Plant Genomics
14.5K views | +0 today
Follow
Plant Genomics
Updates on Plant Genomics
Your new post is loading...
Your new post is loading...
Scooped by Biswapriya Biswavas Misra
Scoop.it!

An integrated genetic linkage map for white clover (Trifolium repens L.) with alignment to Medicago

White clover (Trifolium repens L.) is a temperate forage legume with an allotetraploid genome (2n=4x=32) estimated at 1093 Mb.
Biswapriya Biswavas Misra's insight:
Abstract (provisional)Background

White clover (Trifolium repens L.) is a temperate forage legume with an allotetraploid genome (2n=4x=32) estimated at 1093 Mb. Several linkage maps of various sizes, marker sources and completeness are available, however, no integrated map and marker set has explored consistency of linkage analysis among unrelated mapping populations. Such integrative analysis requires tools for homoeologue matching among populations. Development of these tools provides for a consistent framework map of the white clover genome, and facilitates in silico alignment with the model forage legume, Medicago truncatula.

Results

This is the first report of integration of independent linkage maps in white clover, and adds to the literature on methyl filtered GeneThresher(R)-derived microsatellite (simple sequence repeat; SSR) markers for linkage mapping. Gene-targeted SSR markers were discovered in a GeneThresher(R) (TrGT) methyl-filtered database of 364,539 sequences, which yielded 15,647 SSR arrays. Primers were designed for 4,038 arrays and of these, 465 TrGT-SSR markers were used for parental consensus genetic linkage analysis in an F1 mapping population (MP2). This was merged with an EST-SSR consensus genetic map of an independent population (MP1), using markers to match homoeologues and develop a multi-population integrated map of the white clover genome. This integrated map (IM) includes 1109 loci based on 804 SSRs over 1274 cM, covering 97% of the genome at a moderate density of one locus per 1.2 cM. Eighteen candidate genes and one morphological marker were also placed on the IM. Despite being derived from disparate populations and marker sources, the component maps and the derived IM had consistent representations of the white clover genome for marker order and genetic length. In silico analysis at an E-value threshold of 1e-20 revealed substantial co-linearity with the Medicago truncatula genome, and indicates a translocation between T. repens groups 2 and 6 relative to M. truncatula.

Conclusions

This integrated genetic linkage analysis provides a consistent and comprehensive linkage analysis of the white clover genome, with alignment to a model forage legume. Associated marker locus information, particularly the homoeologue-specific markers, offers a new resource for forage legume research to enable genetic analysis and improvement of this forage and grassland species.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Global Expression Profiling of Transcription Factor Genes Provides New Insights into Pathogenicity and Stress Responses in the Rice Blast Fungus

Global Expression Profiling of Transcription Factor Genes Provides New Insights into Pathogenicity and Stress Responses in the Rice Blast Fungus | Plant Genomics | Scoop.it
From molecules to physiology
Biswapriya Biswavas Misra's insight:
Abstract

Because most efforts to understand the molecular mechanisms underpinning fungal pathogenicity have focused on studying the function and role of individual genes, relatively little is known about how transcriptional machineries globally regulate and coordinate the expression of a large group of genes involved in pathogenesis. Using quantitative real-time PCR, we analyzed the expression patterns of 206 transcription factor (TF) genes in the rice blast fungus Magnaporthe oryzae under 32 conditions, including multiple infection-related developmental stages and various abiotic stresses. The resulting data, which are publicly available via an online platform, provided new insights into how these TFs are regulated and potentially work together to control cellular responses to a diverse array of stimuli. High degrees of differential TF expression were observed under the conditions tested. More than 50% of the 206 TF genes were up-regulated during conidiation and/or in conidia. Mutations in ten conidiation-specific TF genes caused defects in conidiation. Expression patterns in planta were similar to those under oxidative stress conditions. Mutants of in planta inducible genes not only exhibited sensitive to oxidative stress but also failed to infect rice. These experimental validations clearly demonstrated the value of TF expression patterns in predicting the function of individual TF genes. The regulatory network of TF genes revealed by this study provides a solid foundation for elucidating how M. oryzae regulates its pathogenesis, development, and stress responses.

