which often involve re-operation to control bleeding following caesarean section, are more commonly done after other interventions including the trial treatment have been given. This might have allowed sufficient time for tranexamic acid to affect the risk of laparotomy. Randomised trials in elective surgery also show large reductions in the need for re-operation to control bleeding with tranexamic acid.22
The dilution of the effect of tranexamic acid arising from interventions that were initiated prior to receipt of the trial treatment is likely to apply to other surgical interventions and blood transfusion. Considering that there may only be a few hours from onset of primary post-partum haemorrhage to maternal death, it is not surprising that other interventions were given concurrently with the trial treatment. Given the urgency, clinicians cannot wait and see if the trial treatment has an effect before giving other treatments, not least because half of the women received placebo. The only outcome that invariably follows randomisation is death. This may explain why in this trial, and in the CRASH-2 trial of tranexamic acid in significant traumatic bleeding, there was a reduction in death due to bleeding with tranexamic acid despite no reduction in transfusion.9
The WOMAN trial began before the results of the CRASH-2 trial of tranexamic acid in bleeding trauma patients were available. The CRASH-2 trial recruited 20 211 adults with traumatic bleeding and showed that tranexamic acid reduces death due to bleeding and all-cause mortality with no increase in vascular occlusive events. There was strong evidence of a time to treatment interaction. In patients treated within 3 h of injury, tranexamic acid reduced death due to bleeding by around one third, but when given after 3 h, it seemed to increase the risk.9, 10 Early activation of fibrinolysis is common after trauma and is associated with increased mortality.11 Because similar temporal changes in fibrinolysis have been observed after childbirth,23 we expected that early treatment with tranexamic acid would also be more effective after post-partum haemorrhage and planned to set the WOMAN trial results in the context of all available clinical data on the time to treatment interaction. Bearing in mind that even a large trial such as ours would have limited power to detect a time to treatment interaction for death due to bleeding, setting the trial results in the context of the totality of the available evidence seemed to be the most sensible approach. Although there are on-going trials of tranexamic acid in life threatening bleeding, the CRASH-2 trial is the only trial to date that provides such evidence.24, 25 Figure 5 shows the results of the WOMAN trial in the context of the CRASH-2 results. There is a strong suggestion that early treatment is most effective and late treatment is unlikely to be beneficial.


Figure 5
Time to treatment

*Heterogeneity p value.

View Large Image | View Hi-Res Image | Download PowerPoint Slide
On the basis of clinical trials of tranexamic acid in surgery and trauma, WHO guidelines recommended tranexamic acid in post-partum haemorrhage if uterotonics fail to stop the bleeding or if it is thought that the bleeding may be due to trauma.1 Our results suggest that if tranexamic acid is used in the treatment of post-partum haemorrhage it should be given soon after the onset of post-partum haemorrhage alongside uterotonics. First, our findings show that a significant proportion of mothers die within hours of post-partum haemorrhage onset. In such circumstances, waiting to see if uterotonics fail to stop the bleeding could put some mothers' lives at risk. We found no evidence of adverse effects with tranexamic acid and it has also been shown to be safe and effective in trauma and surgery. Second, our data suggest that early administration is most effective. Treatment within 3 h of birth significantly reduced death due to bleeding and the need for laparotomy to control bleeding, an observation consistent with results of trials of tranexamic acid in traumatic bleeding. Although we did not see a monotonic decrease in the risk of death due to bleeding with decreasing time to treatment, as seen in trauma, this is more likely to reflect the imprecision of the estimates rather than the underlying biological relationship. We did observe such a monotonic decrease in the risk of laparotomy to control bleeding as time to treatment decreased. Finally, the temporal changes in fibrinolytic activation after childbirth are similar to those in trauma with an early (within one hour) increase in levels of tissue plasminogen activator.14 However, in the light of our results, further research into the timecourse of the changes in coagulation and fibrinolysis after childbirth are needed.

In the WOMAN trial, tranexamic acid was given by intravenous injection. However, in low-income and middle-income countries, many deaths from post-partum bleeding occur at home or settings where intravenous injections might not be feasible. Therefore, bioavailability of tranexamic acid after non-intravenous routes of administration needs to be assessed.

Correspondence to: Clinical Trials Unit, London School of Hygiene & Tropical Medicine, London, UK thewomantrial@LSHTM.AC.UK
WOMAN Trial Collaborative Group

Writing Committee: Haleema Shakur (chair), Ian Roberts (chair), Bukola Fawole (Nigeria), Rizwana Chaudhri (Pakistan), Mohamed El-Sheikh (Sudan), Adesina Akintan (Nigeria), Zahida Qureshi (Kenya), Hussein Kidanto (Tanzania), Bellington Vwalika (Zambia), Abdulfetah Abdulkadir (Ethiopia), Saturday Etuk (Nigeria), Shehla Noor (Pakistan), Etienne Asonganyi (Cameroon), Zarko Alfirevic (UK), Danielle Beaumont (UK), Carine Ronsmans (UK), Sabaratnam Arulkumaran (UK).

Steering Committee: Sabaratnam Arulkumaran (Chair, from 2014), Adrian Grant (Chair, 2009–2014) who died as the trial was ongoing, Kaosar Afsana, Metin Gülmezoglu (2009–2015), Beverley Hunt, Oladapo Olayemi, Ian Roberts. Data Monitoring and Ethics Committee: Iain Chalmers (chair), Pisake Lumbiganon, Gilda Piaggio, Tony Brady (independent statistician).

Protocol Committee: Haleema Shakur, Ian Roberts, Zarko Alfirevic, Diana Elbourne, Metin Gülmezoglu, Carine Ronsmans. Trial coordinating team: Eni Balogun (trial manager), Tracey Pepple (data manager), Danielle Prowse (data assistant), Nigel Quashi (data manager), Lin Barneston (data manager 2010-2012), Collette Barrow (trial administrator), Danielle Beaumont (senior trial manager), Lisa Cook (assistant trial manager 2010–2011), Lauren Frimley (assistant trial manager), Daniel Gilbert (data assistant 2012–2013), Catherine Gilliam (administrator), Rob Jackson (data manager 2012–2015), Taemi Kawahara (trial manager 2010–2015), Hakim Miah (IT manager), Sergey Kostrov (systems officer), Maria Ramos (project administator 2010–2015), Ian Roberts (chief investigator), Haleema Shakur (project director), Phil Edwards (statistician), Tom Godec and Sumaya Huque (statisticial support). Nigeria coordinating team: Bukola Fawole (coordinating centre director), Olujide Okunade (assistant trial coordinator), Olusade Adetayo (assistant trial coordinator).

