Procedimientos de construcción
121.0K views | +0 today
Follow
Procedimientos de construcción
Todo lo relacionado con la ingeniería y gestión de la construcción
Curated by Víctor Yepes
Your new post is loading...
Your new post is loading...
Rescooped by Víctor Yepes from Procedimientos de construcción
Scoop.it!

» Cimbra autolanzable frente a otros procedimientos constructivos El blog de Víctor Yepes

» Cimbra autolanzable frente a otros procedimientos constructivos El blog de Víctor Yepes | Procedimientos de construcción | Scoop.it
Publicada By  Víctor Yepes Piqueras - Docencia, estructuras, hormigón, medios auxiliares, Polimedia, procedimientos de construcción, Puentes     Si bien en otros posts anteriores se ha definido lo que es una autocimbra y de los criterios que permiten clasificarlas, aquí destacaremos las ventajas e inconvenientes de esta técnica constructiva de puentes y la compararemos con otros procedimientos habituales. Las cimbras autolanzables presentan ventajas evidentes que, cuando se dan las condiciones adecuadas, facilitan la construcción de un puente. La primera de ellas es su poca interferencia con las actividades que se desarrollan bajo el tablero. La autocimbra apoya sobre las pilas o sobre el tablero en ejecución salvando obstáculos del terreno o de vías de comunicación. Además, este procedimiento disminuye el riesgo de deformaciones por asiento diferencial de la cimbra apoyada sobre el terreno, siendo innecesaria, por tanto, la mejora del terreno para cimientos de apoyos provisionales. Cabe señalar, asimismo, la facilidad que presentan las autocimbras para incorporar la seguridad colectiva. En efecto, se trata de un medio auxiliar industrializado donde resulta sencillo incorporar plataformas de trabajo y elementos de protección. Además, la seguridad se beneficia al tener los operarios funciones claras y concretas. Tampoco son desdeñables los buenos rendimientos constructivos de esta técnica debido, entre otras causas, a que las tareas son continuas y repetitivas. Así, es habitual ejecutar un vano por semana en autocimbras bajo tablero, rendimiento que desciende a dos semanas en el caso de autocimbras sobre tablero. En efecto, los movimientos de traslación de la cimbra son sencillos, rápidos y económicos. Factible tanto en tableros a baja altura como sobre pilares muy altos. Además, en el caso de autocimbras bajo tablero, la prefabricación de las armaduras durante la fase de curado del tablero y el traslado al vano siguiente con la propia cimbra agilizan el desarrollo de las tareas. Con todo, las cimbras autolanzables también presentan algunos inconvenientes. En primer lugar, hay que planificar un tiempo de espera de diseño, fabricación y traslado de la cimbra; que si bien puede retrasar el comienzo de la obra, luego se pueden recuperar los plazos por los buenos rendimientos. Además, hay que adaptar la autocimbra para cada nuevo puente. Se debe desmontar al finalizar la ejecución y ese tiempo supone cierto retraso en la puesta en uso del puente. Otra de las dificultades que hay que tener presente es la necesidad de medios auxiliares en los apoyos de pila para colocar la cimbra. También hay que tener presente la dificultad que puede haber al prefabricar la armadura por la interferencia que pudiera existir entre el parque de fabricación de la ferralla y el acceso de los materiales y el hormigón a la cimbra. Otro de los inconvenientes es la nivelación laboriosa que debe darse a la cimbra en el caso de que existe una variación en la pendiente o en el peralte del tablero. Hay que tener presente que el tesado se realiza a edad temprana (a las 24-48 horas) y que si existen factores que reducen dicha resistencia, eso interfiere notablemente en el avance de las tareas. Si comparamos las autocimbras con el cimbrado tradicional, las primeras salen ganando en algunos aspectos clave. En efecto, la independencia respecto al terreno impide las deformaciones del tablero por asiento diferencial de la cimbra convencional y no son necesarios tratamientos del terreno para cimentar dicha cimbra. Además, la capacidad de autolanzamiento permite el traslado de vano a vano por sus propios medios, lo cual incrementa los rendimientos de ejecución. En cuanto al diseño del tablero, apenas existen diferencias tanto si se construye con cimbra tradicional o con autocimbra. Si acaso, habría que dar una mayor contraflecha de ejecución con la autocimbra. Únicamente no interesa el uso de la autocimbra frente al cimbrado tradicional cuando existen pocos vanos y poca altura. Por otra parte, tanto las autocimbras como los puentes empujados se pueden utilizar en vanos con luces entre 40 y 60 m. Las autocimbras salen ganando porque sus plazos de ejecución son menores y utilizan menos cuantías de hormigón y acero. Además, los aparatos de apoyo son más caros en los puentes empujados. También hay que considerar algunas limitaciones constructivas de los puentes empujados: su uso solo es posible en puentes cuya planta sea circular (no clotoides), no se pueden usar en puentes con curva y contracurva, no permite juntas de dilatación ni puentes de canto variable o isostáticos. Los plazos de ejecución son menores en las autocimbras, pues existen menos maniobras. Así, el ciclo constructivo con puentes empujados son en tramos de 1/3 a 1/2 de la luz de vano, mientras que con las cimbras autolanzables son tramos iguales a la longitud de vano. Por último, decir que las solicitaciones en ejecución son mayores en los puentes empujados, donde se alternan momentos positivos y negativos al paso por las pilas, lo que supone un mayor canto de tablero y mayor pretensado. A continuación os dejo un Polimedia donde se explica con mayor detalle lo anteriormente expuesto. Espero que os sea de interés. Referencias: MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441. SEOPAN (2015). Manual de cimbras autolanzables. Tornapunta Ediciones, Madrid, 359 pp.   Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. 8 mayo, 2018   |   Etiquetas: autocimbra,  cimbra,  cimbra autolanzable,  cimbra tubular,  puente,  puente empujado|
more...
No comment yet.
Scooped by Víctor Yepes
Scoop.it!

3.000 años tendiendo puentes imposibles

3.000 años tendiendo puentes imposibles | Procedimientos de construcción | Scoop.it
Los puentes, como los túneles, nacieron para vencer los obstáculos que la geografía planteaba al ser humano y su ansia de movimiento.
more...
No comment yet.
Scooped by Víctor Yepes
Scoop.it!

» Precauciones específicas en seguridad relativas al montaje y desmontaje de cimbras y encofrados El blog de Víctor Yepes

» Precauciones específicas en seguridad relativas al montaje y desmontaje de cimbras y encofrados El blog de Víctor Yepes | Procedimientos de construcción | Scoop.it
Publicada By  Víctor Yepes Piqueras - Docencia, estructuras, hormigón, ingeniería civil, medios auxiliares, procedimientos de construcción     El montaje y desmontaje de cimbras y encofrados requieren de precauciones específicas que resulta difícil de condensar en un breve post como este. Sin embargo, incluimos aquí algunas consideraciones muy básicas y una referencias que se pueden utilizar antes de emprender cualquier tipo de obra que necesite de estos elementos auxiliares. En una entrada anterior se describieron medidas específicas de seguridad en el desencofrado.         Algunas de las consideraciones pueden ser las siguientes: Las cimbras y encofrados, así como las uniones de sus distintos elementos, poseerán una resistencia y rigidez suficientes para soportar sin asientos ni deformaciones perjudiciales las cargas, las sobrecargas y acciones de cualquier naturaleza que puedan producirse sobre ellas como consecuencia del proceso de hormigonado y vibrado del hormigón. Al realizar el encofrado, se pensará también en la operación inversa: desencofrar; y se efectuará de tal forma que la posterior retirada de los elementos utilizados sea lo menos peligrosa y complicada posible. No se procederá a desencofrar hasta tanto no hayan transcurridos los días necesarios para el perfecto fraguado y consolidación del hormigón establecidos por la Normas Oficiales en vigor. El apilamiento de la madera y encofrado en los tajos cumplirá las condiciones de base amplia y estable, no sobrepasar de 2 m. de altura, el lugar de apilamiento soportará la carga aplicada, el acopio se hará por pilas entrecruzadas. Si la madera es usada estará limpia de clavos. Las herramientas manuales: martillos, tenazas, barra de uñas, etc. estarán en buenas condiciones. Cuando se elabore un encofrado, habrá de tenerse en cuenta la posterior operación de desencofrado, por lo que los elementos utilizados serán concebidos de forma que su retirada sea la menos complicada y peligrosa posible. Es fundamental que las operaciones de desencofrado sean efectuadas por los mismos operarios que hicieron el encofrado. Si los elementos de encofrado se acopian en lotes para ser posteriormente trasladados por la grúa, deberán cumplir las siguientes condiciones: Solo sobresaldrán del forjado, un máximo de un tercio de su longitud. Cada lote se apoyará en un tablón, situado en el extremo del forjado. Los encofrados metálicos se pondrán a tierra si existe el peligro de que entren en contacto con algún punto de la instalación eléctrica de la obra. Conviene recordar a los encofradores que la operación de desencofrado, no estará concluida hasta que el encofrado esté totalmente limpio de hormigón, puntas, latiguillos, etc., y debidamente apilado en el lugar designado. Los encofradores llevarán las herramientas en una bolsa, pendiente del cinturón. Bajo ningún concepto arrojarán herramientas o materiales desde altura. Los operarios utilizarán botas con puntera reforzada, y plantillas anticlavos. Deben sujetar el cinturón de seguridad a algún punto fijo adecuado, cuando trabajen en altura. Deben desencofrar los elementos verticales desde arriba hacia abajo. La sierra sólo la utilizarán los oficiales. Antes de cortar madera se quitarán las puntas, observándose la existencia de nudos. Cuando los puntales tengan más de 5 m. de altura, se deben asegurar contra el pandeo arriostrándolos horizontalmente. Siempre que fuere preciso, se emplearán andamios o plataformas de trabajo de 60 cm. de ancho. Si la plataforma es de madera será bien sana, sin nudos saltadizos, ni otros defectos que puedan producir roturas. Estas plataformas tendrán sus respectivas barandillas a 90 cm. sobre el nivel de la misma y su rodapié de 20 cm. que evite la caída de materiales cuando se trabaje en niveles inferiores. Asegurarse de que todos los elementos de encofrado están firmemente sujetos antes de abandonar el trabajo. El acceso a los puestos de trabajo debe hacerse por los lugares previstos. Prohibido trepar por tubos, tablones, etc.   Como vemos en esta noticia de RTVTARIFA, los accidentes debidos a fallos en la construcción de los encofrados y las cimbras pueden ser catastróficos. Aunque en este caso, afortunadamente solo hubieron 5 heridos de carácter leve. En este vídeo de la Fundación Laboral de la Construcción se describen los principales riesgos y medidas preventivas en los trabajos de encofrado y hormigonado. Os paso a continuación una conferencia sobre seguridad en encofrados en estructuras singulares impartida por D. Antonio Reyes Valverde. Ingeniero de Caminos, Canales y Puertos, Director Técnico PERI, S.A.U. Encofrados Andamios Ingeniería. Aunque presenta algunas deficiencias de audio, considero que tiene gran interés. Referencias: Fundación Agustín de Betancourt (2011). Sistemas de encofrado: análisis de soluciones técnicas y recomendaciones de buenas prácticas preventivas. Comunidad de Madrid, 130 pp. Enlace Fernández, R.; Honrado, C. (2010). Estudio de las condiciones de trabajo en encofrado, hormigonado y desencofrado. Junta de Castilla y León, 68 pp. Enlace OSALAN (2007). Guía práctica de encofrados. Instituto Vasco de Seguridad y Salud Laborales, 200 pp. Enlace INSHT. Instituto Nacional de Seguridad e Higiene en el Trabajo. Colección de Legislación en materia de Prevención de Riesgos Laborales. Enlace REAL DECRETO 2177/2004, de 12 de noviembre, por el que se modifica el Real Decreto 1215/1997, de 18 de julio, por el que se establecen las disposiciones mínimas de seguridad y salud para la utilización por los trabajadores de los equipos de trabajo, en materia de trabajos temporales en altura. BOE nº 274 13-11-2004. Enlace MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441. 19 abril, 2018   |   Etiquetas: cimbra,  desencofrado,  encofrado,  estructuras auxiliares,  medidas de seguridad,  seguridad y salud|
more...
No comment yet.
Scooped by Víctor Yepes
Scoop.it!