 
more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Identification of Arabidopsis Meiotic Cyclins Reveals Functional Diversification among Plant Cyclin Genes

Identification of Arabidopsis Meiotic Cyclins Reveals Functional Diversification among Plant Cyclin Genes | Plant Genomics | Scoop.it
PLOS Genetics is an open-access
Biswapriya Biswavas Misra's insight:
Abstract

Meiosis is a modified cell division in which a single S-phase is followed by two rounds of chromosome segregation resulting in the production of haploid gametes. The meiotic mode of chromosome segregation requires extensive remodeling of the basic cell cycle machinery and employment of unique regulatory mechanisms. Cyclin-dependent kinases (CDKs) and cyclins represent an ancient molecular module that drives and regulates cell cycle progression. The cyclin gene family has undergone a massive expansion in angiosperm plants, but only a few cyclins were thoroughly characterized. In this study we performed a systematic immunolocalization screen to identify Arabidopsis thaliana A- and B-type cyclins expressed in meiosis. Many of these cyclins exhibit cell-type-specific expression in vegetative tissues and distinct subcellular localization. We found six A-type cyclins and a single B-type cyclin (CYCB3;1) to be expressed in male meiosis. Mutant analysis revealed that these cyclins contribute to distinct meiosis-related processes. While A2 cyclins are important for chromosome segregation, CYCB3;1 prevents ectopic cell wall formation. We further show that cyclin SDS does not contain a D-box and is constitutively expressed throughout meiosis. Analysis of plants carrying cyclin SDS with an introduced D-box motif determined that, in addition to its function in recombination, SDS acts together with CYCB3;1 in suppressing unscheduled cell wall synthesis. Our phenotypic and expression data provide extensive evidence that multiplication of cyclins is in plants accompanied by functional diversification.

 
more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

The genetic basis of speciation in the Giliopsis lineage of Ipomopsis (Polemoniaceae)

Biswapriya Biswavas Misra's insight:

One of the most powerful drivers of speciation in plants is pollinator-mediated disruptive selection, which leads to the divergence of floral traits adapted to the morphology and behavior of different pollinators. Despite the widespread importance of this speciation mechanism, its genetic basis has been explored in only a few groups. Here, we characterize the genetic basis of pollinator-mediated divergence of two species in genus Ipomopsis, I. guttata and I. tenuifolia, using quantitative trait locus (QTL) analyses of floral traits and other variable phenotypes. We detected one to six QTLs per trait, with each QTL generally explaining small to modest amounts of the phenotypic variance of a backcross hybrid population. In contrast, flowering time and anthocyanin abundance (a metric of color variation) were controlled by a few QTLs of relatively large effect. QTLs were strongly clustered within linkage groups, with 26 of 37 QTLs localized to six marker-interval ‘hotspots,’ all of which harbored pleiotropic QTLs. In contrast to other studies that have examined the genetic basis of pollinator shifts, our results indicate that, in general, mutations of small to modest effect on phenotype were involved. Thus, the evolutionary transition between the distinct pollination modes of I. guttata and I. tenuifolia likely proceeded incrementally, rather than saltationally.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Variation in Genomic Methylation in Natural Populations of Chinese White Poplar

Variation in Genomic Methylation in Natural Populations of Chinese White Poplar | Plant Genomics | Scoop.it
PLOS ONE: an inclusive, peer-reviewed, open-access resource from the PUBLIC LIBRARY OF SCIENCE. Reports of well-performed scientific studies from all disciplines freely available to the whole world.
Biswapriya Biswavas Misra's insight:
AbstractBackground

It is thought that methylcytosine can be inherited through meiosis and mitosis, and that epigenetic variation may be under genetic control or correlation may be caused by neutral drift. However, DNA methylation also varies with tissue, developmental stage, and environmental factors. Eliminating these factors, we analyzed the levels and patterns, diversity and structure of genomic methylcytosine in the xylem of nine natural populations of Chinese white poplar.