Pakistan coordinating team: Rizwana Chaudhri (coordinating centre director), Aasia Kayani (research coordinator), Kiran Javaid (assistant research coordinator). National Coordinators: Bukola Fawole (Nigeria), Rizwana Chaudhri (Pakistan), Chrstine Biryabarema (Uganda), Zahida Qureshi (Kenya), Robert Tchounzou (Cameroon), Mohamed El-Sheikh (Sudan), Hussein Kidanto (Tanzania), Mohan Regmi (Nepal), Bellington Vwalika (Zambia), Kastriot Dallaku (Albania), Mateus Sahani (Democratic Republic of Congo), Sayeba Akhter (Bangladesh), Abdulfetah Abdulkadir (Ethiopia), Nicolas Meda (Burkina Faso), Anthony Kwame Dah (Ghana).

Trial sites and investigators

Nigeria (5711): Mother & Child Hospital, Akure (875): Adesina Akintan, Olufemi Odekunle, Oluwabusola Monehin, Austin Ojo, Grace Akinbinu, Ifeoma Offiah; University of Calabar Teaching Hospital (555): Saturday Etuk, Ubong Akpan, Uduak Udofia, Useneno Okon, Ezukwa Omoronyia, Okpe James; University College Hospital, Ibadan (310): Oladapo Olayemi, Nike Bello, Blessed Adeyemi, Chris Aimakhu; Federal Medical Centre Owo (268): Olufemi Akinsanya, Bamidele Adeleye, Oluwaseun Adeyemi, Kayode Oluwatosin; University of Ilorin Teaching Hospital (228): Abiodun Aboyeji, Abiodun Adeniran, Adebayo Adewale, Noah Olaomo; Delta State University Teaching Hospital (198): Lawrence Omo-Aghoja, Emmanuel Okpako, Lucky Oyeye; Maitama District Hospital (188): Francis Alu, John Ogudu, Ezekiel Ladan; Federal Medical Centre Katsina (163): Ibrahim Habib, Babasola Okusanya; University of Abuja Teaching Hospital (160): Olatunde Onafowokan, David Isah, Abalaka Aye; Irrua Specialist Teaching Hospital (157): Felix Okogbo, Egbaname Aigere, Mark Ogbiti; Federal Medical Centre Lokoja (153): Temitope Onile, Olaide Salau, Yinka Amode; Federal Medical Centre Gusau (142): Kamil Shoretire, Adebola Owodunni, Kehinde Ologunde; Adeoyo Maternity Hospital (141): Akintunde Ayinde; Federal Medical Centre Abeokuta (136): Moses Alao, Olalekan Awonuga, Babatunde Awolaja; Lagos University Teaching Hospital (131): Omololu Adegbola, Fatimah Habeebu-Adeyemi, Adeyemi Okunowo; Nyanya General Hospital (124): Hadiza Idris, Ola Okike, Nneka Madueke; Jos University Teaching Hospital (112): Josiah Mutihir, Nankat Joseph, Babatunde Adebudo; Ladoke Akintola University of Technology Teaching Hospital - Osogbo Site (104): Adeniyi Fasanu, Olugbenga Akintunde, Olufemi Abidoye; Seventh Day Adventist Hospital (104): Owigho Opreh, Sophia Udonwa, Gladys Dibia; Lagos Island Maternity Hospital (103): Simeon Bazuaye, Arafat Ifemeje; University of Uyo Teaching hospital (97): Aniefiok Umoiyoho, Emmanuel Inyang-Etoh; Federal Medical Centre Birnin-Kebbi (95): Sununu Yusuf, Kayode Olayinka; Obafemi Awolowo University Teaching Hospital (92): Babalola Adeyemi, Olusegun Ajenifuja; Federal Medical Centre Azare (89): Umar Ibrahim, Yusuf Baffah Adamu; Lagos State University Teaching Hospital (71): Oluwarotimi Akinola, Grace Adekola-Oni; Braithwaite Memorial Specialist Hospital (70): Paul Kua, Roseline Iheagwam; University of Maiduguri Teaching Hospital (65): Audu Idrisa, Ado Geidam; Federal Medical Centre Makurdi (62): Andrea Jogo, Joseph Agulebe; Nnamdi Azikiwe University Teaching Hospital (57): Joseph Ikechebelu, Onyebuchi Udegbunam; Ekiti State University Teaching Hospital (56): Jacob Awoleke, Oluseyi Adelekan; Ahmadu Bello University Teaching Hospital (53): Hajaratu Sulayman, Nkeiruka Ameh; Ajeromi General Hospital (53): Nurudeen Onaolapo, Affiss Adelodun; Plateau State Specialist Hospital (53): William Golit, Dachollom Audu; Ladoke Akintola University of Technology Teaching Hospital - Ogbomoso Site (52): Adetunji Adeniji, Folasade Oyelade; Abubakar Tafawa Balewa University Teaching Hospital (51): Lamaran Dattijo, Palmer Henry; Wesley Guild Hospital (OAUTH) (49): Babalola Adeyemi, Olabisi Loto; Federal Teaching Hospital Abakaliki (38): Odidika Umeora, Abraham Onwe; Federal Medical Centre Owerri (36): Emily Nzeribe, Bartthy Okorochukwu; Federal Medical Centre Ido-Ekiti (34): Augustine Adeniyi; Kogi State Specialist Hospital (30): Emmanuel Gbejegbe, Akpojaro Ikpen; Federal Medical Centre Bida (28): Ikemefuna Nwosu, Abdulrasaq Sambo; National Hospital Abuja (23): Olubunmi Ladipo, Sola Abubakar; Karshi General Hospital (16): Ola Nene Okike; Federal Medical Centre Umuahia (14): Enyinnaya Chikwendu Nduka; University of Nigeria Teaching Hospital, Enugu (14): Eziamaka Pauline Ezenkwele; Federal Medical Center Asaba (11): Daniel Onwusulu; State Specialist Hospital Akure (11): Theresa Azonima Irinyenikan; Usmanu Danfodiyo University Teaching Hospital (11): Swati Singh; Federal Medical Centre Yenagoa (10): Amaitari Bariweni; Aminu Kano Teaching Hospital (7): Hadiza Galadanci; Federal Medical Centre Keffi (7): Peter Achara; Gwarimpa General Hospital (3): Osagie Osayande; General Hospital Minna (1): Mohammed Gana.