» Cimbras y encofrados hinchables El blog de Víctor Yepes

» Cimbras y encofrados hinchables El blog de Víctor Yepes | Procedimientos de construcción | Scoop.it
Publicada By  Víctor Yepes Piqueras - Docencia, edificación, estructuras, hormigón, medios auxiliares, procedimientos de construcción     Las estructuras hinchables pueden utilizarse como un medio auxiliar que sirve como cimbra y encofrado a la hora de construir cúpulas, canales de regadío, depósitos, tubos u otro tipo de estructuras de hormigón. Son estructuras neumáticas que permiten colocar el hormigón de una forma geométricamente eficiente con el objeto de reducir los costes de ejecución. Se trata de utilizar como molde un material flexible, fuerte e impermeabilizado, con formas variadas que son estancos y presentan válvulas para el hinchado y vaciado. El proceso constructivo consiste en inflar el encofrado en su emplazamiento. Tras el hormigonado y posterior endurecimiento, el encofrado se deshincha y se extrae para un uso posterior.   Estos medios neumáticos presentan ventajas como su rápida disponibilidad, buen acabado y pocas juntas de hormigonado, su economía y bajo coste de mantenimiento, poco peso, fácil reparación y poco coste de transporte. Además, no necesita mano de obra especializada y son estructuras provisionales que resisten bien los esfuerzos de tracción y compresión. Sin embargo, hay que tener presente la limitación que supone el empuje del hormigón fresco, lo cual implica una preferencia de uso con elementos de pequeño espesor. Existen distintas patentes de este procedimiento constructivo. Así, en 1960 Dante Bini ideó el denominado “Método Binishell”. Este método consiste en colocar a nivel de suelo la ferralla y se extiende el hormigón con retardadores de fraguado, posteriormente se insufla aire (con una presión entre 2 y 6 kN/m2) y se eleva la membrana junto con el hormigón fresco y las armaduras hasta alcanzar la geometría preestablecida. Otra patente es el “domo de espuma”, donde se rigidiza la forma neumática con espuma de poliuretano (o mortero de arcilla expandida como alternativa) antes de colocar el hormigón y el acero. La espuma garantiza la forma adquirida por el elemento hinchable y sirve como superficie para recibir el hormigón proyectado. El proceso constructivo comienza fijando la membrana de PVC sobre una cimentación y se procede a su presurización. Sobre la membrana se proyecta interiormente la espuma, que rigidiza la membrana, aumenta el aislamiento térmico y disminuye la posibilidad de condensaciones en el interior. A continuación se ferralla y se proyecta hormigón. Este proceso de armado y proyectado se repite en sucesivas capas de 3-4 cm (lo que disminuye las retracciones), hasta la total construcción de la estructura. La membrana queda como acabado exterior, con lo que se garantiza la impermeabilidad. Son estructuras monolíticas cerradas que permiten el depósito de materias primas, agua o gases. Se pueden alcanzar luces de hasta 100 m sin apoyos, por lo que se pueden constituir edificios de uso público como auditorios o polideportivos. A continuación podemos ver algunos vídeos que explican esta técnica constructiva.   Referencias: MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados.Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441. RIPA, T. (1981). Cúpulas hormigonadas sobre cimbras flexibles infladas. Revista de Obras Públicas, 49-54. (enlace) 3 mayo, 2018   |   Etiquetas: cimbra neumática,  encofrado,  encofrado hinchable,  método Binishell|
more...
No comment yet.
Scooped by Víctor Yepes
Scoop.it!

» Precauciones para el montaje de la cimbra de un puente Procedimientos de #construcción

» Precauciones para el montaje de la cimbra de un puente Procedimientos de #construcción | Procedimientos de construcción | Scoop.it
Publicada By  Víctor Yepes Piqueras - Cimbras, andamios y encofrados, MAQUINARIA Y PROCEDIMIENTOS CONSTRUCTIVOS DE CIMENTACIONES Y ESTRUCTURAS, Procedimientos constructivos de cimentaciones, sistemas de retención de tierras y anclajes     La cimbra es una estructura provisional que requiere su propio proyecto y cálculo, con una especial atención a las hipótesis de carga y los detalles de diseño y montaje. No son extraños los accidentes, especialmente con las cimbras diáfanas, por no existir un proyecto adecuado. Dicho proyecto y las operaciones de montaje y desmontaje de estos elementos suele depender de una empresa especializada. Se debe exigir que la cimbra sea estable, especialmente a pandeo y que las deformaciones previstas se puedan compensar con las contraflechas necesarias. Muchos problemas en las cimbras se encuentran en el punto de encuentro entre las torres y el encofrado, pues esta transición no está normalizada. El encuentro consta de varios niveles de perfiles o tablones apoyados sobre horquillas que, normalmente, no son solidarias con el husillo que las soporta, lo cual puede provocar inestabilidad si no se monta adecuadamente. Un ejemplo son las cargas excéntricas sobre los husillos provocada por la colocación inclinada de los perfiles originada por la pendiente del tablero, que muchas veces no se consideran en el cálculo. Otra circunstancia no contemplada en los cálculos puede ser el mal reparto de las cargas en las patas de las torres por una mala colocación de los perfiles o los tablones. Todo ello lleva a que se tengan que adoptar coeficientes de seguridad elevados, normalmente de 2 cuando las condiciones de montaje son muy estrictas, e incluso de 3, tal y como propugna la norma ACI. Otros aspectos de gran importancia son el arriostramiento horizontal e inclinado de las torres para evitar el pandeo y para resistir las cargas horizontales. Además, una cimentación de las torres sobre tablones mal asentados o poco rígidos incrementa significativamente el asiento diferencial y el consiguiente incremento de carga no previsto en alguno de los apoyos. Os dejo a continuación un vídeo de una cimbra cuajada T-60 y ENKOFORM HMK – ULMA. Espero que os guste la animación.   Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. 4 abril, 2018   |   Etiquetas: cimbras,  puente|
more...
No comment yet.
Scooped by Víctor Yepes
Scoop.it!

» Trenes de rodaje de orugas Procedimientos de #construcción

» Trenes de rodaje de orugas Procedimientos de #construcción | Procedimientos de construcción | Scoop.it
Publicada By  Víctor Yepes Piqueras - MAQUINARIA AUXILIAR Y EQUIPOS DE ELEVACIÓN, Motores y componentes mecánicos     En las máquinas de cadenas u orugas, las ruedas motrices, en vez de apoyar en el suelo, están dentadas y engranan con los casquillos que articulan entre sí los eslabones que forman las cadenas. Por el exterior de cada eslabón se atornilla una zapata, que es lo que apoya y se agarra al suelo. De esta forma, al girar las ruedas motrices, gracias a su engranaje en las cadenas, va avanzando con el vehículo por encima de los carriles continuos formados por los eslabones de cada cadena y que constituyen el verdadero camino constantemente echado, pisado, recogido y vuelto a echar delante, por el que rueda el tractor. Como las zapatas pueden llevar en el exterior garras para afianzarse al suelo, descansando todo el peso sobre las cadenas, la adherencia y agarre son los más completos posible, por lo que estos vehículos son los más adecuados para marchar por todo terreno. Los dientes de las ruedas motrices (normalmente situadas detrás) van recogiendo los eslabones de la cadena que se vuelven al suelo sobre las ruedas conductoras o guiadoras (situadas en el otro extremo de la oruga) que no son dentadas ya que su única misión es guiar las cadenas de nuevo al suelo, tendiéndolas continuamente delante del tractor a modo de camino de carriles para éste. El eje motriz se apoya sobre un bastidor lateral (uno a cada lado) el cual se apoya sobre la cadena por intermedio de unos rodillos situados entre la rueda cabilla (motriz) y la rueda guía.   En el vídeo que os presento a continuación podemos ver cómo se construyen las cadenas de un tractor de orugas. En este otro tenéis la animación del funcionamiento de un tren flexible. Referencias: YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp. YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp. 11 abril, 2018   |   Etiquetas: bulldozer,  retroexcavadora,  tren de rodaje,  tren sobre orugas|
more...
No comment yet.
Scooped by Víctor Yepes
Scoop.it!

» Un algoritmo heurístico basado en el jazz ayuda a decidir en qué infraestructuras es prioritario invertir El blog de Víctor Yepes

» Un algoritmo heurístico basado en el jazz ayuda a decidir en qué infraestructuras es prioritario invertir El blog de Víctor Yepes | Procedimientos de construcción | Scoop.it
Publicada By  Víctor Yepes Piqueras - algoritmo, ingeniería civil, investigación, optimización, sostenibilidad, toma de decisiones     Investigadores de la Universitat Politècnica de València y de la Universidad de La Frontera (Chile) han elaborado un algoritmo, basado en la armonía musical del jazz, que determina qué inversión es más adecuada   La metodología ya se ha aplicado en El Salvador, donde ha permitido priorizar las inversiones en carreteras           Las administraciones públicas se enfrentan continuamente ante problemas de gran calado social cuando tienen que invertir grandes sumas de dinero en infraestructuras clave, como puede ser una carretera, un hospital o una universidad. Ahora, un equipo de investigadores de la Universitat Politècnica de València y de la Universidad de La Frontera (Chile) ha desarrollado un novedoso estudio que demuestra que el jazz puede ayudarles a decidir en qué infraestructuras es mejor invertir el dinero, para favorecer así la calidad de vida de los ciudadanos. Su trabajo ha sido publicado en el Journal of Cleaner Production. La metodología diseñada por el equipo de científicos españoles y chilenos se basa en la inteligencia subyacente en la armonía musical del jazz.  “La armonía nos ha servido de inspiración para elaborar un algoritmo que es capaz de determinar el impacto de una determinada decisión –invertir en un aeropuerto o en una línea de AVE, por ejemplo – tanto a corto como a medio y largo plazo”, apunta Víctor Yepes, investigador del Instituto Universitario de Ciencia y Tecnología del Hormigón (ICITECH) de la Universitat Politècnica de València. Según explica el profesor Yepes, el algoritmo de búsqueda armónica (harmony search, en inglés) se basa en el proceso de la improvisación musical. “No todo el mundo posee habilidad para improvisar música, pues es un proceso que requiere experiencia y conocimiento previo de las armonías. Por ejemplo, en el jazz, el músico compone una nueva melodía basándose en sus conocimientos musicales para seleccionar nuevas notas aleatoriamente. Si el conjunto de notas tocadas se consideran una buena armonía, esta se guarda en la memoria de cada músico, incrementando la posibilidad de hacer una buena armonía la próxima vez”, señala el investigador de la UPV. El algoritmo desarrollado por los investigadores españoles y chilenos hace algo parecido. Cada melodía se define por un vector, al igual que cada infraestructura que debe ser elegida. Cada nueva iteración del algoritmo elige una melodía (infraestructura) parecida que, si es mejor, se añade al repertorio. “Al final del proceso, el algoritmo es capaz de definir una melodía (infraestructura) de calidad muy alta. Dicho de otro modo, la inteligencia del algoritmo permite ayudar a elegir la mejor infraestructura posible considerando aspectos tan diversos como la empleabilidad, la educación, la sanidad, el confort o la calidad de vida”, apunta Víctor Yepes. Más objetivo El método permite minimizar los errores al decidir qué tipo de inversión es la más adecuada, haciendo más objetiva la decisión de las autoridades, al considerar no solo los efectos económicos y medioambientales, sino también los sociales, que son más difíciles de evaluar. “Los factores económicos o medioambientales condicionan el tipo de decisión. Pero los efectos en la sociedad a corto y largo plazo pueden ser irreversibles. Muchos son los ejemplos de malas decisiones con graves repercusiones: aeropuertos infrautilizados, líneas de alta velocidad innecesarias, altas listas de espera en hospitales, altísimos porcentajes de paro, etc. Este método ayudaría a acabar con estas situaciones”, destaca Víctor Yepes. El Salvador La metodología se ha aplicado ya en El Salvador, donde ha permitido priorizar las inversiones en carreteras, maximizando los beneficios tanto a corto como a largo plazo. “La trascendencia del método desarrollado es su aplicabilidad a cualquier contexto y territorio, lo que permite mejorar las condiciones de vida de amplios sectores sociales con ayuda de la inteligencia subyacente en la música”, concluye Víctor Yepes. Agradecimientos: Luis Zurano, de la Unidad de Cultura Científica e Innovación de la Universitat Politècnica de València Referencias: SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects.  Journal of Cleaner Production, 176:521-534. https://doi.org/10.1016/j.jclepro.2017.12.140 http://www.upv.es/noticias-upv/noticia-9959-algoritmo-de-bu-es.html http://www.expansion.com/sociedad/2018/04/21/5adb576e468aebd0578b466b.html http://www.cope.es/noticias/cultura/jazz-ayuda-decidir-que-infraestructuras-prioritario-invertir_206188 http://www.lavanguardia.com/vida/20180421/442818278872/el-jazz-ayuda-a-decidir-en-que-infraestructuras-es-prioritario-invertir.html http://agencias.abc.es/agencias/noticia.asp?noticia=2797859 https://www.elconfidencial.com/ultima-hora-en-vivo/2018-04-21/el-jazz-ayuda-a-decidir-en-que-infraestructuras-es-prioritario-invertir_1499304/ https://www.efe.com/efe/comunitat-valenciana/portada/el-jazz-ayuda-a-decidir-en-que-infraestructuras-es-prioritario-invertir/50000877-3591711 https://www.diarilaveu.com/noticia/81405/algoritme-inspirat-jazz-decidir-infraestructures   23 abril, 2018   |   Etiquetas: DIMALIFE,  harmony search,  investigación,  jazz,  optimización,  toma de decisiones|
more...
No comment yet.
Scooped by Víctor Yepes
Scoop.it!

