Aprendizaje Disruptivo
354 views | +0 today
Follow
Aprendizaje Disruptivo
Un aproximación práctica & conceptual
Curated by Simón Rave
Your new post is loading...
Your new post is loading...
Rescooped by Simón Rave from iGeneration - 21st Century Education (Pedagogy & Digital Innovation)
Scoop.it!

Disruptive Education - Competency based learning in higher ed


Via Tom D'Amico (@TDOttawa)
more...
No comment yet.
Rescooped by Simón Rave from Edumorfosis.it
Scoop.it!

Big Data en Educación: Un tesoro para la toma de decisiones

Big Data en Educación: Un tesoro para la toma de decisiones | Aprendizaje Disruptivo | Scoop.it

Aunque aún está dando sus primeros pasos, son muchos los expertos que vaticinan que el big data supondrá una auténtica revolución en el ámbito educativo, pero ¿de qué manera están relacionadas? Tal vez primero haya que responder a unas preguntas.

¿Qué es el el big data? Se trata de un conjunto de tecnologías y prácticas que hacen posible el almacenamiento, tratamiento y análisis de las enormes cantidades de datos que se generan en el mundo. Hablamos de unos 1.700 billones de bytes por minuto.

¿Para qué sirve? Utilizando el símil del famoso cuento de Caperucita y el lobo, sirve “…para verte mejor”, porque eso, realmente, es lo que permite el big data: vernos, escucharnos y analizarnos para conocernos mejor.

¿Cómo funciona? Utilizando potentísimos equipos informáticos que procesan con rapidez y eficacia millones de datos a la vez. Esto permite encontrar correlaciones entre datos y detectar patrones y tendencias que sirven para realizar pronósticos fiables para la toma de decisiones.


Via Edumorfosis
more...
No comment yet.
Rescooped by Simón Rave from Seminario de educación superior, 8° Semestre de la licenciatura en educación
Scoop.it!

B-learnig

B-learnig | Aprendizaje Disruptivo | Scoop.it
Dentro de esta webquest encontrarás actividades que te ayudarán en el aprendizaje del tema: Fundamentos de la planeación. Esta webquest ayuda a los futuros educadores a conocer diversas...

Via Jessy Pao
more...
No comment yet.
Rescooped by Simón Rave from BigData Hadoop Ecosystem
Scoop.it!

Machine Learning - The New Cornerstone of Digital Transformation

Machine Learning - The New Cornerstone of Digital Transformation | Aprendizaje Disruptivo | Scoop.it
Artificial Intelligence (AI), and more pragmatically, Machine Learning (ML) have been called the new electricity that's powering the Fourth Industrial Revolution (4IR). AI is considered to be the ability for an artificial system to make cognitive decisions without human input, whereas ML is considered to be the ability for a computerized system to improve performance of an automated task over time. While AI is still futuristic, ML has been causing huge disruptions across multiple industries over the past decade. For example:

Via Charles Gerth
more...
No comment yet.
Rescooped by Simón Rave from Re-Ingeniería de Aprendizajes
Scoop.it!

Aprendizaje personalizado y analíticas de aprendizaje - IADLearning

Aprendizaje personalizado y analíticas de aprendizaje - IADLearning | Aprendizaje Disruptivo | Scoop.it
Descubra cómo ofrecer a sus estudiantes una experiencia de aprendizaje personalizado a través de su LMS y utilizando sus contenidos, gracias a IADLearning

Via Ramiro Aduviri Velasco
more...
No comment yet.
Scooped by Simón Rave
Scoop.it!

11 amazing images show 'The Human Face of Big Data' - ITBusiness.ca

11 amazing images show 'The Human Face of Big Data' - ITBusiness.ca | Aprendizaje Disruptivo | Scoop.it
“ ITBusiness.ca 11 amazing images show 'The Human Face of Big Data' ITBusiness.ca ...”
more...
No comment yet.
Rescooped by Simón Rave from E-Learning-Inclusivo (Mashup)
Scoop.it!

Personal Computing Is Dead, Long Live Collaborative Computing

Personal Computing Is Dead, Long Live Collaborative Computing | Aprendizaje Disruptivo | Scoop.it

"Those of us who are actively developing for the HoloLens, and for the other augmented and mixed reality devices and platforms that currently exist, are constantly looking for the next bit of news or press conference about the space. Our one hope is to find any information about the road ahead, to know that the hours we spend slaving away above our keyboards, with the weight of a head-mounted display on our neck, will lead to something as amazing as we picture it. All the analysis tends to lead down roads that say 5 to 10 years."