Pakistan(5282): Holy Family Hospital, Gyn & Obs Unit 1 (478): Rizwana Chaudhri, Kiran Jabeen, Ayesha Mobeen, Sadaf Mufti, Maliha Zafar; Ayub Teaching Hospital (420): Shehla Noor, Basharat Ahmad, Maimoona Munawar, Jeharat Gul, Naseema Usman; Holy Family Hospital, Gyn & Obs Unit 2 (303): Fehmida Shaheen, Mariam Tariq, Nadia Sadiq, Rabia Batool; Ziauddin University Kemari Campus (280): Habiba Sharaf Ali, Manahil Jaffer, Asma Baloch, Noonari Mukhtiar; Bolan Medical Complex Hospital Unit II (267): Tasneem Ashraf, Raheela Asmat, Salma Khudaidad, Ghazala Taj; Liaquat University Hospital LUMHS Gynae Unit I (230): Roshan Qazi, Saira Dars, Faryal Sardar, Sanobar Ashfaq; Rehman Medical Institute Private Limited (223): Saeeda Majeed; Lady Reading Hospital (222): Sadaqat Jabeen, Rukhsana Karim, Farzana Burki, Syeda Rabia Bukhari; Liaquat Memorial Women & Children Hospital Kohat (215): Fouzia Gul, Musarrat Jabeen, Akhtar Sherin, Qurratul Ain; Nishtar Hospital Unit III (182): Shahid Rao, Uzma Shaheen, Samina Manzoor; Fatima Bai Hospital (159): Shabeen Masood, Shabana Rizvi, Anita Ali; Lady Aitchison Hospital (143): Abida Sajid, Aisha Iftikhar, Shazia Batool; Shalamar Hospital (128): Lubna Dar, Shahenzad Sohail, Shazia Rasul; Sir Ganga Ram Hospital Lahore (111): Shamsa Humayun, Rashida Sultana, Sofia Manzoor; MCH Centre PIMS, Obs and Gynae Unit I (109): Syeda Mazhar, Afshan Batool, Asia Nazir; MCH Centre PIMS, Obs and Gynae Unit II (107): Nasira Tasnim; Nishtar Hospital Unit I (104): Hajira Masood; People's University of Medical and Health Sciences (104): Razia Khero, Neelam Surhio, Samana Aleem; Federal Government Services Hospital (FGSH) Unit III (101): Naila Israr, Saba Javed, Lubna Bashir; Sobhraj Maternity Hospital KMC (96): Samina Iqbal, Faiza Aleem; Services Hospital Lahore Unit II (91): Rubina Sohail, Saima Iqbal; Patel Hospital (89): Samina Dojki, Alia Bano; Dera Ismail Khan District Teaching Hospital (87): Naseem Saba; Sharif Medical & Dental City (85): Maimoona Hafeez, Nishat Akram; Federal Government Poly Clinic (FGPC) Hospital Unit I Islamabad (84): Naila Israr, Riffat Shaheen; Liaquat National Hospital (83): Haleema Hashmi, Sharmeen Arshad; Ziauddin University Hospital Clifton Campus (81): Rubina Hussain, Sadia Khan; CGH Cantonment General Hospital (Rawalpindi) (65): Nighat Shaheen, Safia Khalil; Isra University Hospital (61): Pushpa Sachdev, Gulfareen Arain; Jinnah Hospital Lahore (59): Amtullah Zarreen, Sara Saeed; Fatima Memorial Hospital (58): Shamayela Hanif; Shifa International Hospital (50): Nabia Tariq, Mahwish Jamil; Ziauddin University Hospital Nazimabad Campus (47): Shama Chaudhry, Hina Rajani; Services Hospital Lahore Unit III (43): Tayyiba Wasim, Summera Aslam; Combined Military Hospital (CMH) Lahore (40): Nilofar Mustafa; Nishtar Hospital Unit II (40): Huma Quddusi, Sajila Karim; Ziauddin University Hospital North Nazimabad Campus (40): Shazia Sultana, Misbah Harim; Lady Willingdon Hospital OBGYN Unit II (34): Mohd Chohan; Nescom Hospital (33): Nabila Salman; Pakistan Railway Hospital (26): Fareesa Waqar, Shamsunnisa Sadia; DHQ Hospital Rawalpindi (24): Lubna Kahloon, Shehla Manzoor; Zainab Panjwani Memorial Hospital (23): Samar Amin; Combined Military Hospital (CMH) Kharian (18): Umbreen Akram; Mian Mohammad Trust Hospital (16): Ambreen Ikram; Punjab Medical College (11): Samina Kausar; Kahota Research Laboratory (KRL) General Hospital (10): Tahira Batool; Military Hospital (MH) Rawalpindi (2): Brigadier Naila Tahir Kyani.

Uganda (2235): Mulago Hospital (1065): Christine Biryabarema, Ruth Bulime, Regina Akello, Bernadette Nakawooya Lwasa, Joselyn Ayikoru, Christine Namulwasira; Mubende Regional Referral Hospital (260): Patrick Komagum, Isabirye Rebecca, Nayiga Annet, Nakirigya Nuulu; St Francis Hospital Buluba (254): Elizabeth Nionzima, Rose Bwotya, Margret Nankya, Sarah Babirye (RIP); Mbarara Hospital (239): Joseph Ngonzi, Cesar Sanchez, Nkonwa Innocent, Kusasira Anitah; Entebbe General Hospital (143): Ayiko Jackson, Elizabeth Ndagire, Christine Nanyongo; Adjumani Hospital (103): Dominic Drametu; Angal St Luke Hospital (64): Grace Meregurwa; Church of Uganda Kisiizi Hospital (63): Francis Banya, Rita Atim; Uganda Martyrs, Ibanda Hospital (37): Emmanuel Byaruhanga; Nyakibale Hospital (7): Lema Felix.