» Componentes de una cimbra montada con elementos prefabricados El blog de Víctor Yepes

» Componentes de una cimbra montada con elementos prefabricados El blog de Víctor Yepes | Procedimientos de construcción | Scoop.it
Publicada By  Víctor Yepes Piqueras - Docencia, estructuras, hormigón, medios auxiliares, procedimientos de construcción, riesgos, seguridad     Las cimbras, según define la Norma Técnica de Prevención NTP-1069, son estructuras provisionales de apuntalamiento en altura, que sirven para la sustentación de las distintas plataformas, mesas o planchas de trabajo que conforman el encofrado, cumplen, según los casos, funciones de servicio, carga y protección. Las cimbras también se pueden utilizar como apeo para cualquier carga, por ejemplo: estructuras como apeo en fase de montaje, demoliciones, refuerzo de estructuras existentes frente cargas puntuales, etc. Las torres de cimbra de componentes prefabricados son los más empleados, clasificándose según su método de rigidización, pues se puede triangular completamente en todos los planos verticales (Figura 1) o no. Las cimbras permiten su funcionamiento como estructuras capaces de soportar cargas de diferente naturaleza. Los principales componentes y elementos principales son los siguientes: Base regulable. Es una placa base metálica, dispuesta en la parte inferior de la torre de cimbra, que permite el apoyo sobre el terreno o cimentación durante el montaje y que, gracias a un husillo, se regula en altura para absorber de las irregularidades en la superficie de apoyo de la torre. Cabezal en U. Se trata de una pieza metálica en U, situada en la parte superior de la torre, encima de los últimos montantes verticales, que permite el apoyo de las vigas primarias que soportan el encofrado. Husillo. Consiste en un dispositivo metálico roscado, utilizado como componente principal en las bases regulables y en los cabezales en U. Es capaz de regular la altura de la cimbra y de liberarla de carga, para su descimbrado, a través de su descenso. Montante. Es un elemento metálico vertical de la cimbra que transmite las cargas soportadas en la parte superior de la cimbra hasta el terreno o cimentación sobre la que se sustenta la torre de cimbra. Su montaje, arriostrado con el resto de los montantes verticales de la torre, configura lo que se denomina “módulos de la cimbra”. Travesaño. Se trata de un elemento metálico horizontal de la cimbra, que conecta horizontalmente dos montantes verticales adyacentes, aumentado la rigidez y la resistencia vertical y estabilidad de la torre de cimbra. Diagonal. Es un elemento metálico dispuesto en la torre de cimbra, que permite conectar de manera diagonal dos montantes verticales adyacentes, aumentando la rigidez y proporcionando una mayor resistencia vertical y lateral de esta estructura auxiliar de carácter temporal.Tanto los travesaños horizontales como las diagonales, son rigidizadores que ajustan, aseguran y estabilizan la torre de cimbra desde su arranque. El número de arriostramientos varía en función de la altura total de la torre, gracias a lo cual se evita el vuelco o desplazamiento de la torre de cimbra ante posibles esfuerzos horizontales, garantizando la estabilidad estructural y la capacidad de carga de la torre de cimbra. Abrazadera/acoplamiento: Se trata de un dispositivo utilizado para conectar dos tubos diferentes. Existen dos tipos principales: acoplamiento de cuña (donde la fuerza de sujeción se obtiene al ajustar una mordaza sobre el tubo mediante el golpeo de una cuña) y el acoplamiento roscado (donde la fuerza de sujeción se obtiene al ajustar una mordaza alrededor del tubo por medio de una tuerca y un perno). Contrapeso. Consiste en material sólido opcional que puede disponer la estructura que conforma la cimbra para proporcionar una mayor estabilidad frente al vuelco por la acción de su peso muerto. Cimiento. Subestructura opcional, en terrenos de poca capacidad portante y de resistencia a compresión, que tiene el objetivo de transmitir la carga de las torres de cimbra a éste en lugar de realizar un apoyo directo sobre el terreno. Como cimentación de las torres de carga suelen disponerse zapatas formadas por durmientes de madera o de hormigón.     En la Figura 2 siguiente se puede ver un esquema simplificado de los componentes de una cimbra, en este caso, de una cimbra de gran carga MK-360 de la empresa ULMA.   A continuación os dejo una animación del proceso de montaje Cimbra PAL Mecanotubo para aclarar las ideas. Referencias: MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441. 20 abril, 2018   |   Etiquetas: cimbra,  cimbra tubular,  estructuras de hormigón,  hormigón,  medios auxiliares,  seguridad,  seguridad y salud|
more...
No comment yet.
Scooped by Víctor Yepes
Scoop.it!

» ¿Qué entendemos por “Smart Construction”? ¿Una nueva moda? El blog de Víctor Yepes

» ¿Qué entendemos por “Smart Construction”? ¿Una nueva moda? El blog de Víctor Yepes | Procedimientos de construcción | Scoop.it
Publicada By  Víctor Yepes Piqueras - ANDECE, BIM, ciclo de vida, edificación, empresas constructoras, ingeniería civil, innovación, maquinaria, materiales, medios auxiliares, optimización, Planificación, procedimientos de construcción, seguridad, sostenibilidad, toma de decisiones     Se está poniendo de moda el concepto “inteligente” para nombrar todo tipo de cosas. Por ejemplo, “smart buildings“, “smart cities“, “smart beach“, “smart tourism destination“, “smart food“, etc. Como siempre, cada vez que se empieza a hacer viral un concepto, al final se acaba por difuminar y perder el sentido original de lo que se quería decir. Este tipo de modas ya han pasado por conceptos tan importantes como “calidad”, “sostenibilidad”, “innovación”, etc. Al final, aplicado a productos o servicios, se menoscaba el significado por culpa del marketing y con ello se quiere atraer al consumidor hacia lo “bueno”, “guay”, “saludable” o similares. Espero que el término de “construcción inteligente” tenga algo más de recorrido y pueda suponer un punto de inflexión en nuestro sector. Este término presenta, como no podía ser de otra forma, numerosas interpretaciones y tantas más aplicaciones. Es un concepto que se asocia al diseño digital, a las tecnologías de la información y de la comunicación, la inteligencia artificial, al BIM, al Lean Construction, la prefabricación, los drones, la robotización y automatización, a la innovación y a la sostenibilidad, entre otros muchos conceptos. Uno que me interesa mucho es la asociación con el de los nuevos métodos constructivos (término que incluye nuevos productos y nuevos procedimientos constructivos). Su objetivo es mejorar la eficiencia del negocio, la calidad, la satisfacción del cliente, el desempeño medioambiental, la sostenibilidad y la previsibilidad de los plazos de entrega. Por lo tanto, los métodos modernos de construcción son algo más que un enfoque particular en el producto. Involucran a la gente a buscar mejoras, a través de mejores procesos, en la entrega y ejecución de la construcción. Sin embargo, y este es un punto crucial, para que se pueda hablar de verdad de “construcción inteligente”, no solo vamos a necesitar incorporar las nuevas tecnologías, sino que también va a ser necesario elaborar un sistema que permita la participación de todas las partes implicadas en el proceso proyecto-construcción, alimentando de información de calidad a este sistema de forma que soporte la toma de decisiones mediante la inteligencia artificial. El BIM puede ser un buen punto de partida para ello, pero se hace necesario integrar la inteligencia colectiva de forma que, aunque se apoye el sistema de una rigurosa alimentación de datos en tiempo real, el decisor tome sus decisiones asumiendo la responsabilidad última de sus acciones. Dejo abierto este tema por si alguno de mis estudiantes quieren realizar su Trabajo Fin de Máster, e incluso atreverse a la realización de una tesis doctoral sobre este tema. Os voy a dejar algunos vídeos relacionados con el tema, algunos os gustarán más que otros, pero es una buena forma de acercarse al concepto de construcción inteligente. Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. 12 abril, 2018   |   Etiquetas: BIM,  calidad,  ciclo de vida,  construcción,  construcción inteligente,  drones,  innovación,  lean construction,  prefabricación,  sistemas inteligentes,  smart construction|
more...
No comment yet.
Scooped by Víctor Yepes
Scoop.it!