Via EDTECH@UTRGV, Jim Lerman, juandoming
more...
Claude Emond's curator insight, May 28, 2017 8:34 AM

One vision of the future. :)

Bryce Cooper's curator insight, May 30, 2017 12:29 AM
I think that the hololens is a fantastic resource, and I hope that it gains more traction sooner rather than later. The capabilities that mixed reality could present to my own teaching in the area of history are quite profound. Students could physically experience historical events, see through the eyes of someone who was there standing on the ground when ANZAC soldiers landed at Gallipoli, or when the Treaty of Versailles was signed. Students could interact with the augmented reality and use it to create great collaborative projects. They could use it to predict outcomes of battles, from being able to physically see the circustances such as terrain and armed strength.

This resource supports the SAMR framework well, in regards to the higher order thinking aspects of Redefinition. Students can immerse themselves in a situation in VR that replaces the physical pictures, text and videos entirely, and creates a new dimension to engagement with a topic. Whilke a documentary full of firsthand footage can be insightful for a relatively recent era, VR recreations of ancient historical aspects could be invaluable for student engagement and learning. 

VR has the capability to essentially redefine the way in which students learn and engage with history, and can present all new opportunities for teachers to plan and implement interesting and engaging assessment and activities.
David W. Deeds's curator insight, May 30, 2017 8:13 PM

Interesting stuff. 

Rescooped by Simón Rave from LabTIC - Tecnología y Educación
Scoop.it!

¿Sabes qué es el Big Data y cómo nos afecta?

¿Sabes qué es el Big Data y cómo nos afecta? | Aprendizaje Disruptivo | Scoop.it

Cada 60 segundos se sube a Internet 72 Horas de vídeo a Youtube, 216.000 Imágenes a Instagram y 204.000.000 correos electrónicos.Toda esta información y más que generamos a diario forman parte del Big Data.Pero, ¿sabes qué es y en qué nos afecta el Big Data?La respuesta a esta pregunta es importante tenerla en cuenta para contribuir a nuestra Seguridad Informática.


Via Gumersindo Fernández, Labtic.Unipe
more...
No comment yet.
Rescooped by Simón Rave from Aprendizaje abierto en plataformas
Scoop.it!

Skills for Success in a Disruptive World of Work

Skills for Success in a Disruptive World of Work | Aprendizaje Disruptivo | Scoop.it
“Skills young people should be learning to be prepared for a career in 2020 include:


The ability to concentrate, to focus deeply.

 

The ability to distinguish between the “noise” and the message in the ever-growing sea of information.

 

The ability to do public problem solving through cooperative work.

 

The ability to search effectively for information and to be able to discern the quality and veracity of the information one finds and then communicate these findings well.

 

Synthesizing skills (being able to bring together details from many sources).

 

The capability to be futures-minded through formal education in the practices of horizon-scanning, trends analysis and strategic foresight.”

 

Learn more / En savoir plus / Mehr erfahren:

 

https://gustmees.wordpress.com/2015/05/26/what-are-the-skills-needed-from-students-in-the-future/

 


Via Gust MEES, Pierre Levy, Simón Rave
more...
Gilson Schwartz's curator insight, December 18, 2016 8:30 AM
Antigamente a gente falava em "profissões do futuro". Agora são os "skills" do futuro"
Víctor Ríos Ochoa's curator insight, May 27, 2017 10:25 AM
Skills for Success in a Disruptive World of Work
Rescooped by Simón Rave from Digital Delights - Digital Tribes
Scoop.it!

The Disruptive Nature of Digital Learning: Ten Things We've Learned

From e-learning to we-learning to digital learning. How the corporate learning, micro-learning, and spaced learning, and LMS market have changed.

Via Ana Cristina Pratas
more...
Phil Buckley's curator insight, May 17, 2017 10:38 AM
Here is excellent research and in-depth projections on how employment and learning are changing within a digital world.
Scooped by Simón Rave
Scoop.it!