Kenya (1031) Garissa Provincial General Hospital (317): Hussein Iman, Vincent Oyiengo, Peninah Waigi, Rose Wangui; Coast Provincial General Hospital (238): Faiza Nassir, Musimbi Soita, Rophina Msengeti, Zeinab Zubier; Moi Teaching and Referral Hospital (162): Hillary Mabeya, Antony Wanjala, Henry Mwangi; AIC Kijabe Hospital (147): Brian Liyayi, Evelyn Muthoka, Alfred Osoti; Nakuru Provincial General Hospital (85): Amos Otara, Veronicah Ongwae; Kenyatta National Hospital, University of Nairobi (53): Zahida Qureshi, Victor Wanjohi; Mwingi District Hospital (14): Bonface Musila; Bungoma District Hospital (8): Kubasu Wekesa; The Nairobi Hospital (7): Alex Nyakundi Bosire.

Cameroon (893): Kumba District Referral Hospital (271): Etienne Asonganyi, Alice Ntem, Angeline Njoache, Alice Ashu; Regional Hospital Limbe (152): André Simo, Robert Tchounzou, Dorothy Keka; Dschang District Hospital (120): Kenfack Bruno, Amadou Ndouoya, Martin Saadio; Hopital Laquintinie de Douala (120): Mesack Tchana, Odel Gwan, Pauline Assomo; St Theresa's Catholic Hospital (99): Venantius Mutsu, Nji Eric; Yaounde Gynaeco-Obstetric and Paediatric Hospital (67): Pascal Foumane, Philemon Nsem; Yaounde Central Hospital (22): Jeanne Fouedjio, Ymele Fouelifack; Centre Hospitalier et Universitaire Yaounde (20): Pierre Marie Tebeu; Sa'a District Hospital (14): Georges Nko'ayissi; Banyo District Hospital (8): Eta Ngole Mbong.

Sudan (860): Khartoum North Teaching Hospital (311): Wisal Nabag, Riham Desougi, Hadia Mustafa, Huida Eltaib; Omdurman Maternity Hospital (199): Taha Umbeli, Khalid Elfadl, Murwan Ibrahim; Kassala New Hospital (Al Saudi) (97): Abdalla Mohammed, Awadia Ali; Wad Medani Teaching Hospital of Obstetrics and Gynaecology (77): Somia Abdelrahiem, Mohammed Musa; El-Obeid Teaching Hospital (74): Khidir Awadalla, Samirra Ahmed; Kosti Hospital (34): Mahdi Bushra, Omer Babiker; Soba University Hospital (33): Hala Abdullahi, Mohamed Ahmed; Gadarif Obstetrics and Gynaecology Hospital (28): Dr. Elhassan Safa, Dr. Huida Almardi; Khartoum Teaching Hospital (6): Duria Rayis; Elmek Nimir University Hospital (1): Saeed Abdelrahman Abdelgabar.

United Kingdom (569): Liverpool Women's Hospital, Liverpool Women's NHS Foundation Trust (128): Zarko Alfirevic, Gillian Houghton, Andrew Sharpe; City Hospital Nottingham, Nottingham University Hospitals Trust (106): Jim Thornton, Nick Grace, Carys Smith; Sunderland Royal Hospital, City Hospitals Sunderland NHS Trust (96): Kim Hinshaw, Dawn Edmundson; The Royal Victoria Infirmary, Newcastle Upon Tyne Hospitals NHS Trust (92): Paul Ayuk, Alison Bates; Queen's Medical Centre, Nottingham University Hospitals Trust (91): George Bugg, Joanne Wilkins; St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust (38): Clare Tower, Alysha Allibone; St Thomas' Hospital, Guy's and St Thomas' NHS Foundation Trust (18): Eugene Oteng-Ntim.

Tanzania (538) Muhimbili National Hospital (221): Hussein Kidanto, Ahmad Kazumari, Anna Danford, Matilda Ngarina; Temeke Municipal Hospital (118): Muzdalifat Abeid, Khadija Mayumba, Magreth Zacharia; Hospitali Teule Muheza Designated District Hospital (91): George Mtove, Leonard Madame; Bugando Medical Centre (83): Anthony Massinde, Berno Mwambe; Sekou Toure Regional Hospital (16): Rwakyendela Onesmo; Mwananyamala Municipal Hospital (9): Sebastian Kitengile Ganyaka

Nepal (533): BP Koirala Institute of Health Sciences (364): Mohan Regmi, Shyam Gupta, Rabindra Bhatt, Ajay Agrawal; Nepal Medical College Teaching Hospital (132): Pramila Pradhan, Nikita Dhakal, Punita Yadav; Birat Hospital and Research Centre (23): Gyanendra Karki; Mid Western Regional Hospital (14): Bhola Ram Shrestha.

Zambia (496): University Teaching Hospital Lusaka (362): Bellington Vwalika, Mwansa Lubeya, Jane Mumba, Willies Silwimba; Livingstone General Hospital (55): Isaiah Hansingo, Noojiri Bopili; St Francis Hospital Katete (30): Ziche Makukula; Kabwe General Hospital (20): Alexander Kawimbe; Kafue District Hospital (16): Mwansa Ketty Lubeya; Saint Paul's Mission Hospital (11): Willard Mtambo; Chipata General Hospital (2): Mathew Ng'ambi.

Albania (485) Obstetric Gynaecology University Hospital “K Gliozheni” (385): Kastriot Dallaku, Saimir Cenameri, Ilir Tasha, Aferdita Kruja; Regional Hospital Fier (72): Besnik Brahimaj; Regional Hospital Elbasan (20): Armida Tola; Lezha Regional Hospital (8): Leon Kaza.