Principal Findings

On average, the relative total methylation and non-methylation levels were approximately 26.567% and 42.708% (P<0.001), respectively. Also, the relative CNG methylation level was higher than the relative CG methylation level. The relative methylation/non-methylation levels were significantly different among the nine natural populations. Epigenetic diversity ranged from 0.811 (Gansu) to 1.211 (Shaanxi), and the coefficients of epigenetic differentiation (GST = 0.159) were assessed by Shannon’s diversity index. Co-inertia analysis indicated that methylation-sensitive polymorphism (MSP) and genomic methylation pattern (CG-CNG) profiles gave similar distributions. Using a between-group eigen analysis, we found that the Hebei and Shanxi populations were independent of each other, but the Henan population intersected with the other populations, to some degree.

Conclusions

Genome methylation in Populus tomentosa presented tissue-specific characteristics and the relative 5′-CCGG methylation level was higher in xylem than in leaves. Meanwhile, the genome methylation in the xylem shows great epigenetic variation and could be fixed and inherited though mitosis. Compared to genetic structure, data suggest that epigenetic and genetic variation do not completely match.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

The developing xylem transcriptome and genome-wide analysis of alternative splicing in Populus trichocarpa (black cottonwood) populations

Alternative splicing (AS) of genes is an efficient means of generating variation in protein structure and function.
Biswapriya Biswavas Misra's insight:
Abstract (provisional)Background

Alternative splicing (AS) of genes is an efficient means of generating variation in protein structure and function. AS variation has been observed between tissues, cell types, and different treatments in non-woody plants such as Arabidopsis thaliana (Arabidopsis) and rice. However, little is known about AS patterns in wood-forming tissues and how much AS variation exists within plant populations.

Results

Here we used high-throughput RNA sequencing to analyze the Populus trichocarpa (P. trichocarpa) xylem transcriptome in 20 individuals from different populations across much of its range in western North America. Deep transcriptome sequencing and mapping of reads to the P. trichocarpa reference genome identified a suite of xylem-expressed genes common to all accessions. Our analysis suggests that at least 36% of the xylem-expressed genes in P. trichocarpa are alternatively spliced. Extensive AS was observed in cell-wall biosynthesis related genes such as glycosyl transferases and C2H2 transcription factors. 27902 AS events were documented and most of these events were not conserved across individuals. Differences in isoform-specific read densities indicated that 7% and 13% of AS events showed significant differences between individuals within geographically separated southern and northern populations, a level that is in general agreement with AS variation in human populations.

Conclusions

This genome-wide analysis of alternative splicing reveals high levels of AS in P. trichocarpa and extensive inter-individual AS variation. We provide the most comprehensive analysis of AS in P. trichocarpa to date, which will serve as a valuable resource for the plant community to study transcriptome complexity and AS regulation during wood formation.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Genomic analysis of the native European Solanum species, S. dulcamara

Solanum dulcamara (bittersweet, climbing nightshade) is one of the few species of the Solanaceae family native to Europe.
Biswapriya Biswavas Misra's insight:
Abstract (provisional)Background

Solanum dulcamara (bittersweet, climbing nightshade) is one of the few species of the Solanaceae family native to Europe. As a common weed it is adapted to a wide range of ecological niches and it has long been recognized as one of the alternative hosts for pathogens and pests responsible for many important diseases in potato, such as Phytophthora. At the same time, it may represent an alternative source of resistance genes against these diseases. Despite its unique ecology and potential as a genetic resource, genomic research tools are lacking for S. dulcamara. We have taken advantage of next-generation sequencing to speed up research on and use of this non-model species.