» Altura crítica de una excavación sin entibación Procedimientos de #construcción

» Altura crítica de una excavación sin entibación Procedimientos de #construcción | Procedimientos de construcción | Scoop.it
Publicada By  Víctor Yepes Piqueras - Excavaciones en zanja y en medio urbano. Hincas de tubería, microtúneles, EXCAVACIONES Y VOLADURAS, MAQUINARIA Y PROCEDIMIENTOS CONSTRUCTIVOS DE CIMENTACIONES Y ESTRUCTURAS, Procedimientos constructivos de cimentaciones, sistemas de retención de tierras y anclajes     En numerosas ocasiones se plantea en obra la necesidad de entibar una excavación, especialmente cuando la profundidad sobrepasa 1,20 m. Para ello os dejo una formulación basada en la teoría de Rankine donde se calcula la altura crítica anulando el empuje activo del terreno. Como veréis, esta altura solo se puede conseguir con terrenos cohesivos donde no exista nivel freático. También os dejo un par de cuadros donde aparece la resistencia a compresión simple de terrenos cohesivos y una tabla con ángulos de inclinación y pendientes de taludes en función del terreno y de la presencia de agua. Debo advertir que cuando se hace uso de tablas, normalmente se trata de modelos simplificados que, en no pocas veces, sobredimensionan enormemente los fenómenos analizados. Por eso siempre aconsejo realizar un cálculo con datos fiables para contrastar. Descargar (PDF, 77KB)     Referencias: http://www.osalan.euskadi.eus/contenidos/libro/seguridad_201210/es_doc/adjuntos/Seguridad%20en%20zanjas.pdf http://www.insht.es/InshtWeb/Contenidos/Documentacion/FichasTecnicas/NTP/Ficheros/201a300/ntp_278.pdf http://www.lineaprevencion.com/ProjectMiniSites/Video5/html/cap-2/db-prl-mt/seccion-2-desmonte-y-vaciado-a-cielo-abierto/seccion2desmonteyvaciadoacieloabierto.html http://www.cepymearagon.es/WebCEPYME%5Cdatos.nsf/0/BB3A397513D24B57C1257DFE0031A982/$FILE/2014-DGA-02.pdf   24 abril, 2018   |   Etiquetas: entibación,  excavación,  Rankine,  seguridad|
more...
No comment yet.
Scooped by Víctor Yepes
Scoop.it!

Presas, embalses y el efecto de la sismicidad inducida

Presas, embalses y el efecto de la sismicidad inducida | Procedimientos de construcción | Scoop.it
Generalmente, la población desconoce que en la construcción y mantenimiento de las grandes infraestructuras se desarrollan exhaustivos trabajos de investigación que siguen elevados estándares de seguridad.
more...
No comment yet.
Scooped by Víctor Yepes
Scoop.it!

» Precauciones para el montaje de la cimbra de un puente Procedimientos de #construcción

» Precauciones para el montaje de la cimbra de un puente Procedimientos de #construcción | Procedimientos de construcción | Scoop.it
La cimbra es una estructura provisional que requiere su propio proyecto y cálculo, con una especial atención a las hipótesis de carga y los detalles de diseño y montaje. No son extraños los accidentes, especialmente con las cimbras diáfanas, por no existir un proyecto adecuado. Dicho proyecto y las operaciones de montaje y desmontaje de […]
more...
No comment yet.
Scooped by Víctor Yepes
Scoop.it!

3D-printed structures change shape and colour depending on stimuli

3D-printed structures change shape and colour depending on stimuli | Procedimientos de construcción | Scoop.it
Researchers at Dartmouth College have developed a smart ink that turns 3D-printed structures into objects that can change shape and colour.
more...
No comment yet.
Rescooped by Víctor Yepes from Procedimientos de construcción
Scoop.it!

¿En dónde se le paga mejor a los Ingenieros Civiles?

¿En dónde se le paga mejor a los Ingenieros Civiles? | Procedimientos de construcción | Scoop.it
Pese a que la clasificación cambia según el consultor, Suiza, Usa y Australia reinan en los sondeos. El Ingeniero civil ostenta una posición interesante a nivel social y empresarial que repercute significativamente en el salario devengado.
more...
No comment yet.
Scooped by Víctor Yepes
Scoop.it!

» Cimbra autolanzable frente a otros procedimientos constructivos El blog de Víctor Yepes

» Cimbra autolanzable frente a otros procedimientos constructivos El blog de Víctor Yepes | Procedimientos de construcción | Scoop.it
Publicada By  Víctor Yepes Piqueras - Docencia, estructuras, hormigón, medios auxiliares, Polimedia, procedimientos de construcción, Puentes     Si bien en otros posts anteriores se ha definido lo que es una autocimbra y de los criterios que permiten clasificarlas, aquí destacaremos las ventajas e inconvenientes de esta técnica constructiva de puentes y la compararemos con otros procedimientos habituales. Las cimbras autolanzables presentan ventajas evidentes que, cuando se dan las condiciones adecuadas, facilitan la construcción de un puente. La primera de ellas es su poca interferencia con las actividades que se desarrollan bajo el tablero. La autocimbra apoya sobre las pilas o sobre el tablero en ejecución salvando obstáculos del terreno o de vías de comunicación. Además, este procedimiento disminuye el riesgo de deformaciones por asiento diferencial de la cimbra apoyada sobre el terreno, siendo innecesaria, por tanto, la mejora del terreno para cimientos de apoyos provisionales. Cabe señalar, asimismo, la facilidad que presentan las autocimbras para incorporar la seguridad colectiva. En efecto, se trata de un medio auxiliar industrializado donde resulta sencillo incorporar plataformas de trabajo y elementos de protección. Además, la seguridad se beneficia al tener los operarios funciones claras y concretas. Tampoco son desdeñables los buenos rendimientos constructivos de esta técnica debido, entre otras causas, a que las tareas son continuas y repetitivas. Así, es habitual ejecutar un vano por semana en autocimbras bajo tablero, rendimiento que desciende a dos semanas en el caso de autocimbras sobre tablero. En efecto, los movimientos de traslación de la cimbra son sencillos, rápidos y económicos. Factible tanto en tableros a baja altura como sobre pilares muy altos. Además, en el caso de autocimbras bajo tablero, la prefabricación de las armaduras durante la fase de curado del tablero y el traslado al vano siguiente con la propia cimbra agilizan el desarrollo de las tareas. Con todo, las cimbras autolanzables también presentan algunos inconvenientes. En primer lugar, hay que planificar un tiempo de espera de diseño, fabricación y traslado de la cimbra; que si bien puede retrasar el comienzo de la obra, luego se pueden recuperar los plazos por los buenos rendimientos. Además, hay que adaptar la autocimbra para cada nuevo puente. Se debe desmontar al finalizar la ejecución y ese tiempo supone cierto retraso en la puesta en uso del puente. Otra de las dificultades que hay que tener presente es la necesidad de medios auxiliares en los apoyos de pila para colocar la cimbra. También hay que tener presente la dificultad que puede haber al prefabricar la armadura por la interferencia que pudiera existir entre el parque de fabricación de la ferralla y el acceso de los materiales y el hormigón a la cimbra. Otro de los inconvenientes es la nivelación laboriosa que debe darse a la cimbra en el caso de que existe una variación en la pendiente o en el peralte del tablero. Hay que tener presente que el tesado se realiza a edad temprana (a las 24-48 horas) y que si existen factores que reducen dicha resistencia, eso interfiere notablemente en el avance de las tareas. Si comparamos las autocimbras con el cimbrado tradicional, las primeras salen ganando en algunos aspectos clave. En efecto, la independencia respecto al terreno impide las deformaciones del tablero por asiento diferencial de la cimbra convencional y no son necesarios tratamientos del terreno para cimentar dicha cimbra. Además, la capacidad de autolanzamiento permite el traslado de vano a vano por sus propios medios, lo cual incrementa los rendimientos de ejecución. En cuanto al diseño del tablero, apenas existen diferencias tanto si se construye con cimbra tradicional o con autocimbra. Si acaso, habría que dar una mayor contraflecha de ejecución con la autocimbra. Únicamente no interesa el uso de la autocimbra frente al cimbrado tradicional cuando existen pocos vanos y poca altura. Por otra parte, tanto las autocimbras como los puentes empujados se pueden utilizar en vanos con luces entre 40 y 60 m. Las autocimbras salen ganando porque sus plazos de ejecución son menores y utilizan menos cuantías de hormigón y acero. Además, los aparatos de apoyo son más caros en los puentes empujados. También hay que considerar algunas limitaciones constructivas de los puentes empujados: su uso solo es posible en puentes cuya planta sea circular (no clotoides), no se pueden usar en puentes con curva y contracurva, no permite juntas de dilatación ni puentes de canto variable o isostáticos. Los plazos de ejecución son menores en las autocimbras, pues existen menos maniobras. Así, el ciclo constructivo con puentes empujados son en tramos de 1/3 a 1/2 de la luz de vano, mientras que con las cimbras autolanzables son tramos iguales a la longitud de vano. Por último, decir que las solicitaciones en ejecución son mayores en los puentes empujados, donde se alternan momentos positivos y negativos al paso por las pilas, lo que supone un mayor canto de tablero y mayor pretensado. A continuación os dejo un Polimedia donde se explica con mayor detalle lo anteriormente expuesto. Espero que os sea de interés. Referencias: MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441. SEOPAN (2015). Manual de cimbras autolanzables. Tornapunta Ediciones, Madrid, 359 pp.   Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. 8 mayo, 2018   |   Etiquetas: autocimbra,  cimbra,  cimbra autolanzable,  cimbra tubular,  puente,  puente empujado|
more...
No comment yet.
Scooped by Víctor Yepes
Scoop.it!

» Revisión de los procedimientos de optimización heurística de las estructuras El blog de Víctor Yepes