Democratic Republic of Congo (457): Hope Medical Center (112): Mateus Sahani, Desire Tshombe, Elizabeth Buligho; Centre Medical ADEBECO (96): Roger Paluku-Hamuli, Charles Kacha; CSR Carmel (69): Kato Faida; Centre de Sante de Reference Albert Barthel (48): Badibanga Musau; Centre Medical VUHE (48): Herman Kalyana; Virunga General Hospital (40): Phanny Simisi; GESOM (Groupe d'entraide et de Solidarite Medicale) (24): Serge Mulyumba; Centre de Sante de Reference Kahembe (8): Nzanzu Kikuhe Jason; Centre Hospitalier Notre Dame d'Afrique (8): Jean Robert Lubamba; Provincial Hospital Goma (4): Willis Missumba.

Bangladesh (325): Dhaka Medical College Hospital (102): Ferdousi Islam, Nazneen Begum; Ad-din Women's Medical College & Hospital (99): Sayeba Akhter, Ferdousi Chowdhury; Chittagong Medical College Hospital (64): Rokeya Begum, Farjana Basher; Ibn Sina Medical College Hospital (30): Nazlima Nargis, Abu Kholdun; Rajshahi Medical College Hospital (30): Shahela Jesmin, Shrodha Paul.

Ethiopia (302): Jimma University Hospital (158): Hailemariam Segni, Getachew Ayana, William Haleke; St. Paul's Hospital Millennium Medical College (144): Abdulfetah Abdulkadir, Hassen Hussien, Fikre Geremew.

Burkina Faso (142): Centre Hospitalier Universitaire Souro Sanou (129): Moussa Bambara, Adolphe Somé, Amadou Ly; Centre Hospitalier Regional de Dedougou (13): Roamba Pabakba.

Jamaica (73): University Hospital of the West Indies (73): Horace Fletcher, Leslie Samuels.

Ghana (41): Komfo Anokye Teaching Hospital (39): Henry Opare-Addo, Roderick Larsen-Reindorf; Ashanti Mampong Municipal Hospital (2): Kwadwo Nyarko-Jectey.

Papua New Guinea (38): Port Moresby General Hospital (38): Glen Mola, Malts Wai.

Egypt (33): Mataria Teaching Hospital (33): Magdy El Rahman, Wafaa Basta, Hussein Khamis.

Colombia (8): Fundacion Valle del Lili (8): Maria Fernanda Escobar, Liliana Vallecilla.

Cote d'Ivoire (8): Hopital General Abobo Nord (8): Gabriel Essetchi Faye.

Contributors

Haleema Shakur and Ian Roberts conceived the study, reviewed the scientific literature, and were responsible for study design, data collection, data analysis, data interpretation, writing, and reviewing the report; they take overall responsibility for this report. Bukola Fawole, Rizwana Chaudhri, Mohamed El-Sheikh, Adesina Akintan, Zahida Qureshi, Hussein Kidanto, Bellington Vwalika, Abdulfetah Abdulkadir, Saturday Etuk, Shehla Noor, Etienne Asonganyi, and Danielle Beaumont contributed to data collection, data interpretation, and reviewing the report. Zarko Alfirevic contributed to the study design, data collection, data interpretation, and reviewing the report, Carine Ronsmans contributed to the study design, data interpretation, and reviewing the report, and Sabaratnam Arulkumaran contributed to reviewing the report.

Declaration of interests

We declare no competing interests.

Acknowledgments

The run-in phase for 2000 patients' recruitment was funded by London School of Hygiene and Tropical Medicine. The funds to support the drug and placebo costs through an Investigator initiated research grant for the run-in phase was provided by Pfizer. Jack Waters who supported our funding application through Pfizer died as the trial was ongoing. The main phase was funded by the Department of Health (UK), grant number HICF-T2-0510-007 and the Wellcome Trust, grant number WT094947 . The Bill & Melinda Gates Foundation ( grant number OPP1095618 ) supported the final 5000 patients' recruitment and dissemination activities.