Technologies That Will Define the Classroom of the Future

What innovative technologies that have recently appeared will soon reside in the future classrooms?
more...
No comment yet.
Rescooped by Simón Rave from Disruptive Nostalgia in Education UK
Scoop.it!

The disruption of education: How technology is helping students teach themselves

The disruption of education: How technology is helping students teach themselves | Aprendizaje Disruptivo | Scoop.it
“ Mobile technology and social networks aren't just disruptive to existing industries like communications and media, they are also helping the change the way that students learn and how education is delivered both in North America and around the world.”
Via Tony Parkin
more...
No comment yet.
Rescooped by Simón Rave from Educación a Distancia y TIC
Scoop.it!

CUED. La educación que se dibuja en el horizonte: el NMC Horizon Report 2017

CUED. La educación que se dibuja en el horizonte: el NMC Horizon Report 2017 | Aprendizaje Disruptivo | Scoop.it
Escribe Javier Tourón Recientemente se ha presentado la nueva edición del Horizon Report en e

Via L. García Aretio
more...
No comment yet.
Rescooped by Simón Rave from Educacion, ecologia y TIC
Scoop.it!

La gamificación o el reto de aprender jugando

La gamificación o el reto de aprender jugando | Aprendizaje Disruptivo | Scoop.it
Utilizar las dinámicas de un juego para aprender con atención y motivación. Esta es la filosofía de la gamificación, una nueva estrategia de aprendizaje.

Via Ramon Aragon
more...
No comment yet.
Rescooped by Simón Rave from Social Media and Healthcare
Scoop.it!

12 Examples of Big Data In Healthcare That Can Save People

12 Examples of Big Data In Healthcare That Can Save People | Aprendizaje Disruptivo | Scoop.it

Big Data has changed the way we manage, analyze and leverage data in any industry. One of the most promising areas where it can be applied to make a change is healthcare. Healthcare analytics have the potential to reduce costs of treatment, predict outbreaks of epidemics, avoid preventable diseases and improve the quality of life in general. Average human lifespan is increasing along world population, which poses new challenges to today’s treatment delivery methods. Health professionals, just like business entrepreneurs, are capable of collecting massive amounts of data and look for best strategies to use these numbers. In this article, we would like to address the need of big data in healthcare: why and how can it help? What are the obstacles to its adoption? We will then provide you with 12 big data examples in healthcare that already exist and that we benefit from.

 
What Is Big Data In Healthcare?

The application of big data analytics in healthcare has a lot of positive and also life-saving outcomes. Big data refers to the vast quantities of information created by the digitization of everything, that gets consolidated and analyzed by specific technologies. Applied to that industry, it will use specific health data of a population (or of a particular individual) and potentially help to prevent epidemics, cure disease, cut down costs, etc.

Now that we live longer, treatment models have changed and many of these changes are namely driven by data. Doctors want to understand as much as they can about a patient and as early in their life as possible, to pick up warning signs of serious illness as they arise – treating any disease at an early stage is far more simple and less expensive. With healthcare data analytics, prevention is better than cure and managing to draw a comprehensive picture of a patient will let insurances provide a tailored package. This is the industry’s attempt to tackle the siloes problems a patient’s data has: everywhere are collected bits and bites of it and archived in hospitals, clinics, surgeries, etc., with the impossibility to communicate properly.

Indeed, for years gathering huge amounts of data for medical use has been costly and time-consuming. With today’s always-improving technologies, it becomes easier not only to collect such data but also to convert it into relevant critical insights, that can then be used to provide better care. This is the purpose of healthcare data analytics: using data-driven findings to predict and solve a problem before it is too late, but also assess methods and treatments faster, keep better track of inventory, involve patients more in their own health and empower them with the tools to do so.

Why We Need Big Data Analytics In Healthcare

There’s a huge need for big data in healthcare as well, due to rising costs in nations like the United States. As a McKinsey report states, “After more than 20 years of steady increases, healthcare expenses now represent 17.6 percent of GDP —nearly $600 billion more than the expected benchmark for a nation of the United States’s size and wealth.”

In other words, costs are much higher than they should be, and they have been rising for the past 20 years. Clearly, we are in need of some smart, data-driven thinking in this area. And current incentives are changing as well: many insurance companies are switching from fee-for-service plans (which reward using expensive and sometimes unnecessary treatments and treating large amounts of patients quickly) to plans that prioritize patient outcomes

As the authors of the popular Freakonomics books have argued, financial incentives matter – and incentives that prioritize patients health over treating large amounts of patients are a good thing. Why does this matter?