» Revisión de los procedimientos de optimización heurística de las estructuras El blog de Víctor Yepes | Procedimientos de construcción | Scoop.it
Publicada By  Víctor Yepes Piqueras - algoritmo, estructuras, hormigón, investigación, modelo matemático, optimización, Puentes, sostenibilidad     El diseño de las estructuras se ha basado fundamentalmente en la experiencia del ingeniero proyectista. La topografía y las condiciones de tráfico, entre otros, determinan el diseño de un puente. A partir de ahí, las dimensiones de la sección transversal, el tipo de hormigón y la disposición general de las armaduras se definen atendiendo a la experiencia profesional y a las recomendaciones y criterios de diseño (Figura 1). A continuación, se ajustan el resto de variables, tras comprobar el cumplimiento de los estados límite último y de servicio. Si el proyectista quiere mejorar el diseño propuesto, normalmente se realiza un proceso de prueba y error, de forma que tras varios tanteos, se intenta reducir el consumo de materiales, y por tanto, el coste de la estructura. Frente a este planteamiento, los métodos heurísticos emplean técnicas basadas en la inteligencia artificial para seleccionar un diseño, analizar la estructura, controlar las restricciones y rediseñar la estructura modificando las variables hasta conseguir optimizar la función objetivo. Cohn y Dinovitzer (1994) revisaron la investigación realizada en su momento en relación con la optimización de las estructuras y señalaron la brecha existente entre los estudios teóricos y la aplicación en problemas estructurales reales. Sarma y Adeli (1998) analizaron años más tarde los estudios relacionados con la optimización matemática de las estructuras, complementada más recientemente por Hare et al. (2013) que estudiaron la aplicación de los algoritmos heurísticos en la optimización estructural. Los algoritmos heurísticos difieren en cuanto a planteamiento y aplicabilidad de los métodos matemáticos exactos. De hecho, la optimización heurística resulta muy efectiva pues, aunque no garantiza la obtención del óptimo global del problema, proporciona soluciones casi óptimas en tiempos de cálculo razonables. Esta ventaja cobra importancia en la optimización de estructuras reales, donde el número de variables crece extraordinariamente de forma que desborda el tiempo de cálculo de los métodos exactos de optimización. Además, la programación matemática requiere el cálculo de gradientes de las restricciones, mientras que la optimización heurística incorpora las restricciones de diseño de una manera directa (Lagaros et al., 2006). Las técnicas metaheurísticas utilizan estrategias de búsqueda para localizar óptimos locales en grandes espacios de soluciones de forma efectiva. Un ejemplo de ello son los Algoritmos Genéticos (Genetic Algorithms, GAs), que son procedimientos de búsqueda poblacionales inspirados en la evolución natural (Holland, 1975). Así, los GAs generan soluciones de alta calidad a través del cruce genético con otros individuos de una población y la mutación de algunas de sus características a lo largo de generaciones. Los padres suelen seleccionarse atendiendo a su aptitud (Coello, 1994) y los hijos mantienen ciertas características de sus padres. En cada generación sobreviven los hijos con mayores aptitudes. Además, para evitar la convergencia prematura del algoritmo, se utiliza un operador de mutación, al igual que ocurre en la Naturaleza, que cambia aleatoriamente de vez en cuando alguna de las características de las nuevas soluciones. Una variante a esta técnica son los Algoritmos Meméticos (Moscato, 1989), donde cada individuo de la nueva generación se mejora mediante una búsqueda local con el objetivo de mejorar los genes para que los padres obtengan mejores resultados en las siguientes generaciones. Esta técnica, por tanto, aplica los GAs a poblaciones de óptimos locales. La inteligencia de enjambre (swarm intelligence) es una metaheurística poblacional empleada en los problemas de optimizacón. Estos algoritmos imitan el comportamiento colectivo de los sistemas descentralizados y auto-organizados, tales como algunas colonias de insectos, basándose en la interacción entre los vecinos, pero que siguen un patrón global. Los algoritmos de enjambre difieren en filosofía de los algoritmos genéticos porque utilizan la cooperación en lugar de la competencia (Dutta et al., 2011). Entre los algoritmos pertenecientes a este grupo, basados en el comportamiento biológico, destaca la optimización de colonias de hormigas (Ant Colony Optimization, ACO), la optimización de enjambre de partículas (Particle Swarm Optimization, PSO), las colonias de abejas artificiales (Artificial Bee Colony, ABC), la optimización en enjambres de luciérnagas (Glowworm Swarm Optimization, GSO), entre otros. ACO basa su estrategia en el comportamiento de las hormigas, que dejan un rastro de feromonas para encontrar alimento de forma efectiva (Colorni et al., 1991); PSO simula un sistema social simplificado (Kennedy y Eberhart, 1995); ABC imita el comportamiento alimentario forrajero de las abejas (Karaboga y Basturk, 2008); GSO imita un movimiento de las luciérnagas hacia los vecinos más brillantes (Krishnanand y Ghose, 2009). Las metaheurísticas poblacionales presentan una amplia capacidad de búsqueda en paralelo y una fuerte robustez. Sin embargo, para mejorar la intensificación de la búsqueda, estos algoritmos suelen combinarse con otras heurísticas de búsqueda local. Esta hibridación consigue explotar la diversificación en la búsqueda poblacional con la intensificación de la búsqueda local. Luo y Zhang (2011) comprobaron que el algoritmo híbrido presenta una convergencia más rápida, una mayor precisión y es más efectivo en la optimización de problemas ingenieriles. Blum et al. (2011) estudiaron las ventajas de la hibridación de las metaheurísticas en el caso de la optimización combinatoria. El recocido simulado (Simulated Annealing, SA), propuesto por Kirkpatrick et al. (1983), constituye uno de los algoritmos utilizados en la optimización estructural. Este algoritmo se basa en el fenómeno físico del proceso de recocido de los metales. La energía de un sistema termodinámico se compara con la función de coste evaluada para una solución de un problema de optimización combinatoria. En ambos casos se trata de evolucionar de un estado a otro de menor energía o coste. El acceso de un estado metaestable a otro se alcanza introduciendo “ruido” con un parámetro de control al que se denomina temperatura. Su reducción adecuada permite, con una elevada probabilidad, que un sistema termodinámico adquiera un mínimo global de energía. SA presenta la ventaja de admitir soluciones de peor calidad al principio de la búsqueda, lo cual permite eludir óptimos locales de baja calidad. La aceptación por umbrales (Threshold Accepting, TA), propuesto por Dueck y Scheuer (1990), tolera también opciones de peor calidad para eludir los óptimos locales. La diferencia entre SA y TA es que el criterio de aceptación de una solución peor es probabilista en el primer caso y determinista en el segundo. Los algoritmos genéticos se han hibridado con el recocido simulado en el diseño óptimo de puentes prefabricados de hormigón pretensado (Martí et al., 2013; Martí et al., 2016) y vigas en I de hormigón armado (RC) (Yepes et al., 2015a). Otras estrategias de hibridación también han demostrado su eficiencia con PSO (Shieh et al., 2011, Valdez et al., 2011, Wang et al., 2013) y ACO (Behnamian et al, 2009, Chen et al., 2012). Qu et al. (2011) señalaron la lentitud en la convergencia de los algoritmos GSO; del mismo modo Zhang et al. (2010) apuntaron ciertas deficiencias de estos algoritmos en la búsqueda del óptimo global. Es por ello que se ha hibridado SA con GSO (García-Segura et al., 2014c, Yepes et al., 2015b) para combinar la diversificación de la búsqueda de GSO con la intensificación de la búsqueda de SA para encontrar de forma efectiva un óptimo de elevada calidad. García-Segura et al. (2014c) mostraron cómo un algoritmo híbrido de optimización de enjambre de luciérnagas (SAGSO) obtuvo resultados considerablemente mejores en cuanto a calidad y tiempo de cálculo. SAGSO superó al GSO en términos de eficiencia, precisión y convergencia. Sin embargo, se requiere una buena calibración para garantizar soluciones de alta calidad con un tiempo de cómputo corto. La búsqueda de la armonía (Harmony Search, HS) constituye una heurística propuesta por Geem et al. (2001) inspirada en el jazz, donde se trata de armonizar u construir sucesiones de acordes razonables. Las notas, los instrumentos y la mejor armonía representan los valores, las variables y el óptimo global. Alberdi y Khandelwal (2015) compararon ACO, GA, HS, PSO, SA y TS en la optimización del diseño de marcos de acero, comprobando que los mejores resultados se obtenían con HS. La búsqueda de la armonía se ha utilizado para optimizar columnas rectangulares de hormigón armado (de Medeiros y Kripka, 2014), forjados compuestos (Kaveh y Shakouri Mahmud Abadi, 2010) y pórticos planos de hormigón armado (Akin y Saka, 2015). Alia y Mandava (2011) recogieron en su trabajo las variantes utilizadas para hibridar con HS. García-Segura et al. (2015) emplearon un algoritmo de búsqueda de la armonía hibridada con la aceptación por umbrales para encontrar diseños óptimos sostenibles de puentes peatonales de hormigón postesado. La optimización de los puentes atrajo la atención de los ingenieros a partir de la década de los años 70, incluyendo los puentes viga de acero, (Wills, 1973), el refuerzo de los puentes losa (Barr et al., 1989), los puentes viga de hormigón pretensado (Aguilar et al., 1973, Lounis y Cohn, 1993), y los puentes en cajón postesados construidos “in situ” (Bond, 1975; Yu et al., 1986). Desde la aparición de la inteligencia artificial, se ha puesto mayor énfasis en el uso de técnicas de optimización heurística para optimizar las estructuras. Srinivas y Ramanjaneyulu (2007) usaron redes neuronales artificiales y algoritmos genéticos para optimizar el coste de un puente de vigas en T. Rana et al. (2013) propusieron una optimización evolutiva para minimizar el coste de una estructura de puente continuo de hormigón pretensado de dos tramos. Martí et al. (2013) implementaron un algoritmo de recocido simulado híbrido para encontrar las soluciones más económicas de puentes prefabricados de hormigón pretensado de vigas artes. El uso de refuerzos de fibra de acero en ese tipo de puente se estudió posteriormente con algoritmos meméticos (Martí et al., 2015). Se propusieron algoritmos genéticos para optimizar las cubiertas poliméricas reforzadas con fibras híbridas y los puentes atirantados (Cai y Aref, 2015). También se han optimizado otro tipo de estructuras con algoritmos heurísticos, como los forjados prefabricados (de Albuquerque et al., 2012), columnas de hormigón armado (Park et al., 2013; Nigdeli et al., 2015), columnas de acero (Kripka y Chamberlain Pravia, 2013), marcos espaciales de acero (Degertekin et al., 2008), marcos de hormigón armado (Camp y Huq, 2013), pórticos de hormigón armado (Payá-Zaforteza et al., 2010), vigas en I de hormigón armado (García-Segura et al., 2014c; Yepes et al., 2015a), pórticos de carreteras (Perea et al., 2008), pilas altas de viaductos (Martínez et al., 2011; 2013), muros de contención (Gandomi et al., 2015; Pei y Xia, 2012; Yepes et al., 2008, 2012; Molina-Moreno et al., 2017a), zapatas de hormigón armado (Camp y Assadollahi, 2013; Camp y Huq, 2013), bóvedas de pasos inferiores en carreteras (Carbonell et al., 2011) y estribos de puentes (Luz et al., 2015). Referencias: Aguilar, R.J.; Movassaghi, K.; Brewer, J.A.; Porter, J.C. (1973). Computerized optimization of bridge structures. Computers & Structures, 3(3), 429–442. Akin, A.; Saka, M.P. (2015). Harmony search algorithm based optimum detailed design of reinforced concrete plane frames subject to ACI 318-05 provisions. Computers & Structures, 147, 79–95. Alberdi, R.; Khandelwal, K. (2015). Comparison of robustness of metaheuristic algorithms for steel frame optimization. Engineering Structures, 102, 40–60. Alia, O.M.; Mandava, R. (2011). The variants of the harmony search algorithm: an overview. Artificial Intelligence Review, 36(1), 49–68. Barr, A.S.; Sarin, S.C.; Bishara, A.G. (1989). Procedure for structural optimization. ACI Structural Journal, 86(5), 524–531. Behnamian, J.; Zandieh, M.; Fatemi Ghomi, S.M.T. (2009). Parallel-machine scheduling problems with sequence-dependent