Results

In this work, we present the first large-scale characterization of the S. dulcamara transcriptome. Through comparison of RNAseq reads from two different accessions, we were able to predict transcript-based SNP and SSR markers. Using the SNP markers in combination with genomic AFLP and CAPS markers, the first genome-wide genetic linkage map of bittersweet was generated. Based on gene orthology, the markers were anchored to the genome of related Solanum species (tomato, potato and eggplant), revealing both conserved and novel chromosomal rearrangements. This allowed a better estimation of the evolutionary moment of rearrangements in a number of cases and showed that chromosomal breakpoints are regularly re-used.

Conclusion

Knowledge and tools developed as part of this study pave the way for future genomic research and exploitation of this wild Solanum species. The transcriptome assembly represents a resource for functional analysis of genes underlying interesting biological and agronomical traits and, in the absence of the full genome, provides a reference for RNAseq gene expression profiling aimed at understanding the unique biology of S. dulcamara. Cross-species orthology-based marker selection is shown to be a powerful tool to quickly generate a comparative genetic map, which may speed up gene mapping and contribute to the understanding of genome evolution within the Solanaceae family.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Detection and genotyping of restriction fragment associated polymorphisms in polyploid crops with a pseudo-reference sequence: a case study in allotetraploid Brassica napus

The presence of homoeologous sequences and absence of a reference genome sequence make discovery and genotyping of single nucleotide polymorphisms (SNPs) more challenging in polyploid crops.
Biswapriya Biswavas Misra's insight:
Abstract (provisional)Background

The presence of homoeologous sequences and absence of a reference genome sequence make discovery and genotyping of single nucleotide polymorphisms (SNPs) more challenging in polyploid crops.

Results

To address this challenge, we constructed reduced representation libraries (RRLs) for two Brassica napus inbred lines and their 91 doubled haploid (DH) progenies using a modified ddRADseq technique. A bioinformatics pipeline termed RFAPtools was developed to discover and genotype SNPs and presence/absence variations (PAVs). Using this pipeline, a pseudo-reference sequence (PRF) containing 180,991 sequence tags was constructed. By aligning sequence reads to the pseudo-reference sequence, allelic SNPs as well as PAVs were identified and genotyped with RFAPtools. Two parallel linkage maps, one SNP bin map containing 8,780 SNP loci and one PAV linkage map containing 12,423 dominant loci, were constructed. By aligning marker sequences to B. rapa sequence scaffolds, whose genome is available, we assigned 44 unassembled sequence scaffolds comprising 8.15 Mb onto the B. rapa chromosomes, and also identified 14 instances of misassembly and eight instances of mis-ordering sequence scaffolds.

Conclusions

These results indicate that the modified ddRADseq approach is a cost-effective and simple method to genotype tens of thousands SNPs and PAV markers in a polyploidy plant species. The results also demonstrated that RFAPtools developed in this study are powerful to mine allelic SNPs from homoeologous sequences in polyploids, therefore they are generally applicable in either diploid or polyploid species with or without a reference genome sequence.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Unsupervised genome-wide recognition of local relationship patterns

Phenomena such as incomplete lineage sorting, horizontal gene transfer, gene duplication and subsequent sub- and neo-functionalisation can result in distinct local phylogenetic relationships that are discordant with species phylogeny.
Biswapriya Biswavas Misra's insight:
Abstract (provisional)Background

Phenomena such as incomplete lineage sorting, horizontal gene transfer, gene duplication and subsequent sub- and neo-functionalisation can result in distinct local phylogenetic relationships that are discordant with species phylogeny. In order to assess the possible biological roles for these subdivisions, they must first be identified and characterised, preferably on a large scale and in an automated fashion.

Results

We developed Saguaro, a combination of a Hidden Markov Model (HMM) and a Self Organising Map (SOM), to characterise local phylogenetic relationships among aligned sequences using cacti, matrices of pair-wise distance measures. While the HMM determines the genomic boundaries from aligned sequences, the SOM hypothesises new cacti in an unsupervised and iterative fashion based on the regions that were modelled least well by existing cacti. After testing the software on simulated data, we demonstrate the utility of Saguaro by testing two different data sets: (i) 181 Dengue virus strains, and (ii) 5 primate genomes. Saguaro identifies regions under lineage-specific constraint for the first set, and genomic segments that we attribute to incomplete lineage sorting in the second dataset. Intriguingly for the primate data, Saguaro also classified an additional ~3% of the genome as most incompatible with the expected species phylogeny. A substantial fraction of these regions was found to overlap genes associated with both the innate and adaptive immune systems.