Supplementary Material

Title Description Type Size
Supplementary appendix pdf .19 MB
References

WHO. WHO recommendations for the prevention and treatment of postpartum haemorrhage. World Health Organisation, Geneva; 2012
View in Article 
Carroli, G, Cuesta, C, Abalos, E, and Gulmezoglu, AM. Epidemiology of postpartum haemorrhage: a systematic review. Best Pract Res Clin Obstet Gynaecol. 2008; 22: 999–1012
View in Article | Summary | Full Text | Full Text PDF | PubMed | Scopus (137)
WHO, UNFPA and The World Bank. Trends in maternal mortality: 1990 to 2010 - WHO. UNICEF, UNFPA and The World Bank estimates, ; 2012
View in Article 
Ronsmans, C, Graham, WJ, and LMSSS Group. Maternal mortality: who, when, where, and why. Lancet. 2006; 368: 1189–1200
View in Article | Summary | Full Text | Full Text PDF | PubMed | Scopus (740)
Say, L, Chou, D, Gemmill, A et al. Global causes of maternal death: a WHO systematic analysis. Lancet Glob Health. 2014; 2: e323–e333
View in Article | Summary | Full Text | Full Text PDF | PubMed | Scopus (344)
Electronic Medicines Compendium, Summary of Product Characteristics: Tranexamic acid. http://www.medicines.org.uk/emc/medicine/1489 (accessed March 3, 2017).
Ker, K, Edwards, P, Perel, P, Shakur, H, and Roberts, I. Effect of tranexamic acid on surgical bleeding: systematic review and cumulative meta-analysis. BMJ. 2012; 344: e3054
View in Article | Crossref | PubMed | Scopus (203)
Ker, K, Prieto-Merino, D, and Roberts, I. Systematic review, meta-analysis and meta-regression of the effect of tranexamic acid on surgical blood loss. Br J Surg. 2013; 100: 1271–1279
View in Article | Crossref | PubMed | Scopus (36)
CRASH-2 Collaborators. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet. 2010; 376: 23–32
View in Article | Summary | Full Text | Full Text PDF | PubMed | Scopus (624)
CRASH-2 Collaborators. The importance of early treatment with tranexamic acid in bleeding trauma patients: an exploratory analysis of the CRASH-2 randomised controlled trial. Lancet. 2011; 377: 1096–1101
View in Article | Summary | Full Text | Full Text PDF | PubMed | Scopus (375)
Sawamura, A, Hayakawa, M, Gando, S et al. Disseminated intravascular coagulation with a fibrinolytic phenotype at an early phase of trauma predicts mortality. Thromb Res. 2009; 124: 608–613
View in Article | Summary | Full Text | Full Text PDF | PubMed | Scopus (78)
Chapman, MP, Moore, EE, Moore, HB et al. Overwhelming tPA release, not PAI-1 degradation, is responsible for hyperfibrinolysis in severely injured trauma patients. J Trauma Acute Care Surg. 2016; 80: 16–23
View in Article | Crossref | PubMed | Scopus (12)
Wu, X, Darlington, DN, and Cap, AP. Procoagulant and fibrinolytic activity after polytrauma in rat. Am J Physiol Regul Integr Comp Physiol. 2016; 310: R323–R329
View in Article | Crossref | PubMed | Scopus (1)
Kruithof, EK, Tran-Thang, C, Gudinchet, A et al. Fibrinolysis in pregnancy: a study of plasminogen activator inhibitors. Blood. 1987; 69: 460–466
View in Article | PubMed
International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use Guideline for Good Clinical Practice E6(R1), 1996 June 10. http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Efficacy/E6/E6_R2__Step_4.pdf (accessed March 3, 2017).
Shakur, H, Elbourne, D, Gulmezoglu, M et al. The WOMAN Trial (World Maternal Antifibrinolytic Trial): tranexamic acid for the treatment of postpartum haemorrhage: an international randomised, double blind placebo controlled trial. Trials. 2010; 11: 40
View in Article | Crossref | PubMed | Scopus (121)
Shakur, H, Roberts, I, Edwards, P, Elbourne, D, Alfirevic, Z, and Ronsmans, C. The effect of tranexamic acid on the risk of death and hysterectomy in women with post-partum haemorrhage: statistical analysis plan for the WOMAN trial. Trials. 2016; 17: 249
View in Article | Crossref | PubMed | Scopus (2)
Prieto-Merino, D, Smeeth, L, Staa, TP, and Roberts, I. Dangers of non-specific composite outcome measures in clinical trials. BMJ. 2013; 347: f6782
View in Article | Crossref | PubMed | Scopus (8)
Tort, J, Rozenberg, P, Traore, M, Fournier, P, and Dumont, A. Factors associated with postpartum hemorrhage maternal death in referral hospitals in Senegal and Mali: a cross-sectional epidemiological survey. BMC Pregnancy Childbirth. 2015; 15: 235
View in Article | Crossref | PubMed | Scopus (3)
Oladapo, OT, Adetoro, OO, Ekele, BA et al. When getting there is not enough: a nationwide cross-sectional study of 998 maternal deaths and 1451 near-misses in public tertiary hospitals in a low-income country. BJOG. 2016; 123: 928–938
View in Article | Crossref | PubMed | Scopus (3)
Shah, N, Hossain, N, Shoaib, R, Hussain, A, Gillani, R, and Khan, NH. Socio-demographic characteristics and the three delays of maternal mortality. J Coll Physicians Surg Pak. 2009; 19: 95–98
View in Article | PubMed
Myles, PS, Smith, JA, Forbes, A et al. Tranexamic acid in patients undergoing coronary-artery surgery. N Engl J Med. 2017; 376: 136–148
View in Article | Crossref | PubMed | Scopus (3)
Ducloy-Bouthors, AS, Duhamel, A, Kipnis, E et al. Postpartum haemorrhage related early increase in D-dimers is inhibited by tranexamic acid: haemostasis parameters of a randomized controlled open labelled trial. Br J Anaesth. 2016; 116: 641–648
View in Article | Crossref | PubMed | Scopus (0)
Dewan, Y, Komolafe, EO, Mejia-Mantilla, JH, Perel, P, Roberts, I, and Shakur, H. CRASH-3 - tranexamic acid for the treatment of significant traumatic brain injury: study protocol for an international randomized, double-blind, placebo-controlled trial. Trials. 2012; 13: 87
View in Article | Crossref | PubMed | Scopus (41)
Roberts, I, Coats, T, Edwards, P et al. HALT-IT--tranexamic acid for the treatment of gastrointestinal bleeding: study protocol for a randomised controlled trial. Trials. 2014; 15: 450
View in Article | Crossref | PubMed | Scopus (10)
more...
No comment yet.
Scooped by Makhtar Loum
Scoop.it!

Vidéo- Financement de la santé: Macky Sall invite les maires à soutenir les mutuelles... - YouTube

more...
No comment yet.
Scooped by Makhtar Loum
Scoop.it!

Hôpital : qu'est-ce que le Plan Blanc ?

Hôpital : qu'est-ce que le Plan Blanc ? | senegal sante | Scoop.it
Il s'agit d'un plan spécifique d'urgence sanitaire et de crise, mis en place depuis le début des années 2000. C'est un moyen de planifier la mise en oeuvre rapide et rationnelle des moyens indispensables en cas d'afflux de victimes.
more...
No comment yet.
Rescooped by Makhtar Loum from Le numérique au service de la santé à domicile et de l’autonomie
Scoop.it!

Diabeloop, pépite industrielle de l'année 

Diabeloop, pépite industrielle de l'année  | senegal sante | Scoop.it

 

Cest une véritable révolution qui est à l’œuvre dans le traitement du diabète de type?

 Alors que les laboratoires pharmaceutiques planchent sur des insulines toujours plus efficaces, les fabricants d’équipements médicaux, de leur côté, misent sur le numérique pour transformer la vie des patients.

Et cocorico, l’un des projets les plus prometteurs dans ce domaine est celui de la start-up Diabeloop, fondée en 2015 et née d’un projet lancé en 2011 par le Centre d’études et de recherches pour l’intensification du traitement du diabète en partenariat avec le CEA-Leti.

Avec son projet de pancréas artificiel, la pépite tricolore pourrait réellement métamorphoser le quotidien des patients rythmé par le contrôle glycémique, les injections d’insuline et un régime souvent drastique.

Et surtout l’angoisse permanente de l’hypoglycémie (responsable de fatigue, de nausées, de malaises pouvant aller jusqu’au coma) et de l’hyperglycémie et de ses conséquences désastreuses sur le long terme (insuffisances rénales, neuropathies, infections cutanées, cécité).
Si l’on parle de pancréas artificiel, il ne s’agit pourtant pas d’un organe implantable, mais d’un dispositif de boucle fermée mimant les fonctions pancréatiques, composé d’un capteur de glucose en continu, d’une pompe à insuline et d’une tablette.