setup times using an ACO, SA and VNS hybrid algorithm. Expert Systems with Applications, 36(6), 9637–9644. Blum, C.; Puchinger, J.; Raidl, G.R.; Roli, A. (2011). Hybrid metaheuristics in combinatorial optimization: A survey. Applied Soft Computing, 11(6), 4135–4151. Bond, D. (1975). An examination of the automated design of prestressed concrete bridge decks by computer. Proceedings of the Institution of Civil Engineers, 59(4), 669–697. Cai, H.; Aref, A.J. (2015). A genetic algorithm-based multi-objective optimization for hybrid fiber reinforced polymeric deck and cable system of cable-stayed bridges. Structural and Multidisciplinary Optimization, 52(3), 583–594. Camp, C.V.; Assadollahi, A. (2013). CO2 and cost optimization of reinforced concrete footings using a hybrid big bang-big crunch algorithm. Structural and Multidisciplinary Optimization, 48(2), 411–426. Camp, C.V.; Huq, F. (2013). CO2 and cost optimization of reinforced concrete frames using a big bang-big crunch algorithm. Engineering Structures, 48, 363–372. Carbonell, A.; González-Vidosa, F.; Yepes, V. (2011). Design of reinforced concrete road vaults by heuristic optimization. Advances in Engineering Software, 42(4), 151-159. Chen, S.M.; Sarosh, A.; Dong, Y.F. (2012). Simulated annealing based artificial bee colony algorithm for global numerical optimization. Applied Mathematics and Computation, 219(8), 3575–3589. Coello, C. (1994). Uso de Algoritmos Genéticos para el Diseño Óptimo de Armaduras. In Congreso Nacional de Informática “Herramientas Estratégicas para los Mercados Globales”, pp. 290–305. Fundación Arturo Rosenblueth, México, D.F. Cohn, M.Z.; Dinovitzer, A.S. (1994). Application of Structural Optimization. Journal of Structural Engineering, 120(2), 617–650. Colorni, A.; Dorigo, M.; Maniezzo, V. (1991). Distributed optimization by ant colonies. In Proceeding of ECALEuropean Conference on Artificial Life, pp. 134–142. Paris: Elsevier. de Albuquerque, A.T.; El Debs, M.K.; Melo, A.M.C. (2012). A cost optimization-based design of precast concrete floors using genetic algorithms. Automation in Construction, 22, 348–356. de Medeiros, G.F. Kripka, M. (2014). Optimization of reinforced concrete columns according to different environmental impact assessment parameters. Engineering Structures, 59, 185–194. Degertekin, S.O.; Saka, M.P.; Hayalioglu, M.S. (2008). Optimal load and resistance factor design of geometrically nonlinear steel space frames via tabu search and genetic algorithm. Engineering Structures, 30(1), 197–205. Dueck, G.; Scheuer, T. (1990). Threshold accepting: A general purpose optimization algorithm appearing superior to simulated annealing. Journal of Computational Physics, 90(1), 161–175. Dutta, R.; Ganguli, R.; Mani, V. (2011). Swarm intelligence algorithms for integrated optimization of piezoelectric actuator and sensor placement and feedback gains. Smart Materials and Structures, 20(10), 105018. Gandomi, A.H.; Kashani, A.R.; Roke, D.A.; Mousavi, M. (2015). Optimization of retaining wall design using recent swarm intelligence techniques. Engineering Structures, 103, 72–84. García-Segura, T.; Yepes, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125, 325–336. García-Segura, T.; Yepes, V.; Alcalá, J. (2014a). Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. The International Journal of Life Cycle Assessment, 19(1), 3–12. García-Segura, T.; Yepes, V.; Alcalá, J. (2014b). Sustainable design using multiobjective optimization of high-strength concrete I-beams. In The 2014 International Conference on High Performance and Optimum Design of Structures and Materials HPSM/OPTI (Vol. 137, pp. 347–358). Ostend, Belgium. García-Segura, T.; Yepes, V.; Alcalá, J.; Pérez-López, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures, 92, 112–122. García-Segura, T.; Yepes, V.; Frangopol, D.M. (2017a). Multi-objective design of post-tensioned concrete road bridges using artificial neural networks. Structural and Multidisciplinary Optimization, 56(1):139-150., García-Segura, T.; Yepes, V.; Frangopol, D.M.; Yang, D. Y. (2017b). Lifetime reliability-based optimization of post-tensioned box-girder bridges. Engineering Structures, 145, 381-391. García-Segura, T.; Yepes, V.; Martí, J.V.; Alcalá, J. (2014c). Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Latin American Journal of Solids and Structures, 11(7), 1190–1205. Geem, Z.W.; Kim, J.H.; Loganathan, G.V. (2001). A new heuristic optimization algorithm: Harmony search. Simulation, 76(2), 60–68. Hare, W.; Nutini, J.; Tesfamariam, S. (2013). A survey of non-gradient optimization methods in structural engineering. Advances in Engineering Software, 59, 19–28. Holland, J. (1975). Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, USA. Karaboga, D.; Basturk, B. (2008). On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing, 8(1), 687–697. Kaveh, A.; Shakouri Mahmud Abadi, A. (2010). Cost optimization of a composite floor system using an improved harmony search algorithm. Journal of Constructional Steel Research, 66(5), 664–669. Kennedy, J.; Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN’95 – International Conference on Neural Networks, Vol. 4, pp. 1942–1948. IEEE. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680. Kripka, M.; Chamberlain Pravia, Z.M. (2013). Cold-formed steel channel columns optimization with simulated annealing method. Structural Engineering and Mechanics, 48(3), 383–394. Krishnanand, K.N.; Ghose, D. (2009). Glowworm swarm optimisation: a new method for optimising multi-modal functions. International Journal of Computational Intelligence Studies, 1(1), 93–119. Lagaros, N.D.; Fragiadakis, M.; Papadrakakis; M.; Tsompanakis, Y. (2006). Structural optimization: A tool for evaluating seismic design procedures. Engineering Structures, 28(12), 1623–1633. Lounis, Z.; Cohn, M.Z. (1993). Optimization of precast prestressed concrete bridge girder systems. PCI Journal, 38(4), 60–78. Luo, Q.F.; Zhang, J.L. (2011). Hybrid Artificial Glowworm Swarm Optimization Algorithm for Solving Constrained Engineering Problem. Advanced Materials Research, 204-210, 823–827. Luz, A.; Yepes, V.; González-Vidosa, F.; Martí, J.V. (2015). Diseño de estribos abiertos en puentes de carretera obtenidos mediante optimización híbrida de escalada estocástica. Informes de la Construcción, 67(540), e114. Martí, J.V.; García-Segura, T.; Yepes, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120, 231–240. Martí, J.V.; González-Vidosa, F.; Yepes, V.; Alcalá, J. (2013). Design of prestressed concrete precast road bridges with hybrid simulated annealing. Engineering Structures, 48, 342–352. Martí, J.V.; Yepes, V.; González-Vidosa, F. (2015). Memetic algorithm approach to designing precast-prestressed concrete road bridges with steel fiber reinforcement. Journal of Structural Engineering, 141(2), 04014114. Martínez-Martín, F. J.; González-Vidosa, F.; Hospitaler, A.; Yepes, V. (2013). A parametric study of optimum tall piers for railway bridge viaducts. Structural Engineering and Mechanics, 45(6), 723–740. Martínez-Martín, F.J.; González-Vidosa, F.; Hospitaler, A.; Yepes, V. (2012). Multi-objective optimization design of bridge piers with hybrid heuristic algorithms. Journal of Zhejiang University: Science A, 13(6), 420–432. Molina-Moreno, F.; García-Segura, T.; Martí, J.V.; Yepes, V. (2017a). Optimization of Buttressed Earth-Retaining Walls using Hybrid Harmony Search Algorithms. Engineering Structures, 134, 205-216. Molina-Moreno, F.; Martí, J.V.; Yepes, V. (2017b). Carbon embodied optimization for buttressed earth-retaining walls: implications for low-carbon conceptual designs. Journal of Cleaner Production, 164, 872-884. Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Caltech Concurrent Computation Program (report 826). Caltech, Pasadena, California, USA. Nigdeli, S.M.; Bekdas, G.; Kim, S.; Geem, Z. W. (2015). A novel harmony search based optimization of reinforced concrete biaxially loaded columns. Structural Engineering and Mechanics, 54(6), 1097–1109. Park, H.; Kwon, B.; Shin, Y.; Kim, Y.; Hong, T.; Choi, S. (2013). Cost and CO2 emission optimization of steel reinforced concrete columns in high-rise buildings. Energies, 6(11), 5609–5624. Payá, I.; Yepes, V.; González-Vidosa, F.; Hospitaler, A. (2008). Multiobjective optimization of reinforced concrete building frames by simulated annealing. Computer-Aided Civil and Infrastructure Engineering, 23(8), 596–610. Payá-Zaforteza, I.; Yepes, V.; González-Vidosa, F.; Hospitaler, A. (2010). On the Weibull cost estimation of building frames designed by simulated annealing. Meccanica, 45(5), 693–704. Payá-Zaforteza, I.; Yepes, V.; Hospitaler, A.; González-Vidosa, F. (2009). CO2-optimization of reinforced concrete frames by simulated annealing. Engineering Structures, 31(7), 1501–1508. Pei, Y.; Xia, Y. (2012). Design of Reinforced Cantilever Retaining Walls using Heuristic Optimization Algorithms. Procedia Earth and Planetary Science, 5, 32–36. Qu, L.; He, D.; Wu, J. (2011). Hybrid Coevolutionary Glowworm Swarm Optimization Algorithm with Simplex Search Method for System of Nonlinear Equations. Journal of Information & Computational Science, 8(13), 2693– 2701. Rana, S.; Islam, N.; Ahsan, R.; Ghani, S.N. (2013). Application of evolutionary operation to the minimum cost design of continuous prestressed concrete bridge structure. Engineering Structures, 46, 38–48. Sarma, K.C.; Adeli, H. (1998). Cost optimization of concrete structures. Journal of Structural Engineering, 124(5), 570–578. Shieh, H.L.; Kuo, C.C.; Chiang, C.M. (2011). Modified particle swarm optimization algorithm with simulated annealing behavior and its numerical verification. Applied Mathematics and Computation, 218(8), 4365–4383. Srinivas, V.; Ramanjaneyulu, K. (2007). An integrated approach for optimum design of bridge decks using genetic algorithms and artificial neural networks. Advances in Engineering Software, 38(7), 475–487. Valdez, F.; Melin, P.; Castillo, O. (2011). An improved evolutionary method with fuzzy logic for combining Particle Swarm Optimization and Genetic Algorithms. Applied Soft Computing, 11(2), 2625–2632. Wang, E.; Shen, Z. (2013). A hybrid Data Quality Indicator and statistical method for improving uncertainty analysis in LCA of complex system – application to the whole-building embodied energy analysis. Journal of Cleaner Production, 43, 166–173. Wills, J. (1973). A mathematical optimization procedure and its application to the design of bridge structures. Wokingham, Berkshire, United Kingdom. Yepes, V.; Alcalá, J.; Perea, C.; González-Vidosa, F. (2008). A parametric study of optimum earth-retaining walls by simulated annealing. Engineering Structures, 30(3), 821–830. Yepes, V.; Díaz, J.; González-Vidosa, F.; Alcalá, J. (2009). Caracterización estadística de tableros pretensados para carreteras. Revista de la Construcción, 8(2), 95-109. Yepes, V.; García-Segura, T.; Moreno-Jiménez, J.M. (2015a). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4), 1024–1036. Yepes, V.; González-Vidosa, F.; Alcalá, J.; Villalba, P. (2012). CO2-optimization design of reinforced concrete retaining walls based on a VNS-threshold acceptance strategy. Journal of Computing in Civil Engineering, 26(3), 378–386. Yepes, V.; Martí, J.V.; García-Segura, T. (2015b). Cost and CO2 emission optimization of precast–prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49, 123–134. Yepes, V.; Martí, J.V.; García-Segura, T.; González-Vidosa, F. (2017). Heuristics in optimal detailed design of precast road bridges. Archives of Civil and Mechanical Engineering, 17(4), 738-749. Yepes, V.; Torres-Machí, C.; Chamorro, A.; Pellicer, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4), 540-550. Yepes, V. (2017). Trabajo de investigación. Concurso de Acceso al Cuerpo de Catedráticos de Universidad. Universitat Politècnica de València, 110 pp. Yu, C.H.; Gupta, N.C. Das; Paul, H. (1986). Optimization of prestressed concrete bridge girders. Engineering Optimization, 10(1), 13–24. Zhang, J.; Zhou, G.; Zhou, Y. (2010). A New Artificial Glowworm Swarm Optimization Algorithm Based on Chaos Method. In B. Cao, G. Wang, S. Chen, & S. Guo (Eds.), Quantitative Logic and Soft Computing 2010, Vol. 82, pp. 683–693. Berlin, Heidelberg: Springer Berlin Heidelberg.     Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. 16 abril, 2018   |   Etiquetas: estado del arte,  estructuras,  heurísticas,  optimización,  optimización heurística,  puentes|
more...
No comment yet.
Scooped by Víctor Yepes
Scoop.it!