Conclusions

Saguaro detects distinct cacti describing local phylogenetic relationships without requiring any a priori hypotheses. We have successfully demonstrated Saguaro's utility with two contrasting data sets, one containing many members with short sequences (Dengue viral strains: n = 181, genome size = 10,700 nt), and the other with few members but complex genomes (related primate species: n = 5, genome size = 3 Gb), suggesting that the software is applicable to a wide variety of experimental populations. Saguaro is written in C++, runs on the Linux operating system, and can be downloaded from http://saguarogw.sourceforge.net/.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

An integrative "omics" approach identifies new candidate genes to impact aroma volatiles in peach fruit

Ever since the recent completion of the peach genome, the focus of genetic research in this area has turned to the identification of genes related to important traits, such as fruit aroma volatiles.
Biswapriya Biswavas Misra's insight:
Abstract (provisional)Background

Ever since the recent completion of the peach genome, the focus of genetic research in this area has turned to the identification of genes related to important traits, such as fruit aroma volatiles. Of the over 100 volatile compounds described in peach, lactones most likely have the strongest effect on fruit aroma, while esters, terpenoids, and aldehydes have minor, yet significant effects. The identification of key genes underlying the production of aroma compounds is of interest for any fruit-quality improvement strategy.

Results

Volatile (52 compounds) and gene expression (4348 genes) levels were profiled in peach fruit from a maturity time-course series belonging to two peach genotypes that showed considerable differences in maturation characteristics and postharvest ripening. This data set was analyzed by complementary correlation-based approaches to discover the genes related to the main aroma-contributing compounds: lactones, esters, and phenolic volatiles, among others. As a case study, one of the candidate genes was cloned and expressed in yeast to show specificity as an omega-6 Oleate desaturase, which may be involved in the production of a precursor of lactones/esters.

Conclusions

Our approach revealed a set of genes (an alcohol acyl transferase, fatty acid desaturases, transcription factors, protein kinases, cytochromes, etc.) that are highly associated with peach fruit volatiles, and which could prove useful in breeding or for biotechnological purposes.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Insights into organ-specific pathogen defense responses in plants: RNA-seq analysis of potato tuber-Phytophthora infestans interactions

The late blight pathogen Phytophthora infestans can attack both potato foliage and tubers.
Biswapriya Biswavas Misra's insight:
Abstract (provisional)Background

The late blight pathogen Phytophthora infestans can attack both potato foliage and tubers. Although interaction transcriptome dynamics between potato foliage and various pathogens have been reported, no transcriptome study has focused specifically upon how potato tubers respond to pathogen infection. When inoculated with P. infestans, tubers of nontransformed 'Russet Burbank' (WT) potato develop late blight disease while those of transgenic 'Russet Burbank' line SP2211 (+RB), which expresses the potato late blight resistance gene RB (Rpi-blb1), do not. We compared transcriptome responses to P. infestans inoculation in tubers of these two lines.

Results

We demonstrated the practicality of RNA-seq to study tetraploid potato and present the first RNA-seq study of potato tuber diseases. A total of 483 million paired end Illumina RNA-seq reads were generated, representing the transcription of around 30,000 potato genes. Differentially expressed genes, gene groups and ontology bins that exhibited differences between the WT and +RB lines were identified. P. infestans transcripts, including those of known effectors, were also identified.