Well, in the previous scheme, healthcare providers had no direct incentive to share patient information with one another, which had made it harder to utilize the power of analytics. Now that more of them are getting paid based on patient outcomes, they have a financial incentive to share data that can be used to improve the lives of patients while cutting costs for insurance companies.

Finally, physician decisions are becoming more and more evidence-based, meaning that they rely on large swathes of research and clinical data as opposed to solely their schooling and professional opinion. As in many other industries, data gathering and management is getting bigger, and professionals need help in the matter. This new treatment attitude means there is a greater demand for big data analytics in healthcare facilities than ever before, and the rise of SaaS BI tools is also answering that need.

Obstacles To A Widespread Big Data Healthcare

One of the biggest hurdles standing in the way to use big data in medicine is how medical data is spread across many sources governed by different states, hospitals, and administrative departments. Integration of these data sources would require developing a new infrastructure where all data providers collaborate with each other.

Equally important is implementing new online reporting software and business intelligence strategy. Healthcare needs to catch up with other industries that have already moved from standard regression-based methods to more future-oriented like predictive analytics, machine learning, and graph analytics.

However, there are some glorious instances where it doesn’t lag behind, such as EHRs (especially in the US.) So, even if these services are not your cup of tea, you are a potential patient, and so you should care about new healthcare analytics applications. Besides, it’s good to take a look around sometimes and see how other industries cope with it. They can inspire you to adapt and adopt some good ideas.

 
12 Big Data Applications In Healthcare 1) Patients Predictions For An Improved Staffing


For our first example of big data in healthcare, we will look at one classic problem that any shift manager faces: how many people do I put on staff at any given time period? If you put on too many workers, you run the risk of having unnecessary labor costs add up. Too few workers, you can have poor customer service outcomes – which can be fatal for patients in that industry.

Big data is helping to solve this problem, at least at a few hospitals in Paris. A Forbes article details how four hospitals which are part of the Assistance Publique-Hôpitaux de Paris have been using data from a variety of sources to come up with daily and hourly predictions of how many patients are expected to be at each hospital.

One of they key data sets is 10 years’ worth of hospital admissions records, which data scientists crunched using “time series analysis” techniques. These analyses allowed the researchers to see relevant patterns in admission rates. Then, they could use machine learning to find the most accurate algorithms that predicted future admissions trends.

Summing up the product of all this work, Forbes states: “The result is a web browser-based interface designed to be used by doctors, nurses and hospital administration staff – untrained in data science – to forecast visit and admission rates for the next 15 days. Extra staff can be drafted in when high numbers of visitors are expected, leading to reduced waiting times for patients and better quality of care.”

2) Electronic Health Records (EHRs)

It’s the most widespread application of big data in medicine. Every patient has his own digital record which includes demographics, medical history, allergies, laboratory test results etc. Records are shared via secure information systems and are available for providers from both public and private sector. Every record is comprised of one modifiable file, which means that doctors can implement changes over time with no paperwork and no danger of data replication.

EHRs can also trigger warnings and reminders when a patient should get a new lab test or track prescriptions to see if a patient has been following doctors’ orders.

Although EHR are a great idea, many countries still struggle to fully implement them. U.S. has made a major leap with 94% of hospitals adopting EHRs according to this HITECH research, but the EU still lags behind. However, an ambitious directive drafted by European Commission is supposed to change it: by 2020 centralized European health record system should become a reality.

Kaiser Permanente is leading the way in the U.S., and could provide a model for the EU to follow. They’ve fully implemented a system called HealthConnect that shares data across all of their facilities and makes it easier to use EHRs. A McKinsey report on big data healthcare states that “The integrated system has improved outcomes in cardiovascular disease and achieved an estimated $1 billion in savings from reduced office visits and lab tests.”

3) Real-Time Alerting

Other examples of big data analytics in healthcare share one crucial functionality – real-time alerting. In hospitals, Clinical Decision Support (CDS) software analyzes medical data on the spot, providing health practitioners with advice as they make prescriptive decisions.