» ¿Cómo valorar el impacto social de las infraestructuras? Estado del arte El blog de Víctor Yepes

» ¿Cómo valorar el impacto social de las infraestructuras? Estado del arte El blog de Víctor Yepes | Procedimientos de construcción | Scoop.it
Publicada By  Víctor Yepes Piqueras - ingeniería civil, investigación, recursos humanos, sostenibilidad, toma de decisiones     Acaban de publicarnos un artículo en la revista Journal of Cleaner Production (primer decil del JCR), de la editorial ELSEVIER, en la que revisamos el estado del arte de la investigación realizada a nivel internacional sobre la aplicación de las técnicas de valoración multicriterio al impacto social de las infraestructuras. El tema no es nada sencillo, puesto que los impactos sociales son mucho más difíciles de valorar que los impactos económicos o medioambientales. Nos referimos a aspectos como el empleo, el bienestar social, la salud pública, la productividad, el desarrollo regional, la equidad intergeneracional, la igualdad social, la educación, etc. Además, hay que tener en cuenta que, al igual que una piedra cae en una balsa de agua, las ondas generadas (el impacto) presentan un estado transitorio (corto plazo) y otro estacionario (largo plazo). A veces es difícil conjugar el corto y el largo plazo en la evaluación de la sostenibilidad social. La editorial ELSEVIER nos permite la distribución gratuita del artículo hasta el 26 de mayo de 2018. Por tanto, os paso el enlace para que os podáis descargar este artículo: https://authors.elsevier.com/c/1Wr0s3QCo9R0Il Referencia:  SIERRA, L.A.; YEPES, V.; PELLICER, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513. https://doi.org/10.1016/j.jclepro.2018.03.022 Abstract: Nowadays multi-criteria methods enable non-monetary aspects to be incorporated into the assessment of infrastructure sustainability. Yet evaluation of the social aspects is still neglected and the multi-criteria assessment of these social aspects is still an emerging topic. Therefore, the aim of this article is to review the current state of multi-criteria infrastructure assessment studies that include social aspects. The review includes an analysis of the social criteria, participation and assessment methods. The results identify mobility and access, safety and local development among the most frequent criteria. The Analytic Hierarchy Process and Simple Additive Weighting methods are the most frequently used. Treatments of equity, uncertainty, learning and consideration of the context, however, are not properly analyzed yet. Anyway, the methods for implementing the evaluation must guarantee the social effect on the result, improvement of the representation of the social context and techniques to facilitate the evaluation in the absence of information. Keywords: Infrastructure Multi-criteria Social sustainability Equity Stakeholders Uncertainty   Highlights: Review of multi-criteria assessment methods of infrastructure social sustainability. Identify trends of social criteria considered. Identify trends of participation of stakeholders. Identify trends of multi-criteria methods. Identify trends of consideration of equity, context and social learning.     6 abril, 2018   |   Etiquetas: BRIDLIFE,  DIMALIFE,  equity,  infraestructuras,  infrastructure,  Journal of Cleaner Production,  multi-criteria,  social sustainability,  sostenibilidad,  sostenibilidad social,  stakeholders,  uncertainty|
more...
No comment yet.
Scooped by Víctor Yepes
Scoop.it!

» Bomba de hormigón con sistema de válvulas de corredera plana Procedimientos de #construcción

» Bomba de hormigón con sistema de válvulas de corredera plana Procedimientos de #construcción | Procedimientos de construcción | Scoop.it
Publicada By  Víctor Yepes Piqueras - Equipos para el transporte y la colocación del hormigón, MAQUINARIA Y PROCEDIMIENTOS CONSTRUCTIVOS DE CIMENTACIONES Y ESTRUCTURAS     Además de la bomba de hormigón de pistones de trompa, también es posible encontrar bombas con un sistema de corredera plana para impulsar el hormigón. En ambos casos, son sistemas de doble pistón, conectados por una válvula. Ambos pistones provocan un movimiento alternativo que genera una especie de lingote de hormigón en estado fresco que se impulsa a una presión casi constante. Los dos cilindros se unen a la tubería de impulsión formando una Y. Su principio de funcionamiento consiste en impulsar el hormigón alternativamente por uno u otro cilindro en un régimen continuo de alimentación. Esto se consigue con dos válvulas correderas situadas bajo la tolva y al comienzo de la impulsión. Por tanto, mientras un tubo aspira el hormigón, el otro lo impulsa a través de la tubería. Tienen el inconveniente del desgaste de las válvulas correderas. Estas bombas de pistones con sistema de correderas permiten desde presiones bajas a muy altas, dando muy buenos resultados en aplicaciones pesadas con alta o muy alta presión. Os dejo un par de vídeos explicativos. Referencias: MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València. 189 pp. PUTZMEISTER. Tecnología del hormigón para bombas de hormigón. http://www.pmw.co.in/pm_india/data/BP_2158_E.pdf Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. 13 abril, 2018   |   Etiquetas: bomba de hormigón,  bomba de pistones,  hormigón,  válvula corredera|
more...
No comment yet.
Scooped by Víctor Yepes
Scoop.it!

» Optimización de la energía necesaria para construir puentes losa postesados El blog de Víctor Yepes

» Optimización de la energía necesaria para construir puentes losa postesados El blog de Víctor Yepes | Procedimientos de construcción | Scoop.it
Publicada By  Víctor Yepes Piqueras - algoritmo, costes, energía, estructuras, hormigón, investigación, optimización, Puentes, sostenibilidad     Acaban de publicarnos en la revista Technologies un artículo que aplica el algoritmo de recocido simulado a la optimización del coste y de la energía empleada en un puente losa postesado con tablero aligerado. Se resuelve un problema complejo de optimización de 33 variables de diseño. Como resultados interesantes cabe señalar que, en ocasiones, las soluciones de menor coste no son necesariamente las que menos energía consumen. El artículo se ha publicado en abierto y se puede descargar en la web. Aquí tenéis la referencia y el artículo completo.   Referencia: ALCALÁ, J.; GONZÁLEZ-VIDOSA, YEPES, V.; MARTÍ, J.V. (2018). Embodied energy optimization of prestressed concrete slab bridge decks. Technologies, 6(2):43. doi:10.3390/technologies6020043 (link) Descargar (PDF, 1.88MB) 26 abril, 2018   |   Etiquetas: DIMALIFE,  energía,  energy savings,  heuristic optimization,  optimización heurística,  prestressed concrete bridge,  puentes,  recocido simulado,  sustainable construction|
more...
No comment yet.
Scooped by Víctor Yepes
Scoop.it!

» Cimbrado, recimbrado, clareado y descimbrado de plantas consecutivas El blog de Víctor Yepes

» Cimbrado, recimbrado, clareado y descimbrado de plantas consecutivas El blog de Víctor Yepes | Procedimientos de construcción | Scoop.it
Publicada By  Víctor Yepes Piqueras - edificación, estructuras, hormigón, medios auxiliares, procedimientos de construcción     Un edificio de varias plantas constituye una estructura evolutiva, que va cambiando en configuración y en resistencia conforme se va construyendo. Uno de los aspectos más importantes en la economía y seguridad del proceso constructivo de un edificio es el relacionado con el cimbrado y descimbrado de las plantas sucesivas. No hay que olvidar que durante la construcción se producen esfuerzos que pueden ser más desfavorables que los esfuerzos en servicio. Por tanto, las dos preguntas clave son qué cargas se generan durante la construcción y a qué edad el hormigón está preparado para resistir las cargas por sí mismo. Sobre este problema se han realizado numerosos estudios que intentan evaluar de forma precisa la transmisión de las cargas entre los forjados y los puntales. Se trata de un problema complejo, pues aspectos tales como las características de la estructura (tipo de hormigón y cargas de cálculo), los cambios de temperatura y humedad ambiente o la distribución de las cargas entre forjados y puntales originado por el propio procedimiento constructivo, entre otros, son determinantes en este tipo de cálculos. Para aclarar algunos aspectos de este tema, vamos a definir los distintos procedimientos empleados, analizaremos brevemente la normativa aplicable y remitiremos a referencias actuales sobre este tema para aquellos de vosotros interesados en profundizar más. Ya os podemos adelantar que la normativa que aborda el plazo de descimbrado es muy genérica y utiliza criterios muy conservadores. Por ejemplo, el método simplificado de Grundy y Kabaila (1963) es fácil de aplicar y suele estar del lado de la seguridad, pues supone una rigidez infinita de los puntales y que todos los forjados se comportan elásticamente y presentan la misma rigidez, con una cimentación infinitamente rígida, con cargas uniformemente distribuidas sobre el encofrado y los puntales y despreciando el efecto de la retracción y la fluencia del hormigón. Sin embargo, la rigidez infinita de la cimentación (“efecto suelo”) implica que absorbe un nivel de solicitación importante, lo que provoca a su vez una sobrecarga en los puntales. Esto lleva a que, mientras el efecto dura, las cargas en los puntales se acumulan, pudiendo llegar a constituir la situación más desfavorable de todo el proceso. Una vez que este efecto desaparece, las solicitaciones en puntales pueden disminuir significativamente, lo que lleva a diseños poco optimizados si se aplica el mismo criterio en todas las alturas de la estructura. Este método simplificado nos lleva a distribuciones de cargas que, curiosamente, son independientes de algunos parámetros importantes como son la distancia entre pilares, la altura libre entre plantas, el ritmo constructivo, las dimensiones de los forjados o la resistencia característica del hormigón empleado. Es un método que solo depende del esquema constructivo empleado, es decir, del número de plantas apuntaladas y reapuntaladas. Se pueden distinguir tres procedimientos constructivos principales: Cimbrado y descimbrado: Es el procedimiento más simple, pero que requiere de más material. Se descimbra toda la planta lo cual significa que deben existir tantos juegos de cimbras como plantas. Se pueden tener dos, tres o más plantas consecutivas cimbradas. Hay que tener cuidado, pues aumentar el número de juegos de puntales incrementa las cargas máximas en forjados, por lo que suele convenir n=2. Cimbrado, clareado y descimbrado: El clareado o descimbrado parcial es una técnica muy empleada en España. Consiste en retirar el encofrado y la mitad o más de los puntales que soportan el forjado pocos días después del hormigonado. En este sistema los puntales no pierden nunca el contacto con la estructura. La ventaja es que se reduce el material necesario en la obra. Todo el encofrado y al menos la mitad de los puntales se recuperan entre los 3 y 5 días. Sin embargo, este procedimiento introduce estados de carga intermedios en los forjados que deben comprobarse. Cimbrado, recimbrado y clareado: Se retira el apuntalamiento de una planta para que se deforme libremente y se redistribuyan las cargas entre los forjados. Luego se vuelven a poner en carga, de forma que colaboren con los incrementos de carga posteriores. Con este procedimiento, los forjados, a edades tempranas, y cuando se recimbran, soportan únicamente su peso propio. Esta técnica permite reducir notablemente las cargas en los puntales, el inconveniente es que es una operación complicada y delicada, que aumenta el número de operaciones a realizar, y por tanto, el coste de mano de obra. En este caso, aumentar el número de juegos de puntales reduce las cargas máximas en forjados. Este procedimiento precisa de un control de calidad muy intenso, pues se descimbra a edades tempranas. Esta técnica es poco usada en España, aunque es la técnica principal en Estados Unidos. Como vemos, los tres procedimientos tienen sus ventajas e inconvenientes. Por ejemplo, una crítica al recimbrado es que los forjados se someten a altas cargas a edades tempranas. Además, cuando el “efecto suelo” deja de tener incidencia, los efectos beneficiosos del recimbrado dejan de producirse. Por tanto, si lo que se quiere es optimizar, habría que combinar las técnicas de recimbrado en las plantas inferiores con las de clareado en las superiores. La instrucción EHE 08, a la vista de las implicaciones que tiene los procesos constructivos de descimbrado, carga la responsabilidad en el proyecto. En efecto, en su artículo 94.3, indica que “en general, se comprobará que la totalidad de los procesos de montaje y desmontaje, y en su caso el de recimbrado o reapuntalamiento, se efectúan conforme a lo establecido en el correspondiente proyecto“. Al lector preocupado por el cálculo e hipótesis de estas técnicas le recomendamos el libro del profesor Calavera (2002), que es una de las referencias obligadas. El descimbrado no se debe realizar hasta que el hormigón haya alcanzado la resistencia necesaria. Esta operación comienza quitando los puntales de las zonas más deformables del forjado (extremo de los voladizos y centros de vano) para continuar hacia los apoyos. Esto se hace para no cargar más de lo previsto y que se deforme el forjado de forma brusca. La EHE 08, en su artículo 74 propone determinar el plazo de descimbrado utilizando la siguiente expresión, basada en el concepto de madurez del hormigón (edad equivalente entre dos hormigones dependiente del tiempo y de la temperatura). Esta fórmula solo se aplica a elementos de hormigón armado fabricados con cementos Pórtland, suponiendo que el endurecimiento se haya realizado en condiciones ordinarias: Donde: Q es la diferencia entre la carga que actúa en situación de proyecto y la carga que actúa en una determinada fase constructiva G es la carga que actúa en una determinada fase de construcción (en el momento de descimbrar), incluido el peso propio y la carga transmitida procedente de forjados cimbrados sobre el elemento a estudiar T es la temperatura media en ºC de las máximas y mínimas diarias durante los j días j es el número de días desde el hormigonado hasta el descimbrado La EHE 08 recoge la Tabla 74 donde se indican los periodos mínimos de desencofrado y descimbrado de elementos de hormigón armado. Esta tabla se puede utilizar cuando no se disponga de datos suficientes y en el caso de haber utilizado cemento de endurecimiento normal. En el caso de períodos de helada durante el endurecimiento del hormigón, se deben incrementar convenientemente estos valores. También se incrementarán estos valores cuando se quiera limitar la fisuración a edades tempranas o sea necesario reducir las deformaciones por fluencia. Por último, debemos apuntar algunas de las conclusiones derivadas de las medidas experimentales de la transmisión de cargas entre puntales y forjados derivadas de la tesis doctoral de Gasch (2012). Estas conclusiones son importantes a efectos prácticos: El reparto de cargas entre puntales no es uniforme. Los puntales de centro de vano presentan valores de carga máxima para cada una de las operaciones constructivas. Las operaciones no previstas durante el procedimiento constructivo implican fuertes modificaciones de la transmisión de cargas esperada entre forjados y puntales. Pequeñas variaciones en el apriete de los puntales pueden tener gran influencia en la distribución de cargas. Al hormigonar cada forjado, la totalidad de la carga se transmite a los puntales.   Referencias: Buitrago, M. (2014). Desarrollo de una aplicación informática de apoyo al cálculo del proecso constructivo de cimbrado/descimbrado de edificios en altura hormigonados in situ. Optimización del proceso aplicando técnicas de optimización heurística. Trabajo de Investigación CST/MIH. Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil. Universitat Politècnica de València. Calavera, J. (2002). Cálculo, construcción, patología y rehabilitación de forjados de edificación: unidireccionales y sin vigas-hormigón metálicos y mixtos. Intemac Ediciones, Madrid. Díaz-Lozano, J. (2008). Criterios técnicos para el descimbrado de estructuras de hormigón. Tesis doctoral. Departamento de ingeniería civil: construcción. Universidad Politécnica de Madrid. Gasch, I. (2012). Estudio de la evolución de cargas en forjados y estructuras auxiliares de apuntalamiento durante la construcción de edificios de hormigón in situ mediante procesos de cimbrado, clareado y descimbrado de plantas sucesivas. Tesis doctoral. Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil. Universitat Politècnica de València. Grundy, P.; Kabaila, A. (1963). Construction loads on slabs with shored fromwork in multistory buildings. ACI Structural Proceedings, 60(12): 1729-1738. 25 abril, 2018   |   Etiquetas: cimbra,  cimbrado,  clareado,  descimbrado,  edificación,  forjado,  madurez del hormigón,  reapuntalamiento,  recimbrado|
more...
No comment yet.
Scooped by Víctor Yepes
Scoop.it!