« Une boîte presque magique », selon Erik?Huneker, le PDG de Diabeloop. Son fonctionnement est pourtant bien plus élaboré qu’un simple tour de passe-passe.

Une unité jetable, insérée sous la peau, dans le tissu interstitiel, mesure en continu la concentration de glucose dans le sang. T

ous les sept jours, ce capteur, produit par la société américaine Dexcomm, doit être remplacé par le patient lui-même ...


Via France Silver Eco
more...
France Silver Eco's curator insight, November 7, 10:01 AM

La start-up française, désignée pépite de l’année par L’Usine Nouvelle, développe un projet de pancréas artificiel qui pourrait révolutionner le traitement du diabète.

Rescooped by Makhtar Loum from Toxique, soyons vigilant !
Scoop.it!

Selon une étude, la plupart des hommes occidentaux seront infertiles dès 2060

Selon une étude, la plupart des hommes occidentaux seront infertiles dès 2060 | senegal sante | Scoop.it

Une étude qui se veut très sérieuse estime que dans environ 40 ans, les hommes des pays les plus industrialisés du monde seront stériles. Faut-il vraiment avoir peur ? Allons-nous bientôt devoir faire face à une crise de stérilité masculine dans les pays les plus développés ? C’est en tout cas ce qu’indique une étude …


Via Sylvain Rotillon, Build Green
more...
No comment yet.
Scooped by Makhtar Loum
Scoop.it!

Sénégal: Plaidoyer pour une synergie d'actions autour du concept "Une seule santé" - Apanews.net

Sénégal: Plaidoyer pour une synergie d'actions autour du concept "Une seule santé" - Apanews.net | senegal sante | Scoop.it
"Il y a un haut leadership du gouvernement sénégalais dans la mise en œuvre de ce concept. Pour le matérialiser, il faut une approche hollistique et multisectorielle entre la santé animale, la santé humaine et la sécurité des aliments. La Surveillance, la biosécurité, la sécurité des aliments, la stratégie de renforcement des capacités, sont entre autres composantes de la plateforme nationale du Sénégal", a dit Dr Adjaratou Diakhou Ndiaye, point focal de la plateforme une seule santé à la Primature.


S'exprimant au cours de la célébration de la 1ere édition au Sénégal de la Journée Mondiale « Une Seule Santé », Dr Ndiaye a aussi plaidé pour des plateformes communautaires de ''One Health'' qui permettront d'avoir des performances.

Selon Dr ImamThiam, président de l'ordre des médecins vétérinaires, il faut travailler en synergie dans la prévention et la détection de tout ce qui nuit à la Santé. 

"Le défaut de synergie nous a toujours détourné de l'essentiel. Heureusement que le concept ''One Health'' permet de développer une synergie d'actions plus forte menant à une prise de décisions  concertée et consensuelle", a dit Dr Thiam.

A son avis, il est important de trouver des moyens de diffusion et de communication du concept ''One Health'' auprès des populations. 

Pour Reda Lebtahi, représentant résident par intérim de la FAO au Sénégal, cette synergie d'actions est d'autant plus importante qu'il y a une corrélation entre la santé animale, la santé humaine et l'environnement en ce sens que la plupart des maladies humaines sont d'origine animale.

"Ainsi, l'approche une seule santé englobe la protection de la santé publique et animale, la résilience agro-écologique, la protection de la biodiversité, l'utilisation efficiente des ressources naturelles et la sécurité sanitaire des chaînes d'approvisionnement alimentaire", a indiqué Reda Lebtahi.

Ce faisant, il a estimé que tous les services de santé du Sénégal devraient travailler en synergie pour détecter et éradiquer les maladies pandémiques et émergentes. "Une approche hollistique est nécessaire pour faire face à la mutation des maladies qui les rend plus complexes", a-t-il suggéré.

La journée mondiale « Une Seule Santé » est célébrée par l’Organisation mondiale de la santé (OMS), la FAO et l’Organisation mondiale de la santé animale (OIE) pour incruster le travail en synergie dans les pratiques et les habitudes. C’est une approche holistique et intégrée qui met l’accent sur les interactions entre les animaux, les humains et leurs environnements et encourage l’interaction concertée et multidisciplinaire entre les différents secteurs. 

La Tripartite invite ainsi les Etats à adopter cette approche pour faire face aux menaces pandémiques émergentes et ré-émergentes, par la prévention, la détection et la réponse précoce et efficace des pathogènes.

Au Sénégal, la Task-Force « Une Seule Santé », logée à la Primature, avec l’assistance de la FAO, projette de perpétuer la célébration de la journée mondiale initiée en septembre 2016. 

Cette initiative permettra de préparer un ancrage institutionnel fort à l’approche ''Une Seule  Santé'' afin de promouvoir une nouvelle culture comportementale dans l’approche de la santé publique auprès des professionnels des différents secteurs.

TE/od/APA

more...
No comment yet.
Scooped by Makhtar Loum
Scoop.it!

Retours d’expérience des services d’urgence après les attentats de Paris et de Nice pour mieux se préparer à répondre à la menace terroriste

Retours d’expérience des services d’urgence après les attentats de Paris et de Nice pour mieux se préparer à répondre à la menace terroriste | senegal sante | Scoop.it
more...
No comment yet.
Scooped by Makhtar Loum
Scoop.it!

Le long chemin vers le remboursement des objets connectés médicaux

Le long chemin vers le remboursement des objets connectés médicaux | senegal sante | Scoop.it
Les médicaments doivent répondre à des impératifs stricts avant d'être validés par la Haute autorité de la santé (HAS) en vue de leur remboursement. Qu'en est-il des objets connectés médicaux ? Le point avec le professeur Jacques Belghiti.