However, doctors want patients to stay away from hospitals to avoid costly in-house treatments. Personal analytics devices, already trending as business intelligence buzzwords in 2016, have the potential to become part of a new strategy. Wearables will collect patients’ health data continuously and send this data to the cloud.

Additionally, this information will be accessed to the database on the state of health of the general public, which will allow doctors to compare this data in socioeconomic context and modify the delivery strategies accordingly. Institutions and care managers will use sophisticated tools to monitor this massive data stream and react every time the results will be disturbing.

For example, if a patient’s blood pressure increases alarmingly, the system will send an alert in real time to the doctor who will then take action to reach the patient and administer measures to lower the pressure.

Another example is that of Asthmapolis, which has started to use inhalers with GPS-enabled trackers in order to identify asthma trends both on an individual level and looking at larger populations. This data is being used in conjunction with data from the CDC in order to develop better treatment plans for asthmatics.

4) Enhancing Patient Engagement

Many consumers – and hence, potential patients – already have an interest in smart devices that record every step they take, their heart rates, sleeping habits, etc., on a permanent basis. All this vital information can be coupled with other trackable data to identify potential health risks lurking. A chronic insomnia and an elevated heart rate can signal a risk for future heart disease for instance. Patients are directly involved in the monitoring of their own health, and incentives from health insurances can push them to lead a healthy lifestyle (e.g.: giving money back to people using smart watches).

Another way to do so comes with new wearables under development, tracking specific health trends and relaying them to the cloud where physicians can monitor them. Patients suffering from asthma or blood pressure could benefit from it, and become a bit more independent and reduce unnecessary visits to the doctor.

5) Prevent Opioid Abuse In The US


Our fourth example of big data healthcare is tackling a serious problem in the US. Here’s a sobering fact: as of this year, overdoses from misused opioids have caused more accidental deaths in the U.S. than road accidents, which were previously the most common cause of accidental death.

Analytics expert Bernard Marr writes about the problem in a Forbes article. The situation has gotten so dire that Canada has declared opioid abuse to be a “national health crisis,” and President Obama earmarked $1.1 billion dollars for developing solutions to the issue while he was in office.

Once again, an application of big data analytics in healthcare might be the answer everyone is looking for: data scientists at Blue Cross Blue Shield have started working with analytics experts at Fuzzy Logix to tackle the problem. Using years of insurance and pharmacy data, Fuzzy Logix analysts have been able to identify 742 risk factors that predict with a high degree of accuracy whether someone is at risk for abusing opioids.

As Blue Cross Blue Shield data scientist Brandon Cosley states in the Forbes piece: “It’s not like one thing – ‘he went to the doctor too much’ – is predictive … it’s like ‘well you hit a threshold of going to the doctor and you have certain types of conditions and you go to more than one doctor and live in a certain zip code…’ Those things add up.”

To be fair, reaching out to people identified as “high risk” and preventing them from developing a drug issue is a delicate undertaking. However, this project still offers a lot of hope towards mitigating an issue which is destroying the lives of many people and costing the system a lot of money.

  6) Using Health Data For Informed Strategic Planning

The use of big data in healthcare allows for strategic planning thanks to better insights into people’s motivations. Care mangers can analyze check-up results among people in different demographic groups and identify what factors discourage people from taking up treatment.

University of Florida made use of Google Maps and free public health data to prepare heat maps targeted at multiple issues, such as population growth and chronic diseases. Subsequently, academics compared this data with the availability of medical services in most heated areas. The insights gleaned from this allowed them to review their delivery strategy and add more care units to most problematic areas.

7) Big Data Might Just Cure Cancer

Another interesting example of the use of big data in healthcare is the Cancer Moonshot program. Before the end of his second term, President Obama came up with this program that had the goal of accomplishing 10 years’ worth of progress towards curing cancer in half that time.

Medical researchers can use large amounts of data on treatment plans and recovery rates of cancer patients in order to find trends and treatments that have the highest rates of success in the real world. For example, researchers can examine tumor samples in biobanks that are linked up with patient treatment records. Using this data, researchers can see things like how certain mutations and cancer proteins interact with different treatments and find trends that will lead to better patient outcomes.

This data can also lead to unexpected benefits, such as finding that Desipramine, which is an anti-depressant, has the ability to help cure certain types of lung cancer.