» Clases de diseño de cimbras según la norma UNE-EN 12812 El blog de Víctor Yepes

» Clases de diseño de cimbras según la norma UNE-EN 12812 El blog de Víctor Yepes | Procedimientos de construcción | Scoop.it
Publicada By  Víctor Yepes Piqueras - Docencia, edificación, estructuras, hormigón, medios auxiliares, procedimientos de construcción     La norma UNE-EN 12812:2008 define los requisitos de comportamiento y diseño general de las cimbras. Esta norma no solo recoge las acciones típicas a considerar en los cálculos, sino que además cataloga y diferencia dos tipos de cimbra, las denominadas como clase A y clase B.           Clase de diseño A: es aquella cimbra cuya estabilidad está avalada por la experiencia y buenas prácticas ya establecidas y que se puede considerar que satisface los requisitos de diseño. Son cimbras de utilización estándar y con limitaciones de altura y cargas. Las más habituales son puntales para forjados de edificación y las torres cuajadas en puentes. El proyecto de la cimbra debe incluir una copia de los ensayos y cálculos realizados por el proyectista del material estándar con las limitaciones de uso y montaje que deben respetarse. Esta documentación deberá estar firmada por el suministrador del material y por el laboratorio que haya realizado el ensayo. Estos montajes requieren un análisis simplificado basado en los materiales de los elementos que conforman la cimbra (puntales, bases, cabezales de cimbra y arriostramientos). Su utilización se basa normalmente en la aplicación de tablas de uso y manuales de uso generales y no suelen requerir de cálculos ni ensayos específicos. Habitualmente sólo entran dentro de esta clasificación los apeos con puntal. Según la norma, la clase A se puede adoptar solo cuando: las losas tengan un área de sección transversal inferior a 0,3 m2 por metro de anchura de losa las vigas tengan un área de sección transversal inferior a 0,5 m2 la luz libre de las vigas y las losas no supere los 6,0 m la altura de la estructura permanente en la cara inferior no supere los 3,5 m Clase de diseño B: la estabilidad y el diseño se deben estudiar de acuerdo con los Eurocódigos (EN 1990, EN 1991 hasta EN 1999) y con los apartados de la UNE-EN 12812, debido a que se debe realizar un diseño estructural completo.  Por tanto, se deben comprobar los estados límites últimos y de servicio, así como las uniones y detalles. Además, se deben incluir planos que determinen la cimbra en planta para poder realizar el replanteo, los alzados y las secciones, así como los detalles importantes. Dentro de esta clase se incluyen todas las cimbras realizadas con material a medida y todas aquellas de material estándar pero con usos que se salen de sus condiciones de utilización. La clase B2 permite un cálculo más simplificado que la clase B1 para determinar la distribución de la carga, basado en las áreas de influencia que recoge cada vertical o montante de la cimbra. Este cálculo simplificado alcanza el mismo nivel de seguridad. En la clase B1 se supone que el montaje se lleva a cabo con un nivel de destreza apropiado para la construcción permanente (ver normas EN 1090-2 y EN 1090-3 para estructuras metálicas). Fuera de estas dos clases de diseño, mencionaremos las cimbras especiales, destinadas a la construcción de grandes estructuras (cimbras autolanzables, lanzadores de vigas y dovelas o carros de voladizos sucesivos). se caracterizan por ser cimbras-máquina, es decir, con movimiento, por lo que se precisa de un cálculo muy detallado en todas las posiciones de trabajo. Referencias: MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441.   21 abril, 2018   |   Etiquetas: cimbra,  clases de diseño,  edificación,  medios auxiliares,  puentes,  UNE-EN 12812|
more...
No comment yet.
Scooped by Víctor Yepes
Scoop.it!

» Clasificación de los sistemas de encofrado El blog de Víctor Yepes

» Clasificación de los sistemas de encofrado El blog de Víctor Yepes | Procedimientos de construcción | Scoop.it
Publicada By  Víctor Yepes Piqueras - edificación, estructuras, hormigón, medios auxiliares, Polimedia, procedimientos de construcción     Se pueden clasificar los encofrados de muy distintas formas: atendiendo al material con el que están elaborados, al sistema de transmisión de cargas, al sistema de ejecución, etc. Sin embargo, se suelen agrupar en función de la posición del elemento que se va a encofrar: sistemas horizontales y sistemas verticales. Ejemplo del primer tipo son los forjados utilizados en edificación; en cuanto a los segundos, podrían ser aquellos utilizados en pilares o muros. En cuanto a los materiales, si bien hasta hace pocas fechas era habitual el uso de la madera, nuevos materiales como el aluminio o el plástico han permitido estandarizar e industrializar más los procedimientos constructivos. Esta industrialización ha permitido reducir los tiempos de montaje y desmontaje, y con ello el periodo de ejecución de estas tareas. En un post anterior ya se realizó una introducción sobre lo que son y para qué sirven los encofrados.   A continuación he elaborado un mapa conceptual (Figura 2) para clarificar la clasificación de los sistemas de encofrado. Como podéis ver, además de la posición del elemento a encofrar, se ha considerado la transmisión de cargas y la ejecución del elemento para establecer un esquema que simplifique la comprensión de los sistemas. Los encofrados horizontales, normalmente empleados en forjados de edificación, presentan tres grupos de elementos constituyentes (Figura 3): Una superficie encofrante, que da la textura y que permite la transmisión de las cargas Una estructura horizontal formada por vigas, sopandas o correas, que traslada las cargas de la superficie encofrante a la estructura vertical Una estructura vertical, formada por puntales, que transmite las cargas a los forjados inferiores o al terreno. Los sistemas de encofrado vertical, típico en la ejecución de pilares y muros, presentan tres agrupaciones de elementos (Figura 4): El sistema encofrante, que da textura y soporta la presión del hormigón fresco La estructura de soporte, constituida por un marco exterior y unas costillas interiores de refuerzo   En el caso de encofrados verticales de grandes alturas, se pueden utilizar los encofrados trepantes o autotrepantes y los deslizantes. De ellos ya se ha hablado en otros posts anteriores. Por último, os dejo un pequeño vídeo explicativo donde se resumen los aspectos más significativos de las tipologías de los encofrados. Referencia: MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441.   Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. 27 abril, 2018   |   Etiquetas: clasificación de encofrados,  edificación,  encofrado,  encofrados horizontales,  encofrados verticales,  forjados,  medios auxiliares|
more...
No comment yet.
Scooped by Víctor Yepes
Scoop.it!

Llaman Betancourt a un puente sobre el Neva en honor a ingeniero español

Llaman Betancourt a un puente sobre el Neva en honor a ingeniero español | Procedimientos de construcción | Scoop.it
Las autoridades de San Petersburgo deciden llamar Betancourt al puente sobre el río Neva en honor al ingeniero español Agustín de Betancourt, que sirvió bajo el zar Alejandro I
more...
No comment yet.
Scooped by Víctor Yepes
Scoop.it!

La economía del futuro despertará entre la autopista y el ferrocarril

La economía del futuro despertará entre la autopista y el ferrocarril | Procedimientos de construcción | Scoop.it
El periodista Eugenio Mallol nos desvela las incognitas alrededor del 5g que estimulan hoy a los expertos globales, ya sean directivos, investigadores, entre otros.
more...
No comment yet.
Scooped by Víctor Yepes
Scoop.it!

Una ciudad de 100 millones de habitantes es posible. ¿Cómo nos hacemos cargo del futuro?

Una ciudad de 100 millones de habitantes es posible. ¿Cómo nos hacemos cargo del futuro? | Procedimientos de construcción | Scoop.it
En 2010 la Humanidad marcó un nuevo hito: más de la mitad de la población vive en ciudades. Y por lo visto, es un proceso que sol
more...
No comment yet.