Avant de permettre la révolution promise, les objets connectés médicaux doivent d'abord être autorisés par la Haute autorité de la santé (HAS).
SITE DU GOUVERNEMENT
REMBOURSEMENT. L'Internet des objets médicaux connectés va révolutionner le secteur de la santé, paraît-il. C'est en tout cas ce qu'on entend régulièrement à l'occasion des nombreuses conférences consacrées au sujet. Pourtant, en France, seul 1/3 des dispositifs sur le marché est pour l'instant remboursé, indique le Pr Jacques Belghiti, Professeur de chirurgie à l'université Paris 7 et ancien président de la commission nationale d'évaluation des dispositifs médicaux et des technologies de santé de de la Haute autorité pour la santé (HAS). Pourquoi ? "Souvent, c'est l'absence d'études cliniques randomisées et publiées dans la littérature scientifique qui pêche". À l'occasion du congrès consacré à la santé digitale "Doctors 2.0 and you", le professeur rappelait les exigences de santé publique auxquelles sont soumis ces dispositifs connectés avant d'être intégrés à l'arsenal thérapeutique et remboursés par l'assurance maladie.

Un délai avant remboursement qui peut atteindre 10 ans
Car la HAS ne statue pas seulement sur le remboursement des médicaments : "La haute autorité a aussi pour objectif, vis-à-vis des dispositifs médicaux et des technologies de santé, de rappeler les bonnes pratiques et de les évaluer en vue de déterminer leur remboursement ou non par l'assurance maladie", rappelle Dr Jacques Belghiti. Parmi les 101 règles de bonnes pratiques de la haute autorité, on trouve des critères traditionnels d'un usage éthique des données : la délivrance de données médicales fiables, la performance technique des appareils, mais surtout la confidentialité des données à caractère personnel.

PROCESSUS. La commission nationale d'évaluation des dispositifs médicaux et des technologies de santé de la HAS, qui compte 28 membres, se compose à 80% de médecins chercheurs. "C'est essentiel d'impliquer des médecins proches de la littérature scientifique, au vu de la difficulté à évaluer ces dispositifs", estime le professeur. "2 patients y siègent également afin de représenter les malades". Or ce qui manque à la plupart des dossiers reçus par la HAS, c'est la publication d'études cliniques randomisées dans des revues scientifiques à comité de lecture démontrant le réel bénéfice des dispositifs sur la santé, estime le scientifique. "Sans quoi le délai avant autorisation de remboursement peut s'élever jusqu'à 10 ans", alerte-t-il. En 2016, sur les 138 dossiers reçus, seuls 27% démontraient un amélioration modérée à majeure par rapport à un traitement classique.



Extrait de la présentation donnée par le Dr Belghiti

Depuis 2015, un dispositif d'accélération est adressé aux industriels : le forfait innovation, qui leur permet de mettre un produit à la disposition des patients plus rapidement, à condition d'avoir déjà préparé un protocole d'étude clinique. La Haute autorité a alors 45 jours pour statuer.
more...
No comment yet.
Scooped by Makhtar Loum
Scoop.it!

La simulation au service de la santé - BGF Makers 2017

Sophia Soulé et Laurent Le Gorrec de SimforHealth au Bordeaux Geek Festival 2017 au sein de l'espace Makers. La réalité virtuelle est de plus en plu
more...
No comment yet.
Scooped by Makhtar Loum
Scoop.it!

Diesel : 38 000 décès dans le monde seraient dus, en 2015, au dépassement des normes

Diesel : 38 000 décès dans le monde seraient dus, en 2015, au dépassement des normes | senegal sante | Scoop.it
Un article publié dans la revue « Nature » révèle que la moitié des voitures sur la planète dépassent les limites réglementaires d’émissions d’oxydes d’azote.
more...
No comment yet.
Scooped by Makhtar Loum
Scoop.it!

Sénégal:La vaccination contre le cancer du col de l’utérus cible 889 445 filles

Sénégal:La vaccination contre le cancer du col de l’utérus cible 889 445 filles | senegal sante | Scoop.it
La première étape de la campagne de vaccination contre le cancer du col de l’utérus, prévue en novembre, va cibler 889 445 filles, a appris l’APS, vendredi.

La seconde étape de cette campagne se déroulera mai 2018. Le ministre de la Santé a dévoilé le calendrier relatif à l’introduction du vaccin contre le cancer du col de l’utérus pour l’année 2017-2018, à l’occasion de la 7ème Semaine africaine de la vaccination (24 au 30 avril), selon un communiqué reçu à l’APS.

La même source souligne que le cancer du col de l’utérus est parmi les cancers les plus fréquents chez les Africaines et plus particulièrement au Sénégal.

Cité dans le document, Professeur Mamadou Diop, Chef de service d’oncologie à l’Hôpital Aristide Le Dantec a rappelé que "le cancer du col de l’utérus représente 22% de tous les cancers féminins en Afrique et 34 femmes sur 100 000 sont diagnostiquées comme ayant un cancer du col de l’utérus. 23 femmes sur 100 000 meurent du cancer du col de l’utérus chaque année en Afrique".

Le communiqué souligne que le Sénégal a donc fait de la lutte contre le cancer du col de l’utérus "une des priorités de son programme national de développement sanitaire (PNDS)".

Le pays a décidé de lancer à l’échelle nationale une campagne de vaccination qui va concerner les filles âgées de 9 à 15 ans, scolarisées et non scolarisées, pour la première année (2017-2018), puis la cohorte des filles de 9 ans les années suivantes.

Selon Dr. Ousseynou Badiane, Chef de la Division de l’immunisation et Coordonnateur du Programme élargi de vaccination au sein de la Direction de la prévention, "les données scientifiques montrent que la réponse immunitaire est meilleure lorsque le vaccin est administré avant 15 ans plutôt qu’après".

"La vaccination anti-VPH est un outil de prévention primaire et il est extrêmement important de sensibiliser un public plus large : les adolescents, les parents, les éducateurs et les acteurs communautaires afin de mener le combat contre le cancer du col de l’utérus au Sénégal", a-t-il dit.

La Semaine africaine de la vaccination est une initiative régionale pilotée et coordonnée par le Bureau régional de l’Organisation mondiale de la Santé (OMS) pour l’Afrique, rappelle-t-on.

Elle vise à "sensibiliser la population à l’importance de la vaccination pour les personnes de tous âges et à augmenter les taux de vaccination contre les maladies pouvant être évitées par la vaccination".
OID/ASB

Auteur: APS - APS
more...
No comment yet.