However, in order to make these kinds of insights more available, patient databases from different institutions such as hospitals, universities, and nonprofits need to be linked up. Then, for example, researchers could access patient biopsy reports from other institutions. Another potential use case would be genetically sequencing cancer tissue samples from clinical trial patients and making these data available to the wider cancer database.

But, there are a lot of obstacles in the way, including:

Incompatible data systems. This is perhaps the biggest technical challenge, as making these data sets able to interface with each other is quite a feat. Patient confidentiality issues. There are differing laws state by state which govern what patient information can be released with or without consent, and all of these would have to be navigated. Simply put, institutions which have put a lot of time and money into developing their own cancer dataset may not be eager to share with others, even though it could lead to a cure much more quickly.

However, as an article by Fast Company states, there are precedents to navigating these types of problems: “…the U.S. National Institutes of Health (NIH) has hooked up with a half-dozen hospitals and universities to form the Undiagnosed Disease Network, which pools data on super-rare conditions (like those with just a half-dozen sufferers), for which every patient record is a treasure to researchers.”

Hopefully, Obama’s panel will be able to navigate the many roadblocks in the way and accelerate progress towards curing cancer using the strength of data analytics.

 
8) Predictive Analytics In Healthcare

We have already recognized predictive analytics as one of the biggest business intelligence trend two years in a row, but the potential applications reach far beyond business and much further in the future. Optum Labs, an US research collaborative, has collected EHRs of over 30 million patients to create a database for predictive analytics tools that will improve the delivery of care.

The goal of healthcare business intelligence is to help doctors make data-driven decisions within seconds and improve patients’ treatment. This is particularly useful in case of patients with complex medical histories, suffering from multiple conditions. New tools would also be able to predict, for example, who is at risk of diabetes, and thereby be advised to make use of additional screenings or weight management.

9) Reduce Fraud And Enhance Security

Some studies have shown that this particular industry is 200% more likely to experience data breaches than any other industry. The reason is simple: personal data is extremely valuable and profitable on the black markets. And any breach would have dramatic consequences. With that in mind, many organizations started to use analytics to help prevent security threats by identifying changes in network traffic, or any other behavior that reflects a cyber-attack. Of course, big data has inherent security issues and many think that using it will make the organizations more vulnerable than they already are. But advances in security such as encryption technology, firewalls, anti-virus software, etc, answer that need for more security, and the benefits brought largely overtake the risks.

Likewise, it can help prevent fraud and inaccurate claims in a systemic, repeatable way. Analytics help streamline the processing of insurance claims, enabling patients to get better returns on their claims and caregivers are paid faster. For instance, the Centers for Medicare and Medicaid Services said they saved over $210.7 million in frauds in just a year.

10) Telemedicine

Telemedicine has been present on the market for over 40 years, but only today, with the arrival of online video conferences, smartphones, wireless devices, and wearables, has it been able to come into full bloom. The term refers to delivery of remote clinical services using technology.

It is used for primary consultations and initial diagnosis, remote patient monitoring, and medical education for health professionals. Some more specific uses include telesurgery – doctors can perform operations with the use of robots and high-speed real-time data delivery without physically being in the same location with a patient.

Clinicians use telemedicine to provide personalized treatment plans and prevent hospitalization or re-admission. Such use of healthcare data analytics can be linked to the use of predictive analytics as seen previously. It allows clinicians to predict acute medical events in advance and prevent deterioration of patient’s conditions.

By keeping patients away from hospitals, telemedicine helps to reduce costs and improve the quality of service. Patients can avoid waiting lines and doctors don’t waste time for unnecessary consultations and paperwork. Telemedicine also improves the availability of care as patients’ state can be monitored and consulted anywhere and anytime.

11) Integrating Big Data With Medical Imaging

Medical imaging is vital and each year in the US about 600 million imaging procedures are performed. Analyzing and storing manually these images is expensive both in terms of time and money, as radiologists need to examine each image individually, while hospitals need to store them for several years.

Medical imaging provider Carestream explains how big data analytics for healthcare could change the way images are read: algorithms developed analyzing hundreds of thousands of images could identify specific patterns in the pixels and convert it into a number to help the physician with the diagnosis. They even go further, saying that it could be possible that radiologists will no longer need to look at the images, but instead analyze the outcomes of the algorithms that will inevitably study and remember more images than they could in a lifetime. This would undoubtedly impact the role of radiologists, their education and required skillset.

12) A Way To Prevent Unnecessary ER Visits

Saving time, money and energy using big data analytics for healthcare is necessary. What if we told you that over the course of 3 years, one woman visited the ER more than 900 times? That situation is a reality in Oakland, California, where a woman who suffers from mental illness and substance abuse went to a variety of local hospitals on an almost daily basis.

This woman’s issues were exacerbated by the lack of shared medical records between local emergency rooms, increasing the cost to taxpayers and hospitals, and making it harder for this woman to get good care. As Tracy Schrider, who coordinates the care management program at Alta Bates Summit Medical Center in Oakland stated in a Kaiser Health News article:

“Everybody meant well. But she was being referred to three different substance abuse clinics and two different mental health clinics, and she had two case management workers both working on housing.  It was not only bad for the patient, it was also a waste of precious resources for both hospitals.”

In order to prevent future situations like this from happening, Alameda county hospitals came together to create a program called PreManage ED, which shares patient records between emergency departments.

This system lets ER staff know things like:

If the patient they are treating has already had certain tests done at other hospitals, and what the results of those tests are If the patient in question already has a case manager at another hospital, preventing unnecessary assignments What advice has already been given to the patient, so that a coherent message to the patient can be maintained by providers

This is another great example where the application of healthcare analytics is useful and needed. In the past, hospitals without PreManage ED would repeat tests over and over, and even if they could see that a test had been done at another hospital, they would have to go old school and request or send a long fax just to get the information they needed.

How To Use Big Data In Healthcare

All in all, we’ve seen through these 12 examples of big data application in healthcare three main trends: the patients experience could improve dramatically, including quality of treatment and satisfaction; the overall health of the population should also be improved over time; and the general costs should be reduced. Let’s have a look now at a concrete example of how to use data analytics in healthcare, in a hospital for instance:

**click to enlarge**

This healthcare dashboard provides you with the overview needed as a hospital director or as a facility manager. Gathering in one central point all the data on every division of the hospital, the attendance, its nature, the costs incurred, etc., you have the big picture of your facility, which will be of a great help to run it smoothly.

You can see here the most important metrics concerning various aspects: the number of patients that were welcomed in your facility, how long they stayed and where, how much it cost to treat them, and the average waiting time in emergency rooms. Such a holistic view helps top-management identify potential bottlenecks, spot trends and patterns over time, and in general assess the situation. This is key in order to make better-informed decisions that will improve the overall operations performance, with the goal of treating patients better and having the right staffing resources.

Our List of 12 Big Data Examples In Healthcare

The industry is changing, and like any other, big data is starting to transform it – but there is still a lot of work to be done. The sector slowly adopts the new technologies that will push it into the future, helping it to make better-informed decisions, improving operations, etc. In a nutshell, here’s a short list of the examples we have gone over in this article. With healthcare data analytics, you can:

Predict the daily patients income to tailor staffing accordingly Use Electronic Health Records (EHRs) Use real-time alerting for instant care Help in preventing opioid abuse in the US Enhance patient engagement in their own health Use health data for a better-informed strategic planning Research more extensively to cure cancer Use predictive analytics Reduce fraud and enhance data security Practice telemedicine Integrate medical imaging for an broader diagnosis Prevent unnecessary ER visits
Via Plus91
more...
emanion's curator insight, July 26, 10:16 AM
Share your insight
Rescooped by Simón Rave from Herramientas y recursos para el aprendizaje online
Scoop.it!

Gamificación en el aula – Propuesta para el diseño y creación de proyectos

Gamificación en el aula – Propuesta para el diseño y creación de proyectos | Aprendizaje Disruptivo | Scoop.it

Canva con componentes y aspectos a tener en cuenta en el diseño de un proyecto de aprendizaje gamificado.


Via Net-Learning
more...
No comment yet.
Rescooped by Simón Rave from TIC + Literacidad
Scoop.it!

Educación y Aprendizaje Disruptivo

Educación y Aprendizaje Disruptivo | Aprendizaje Disruptivo | Scoop.it

Via Belén Rojas, Kelli Díaz
Simón Rave's insight:
Excelente tópico!
more...
No comment yet.
Rescooped by Simón Rave from E-Learning-Inclusivo (Mashup)
Scoop.it!

[Infographic] Benefits of a Flipped Learning Approach

[Infographic] Benefits of a Flipped Learning Approach | Aprendizaje Disruptivo | Scoop.it

Via Edumorfosis, juandoming
more...
No comment yet.
Rescooped by Simón Rave from Educommunication
Scoop.it!

Citizens in a Mediated World | Nordicom

Citizens in a Mediated World | Nordicom | Aprendizaje Disruptivo | Scoop.it

Digital technology has become a natural part of our daily lives and requires new skills, know­ledge and attitudes. Everyone can create their own media content and share it with others, and the distinction between reception and perception is erased. This development represents a marked departure from the traditional media use of people, and challenges the perceptions about what it means to use and produce media in appropriate and meaningful ways. Critical media literacy, communication skills and competencies for creative and responsible content production have become increasingly important means for empowering people with Media and Information Literacy (MIL) in present media culture. This book presents the discussions and conclusions from a conference on Media and Information Literacy that was held in Helsinki in May 2016, financed by the Nordic Council of Ministers. The event was organized by the NORDICOM (Nordic Information Centre for Media and Commu­nication Research), together with KAVI (National Audiovisual Institute) in Finland, jointly with the Nordic media and media education authorities: Media Council for Children and Youth in Denmark, Fjölmiðlanefnd (The Media Commission) of Iceland, Norwegian Media Authority and the Swedish Media Council. .


Via Manuel Pinto
more...
No comment yet.
Scooped by Simón Rave
Scoop.it!

Pedagogías disruptivas. G5sem3

Presentación sobre pedagogías disruptivas.
more...
Rubén Noreña's curator insight, May 19, 2017 7:42 PM
Pedagogías disruptivas. G5sem3
Nohora Luz Orrego's curator insight, May 29, 2017 11:39 AM
Nuevas formas de procesos educativos
Scooped by Simón Rave
Scoop.it!

How to escape education's death valley | Sir Ken Robinson

Sir Ken Robinson outlines 3 principles crucial for the human mind to flourish -- and how current education culture works against them. In a funny, stirrin
more...
Rubén Noreña's curator insight, May 19, 2017 7:44 PM
How to escape education's death valley | Sir Ken Robinson
Scooped by Simón Rave
Scoop.it!

Visiones disruptivas de la educación - María Acaso

Visiones disruptivas de la educación - María Acaso
more...
No comment yet.
Rescooped by Simón Rave from Disruptive Nostalgia in Education UK
Scoop.it!

The Five Stages of Disruption Denial - blogs.hbr.org (blog)

The Five Stages of Disruption Denial - blogs.hbr.org (blog) | Aprendizaje Disruptivo | Scoop.it
“ blogs.hbr.org (blog) The Five Stages of Disruption Denial blogs.hbr.org (blog) The fact of the matter is our professional lives now churn with change. Markets change. Technology changes. Consumers change.”
Via Tony Parkin
more...
Tony Parkin's curator insight, April 18, 2013 6:21 AM

Dealing honestly with those early reactions to a new technology on the block - and the 'invariable history' rewrites after adoption.... :)

Rescooped by Simón Rave from Disruptive Nostalgia in Education UK
Scoop.it!

A ‘Disruptive’ Look at Competency-Based Education

A ‘Disruptive’ Look at Competency-Based Education | Aprendizaje Disruptivo | Scoop.it

The first section of this brief provides a short primer on competency-based education in postsecondary education. Then they introduce the four elements of disruptive innovation theory and use these elements as a guide to study education initiatives that could promote disruptive innovation. Lastly, they outline a number of recommendations for policymakers on how to facilitate disruptive innovation to transform higher education.


Via Tony Parkin
more...
No comment yet.
Scooped by Simón Rave
Scoop.it!

Aula invertida: otra forma de enseñar y aprender

Aula invertida: otra forma de enseñar y aprender | Aprendizaje Disruptivo | Scoop.it
Aula invertida es un enfoque diferente de enseñanza donde el alumno incorpora información antes de la clase y participa posteriormente en su desarrollo
more...
Rubén Noreña's curator insight, May 19, 2017 7:43 PM
Aula invertida: otra forma de enseñar y aprender