Conclusion

Faster and stronger activation of defense related genes, gene groups and ontology bins correlate with successful tuber resistance against P. infestans. Our results suggest that the hypersensitive response is likely a general form of resistance against the hemibiotrophic P. infestans---even in potato tubers, organs that develop below ground.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Genomics-driven discovery of the pneumocandin biosynthetic gene cluster in the fungus Glarea lozoyensis

The antifungal therapy caspofungin is a semi-synthetic derivative of pneumocandin B0, a lipohexapeptide produced by the fungus Glarea lozoyensis, and was the first member of the echinocandin class approved for human therapy.
Biswapriya Biswavas Misra's insight:
Abstract (provisional)Background

The antifungal therapy caspofungin is a semi-synthetic derivative of pneumocandin B0, a lipohexapeptide produced by the fungus Glarea lozoyensis, and was the first member of the echinocandin class approved for human therapy. The nonribosomal peptide synthetase (NRPS)-polyketide synthases (PKS) gene cluster responsible for pneumocandin biosynthesis from G. lozoyensis has not been elucidated to date. In this study, we report the elucidation of the pneumocandin biosynthetic gene cluster by whole genome sequencing of the G. lozoyensis wild-type strain ATCC 20868.

Results

The pneumocandin biosynthetic gene cluster contains a NRPS (GLNRPS4) and a PKS (GLPKS4) arranged in tandem, two cytochrome P450 monooxygenases, seven other modifying enzymes, and genes for L-homotyrosine biosynthesis, a component of the peptide core. Thus, the pneumocandin biosynthetic gene cluster is significantly more autonomous and organized than that of the recently characterized echinocandin B gene cluster. Disruption mutants of GLNRPS4 and GLPKS4 no longer produced the pneumocandins (A0 and B0), and the Deltaglnrps4 and Deltaglpks4 mutants lost antifungal activity against the human pathogenic fungus Candida albicans. In addition to pneumocandins, the G. lozoyensis genome encodes a rich repertoire of natural product-encoding genes including 24 PKSs, six NRPSs, five PKS-NRPS hybrids, two dimethylallyl tryptophan synthases, and 14 terpene synthases.

Conclusions

Characterization of the gene cluster provides a blueprint for engineering new pneumocandin derivatives with improved pharmacological properties. Whole genome estimation of the secondary metabolite-encoding genes from G. lozoyensis provides yet another example of the huge potential for drug discovery from natural products from the fungal kingdom.

 
more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Tomato transcriptome and mutant analyses suggest a role for plant stress hormones in the interaction between fruit and Botrytis cinerea | Frontiers in Plant Cell Biology

Tomato transcriptome and mutant analyses suggest a role for plant stress hormones in the interaction between fruit and Botrytis cinerea | Frontiers in Plant Cell Biology | Plant Genomics | Scoop.it
Fruit-pathogen interactions are a valuable biological system to study the role of plant development in the transition from resistance to susceptibility.
Biswapriya Biswavas Misra's insight:

Fruit–pathogen interactions are a valuable biological system to study the role of plant development in the transition from resistance to susceptibility. In general, unripe fruit are resistant to pathogen infection but become increasingly more susceptible as they ripen. During ripening, fruit undergo significant physiological and biochemical changes that are coordinated by complex regulatory and hormonal signaling networks. The interplay between multiple plant stress hormones in the interaction between plant vegetative tissues and microbial pathogens has been documented extensively, but the relevance of these hormones during infections of fruit is unclear. In this work, we analyzed a transcriptome study of tomato fruit infected with Botrytis cinerea in order to profile the expression of genes for the biosynthesis, modification and signal transduction of ethylene (ET), salicylic acid (SA), jasmonic acid (JA), and abscisic acid (ABA), hormones that may be not only involved in ripening, but also in fruit interactions with pathogens. The changes in relative expression of key genes during infection and assays of susceptibility of fruit with impaired synthesis or perception of these hormones were used to formulate hypotheses regarding the involvement of these regulators in the outcome of the tomato fruit–B. cinerea interaction.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis

Biswapriya Biswavas Misra's insight:
The gaseous plant hormone ethylene regulates a multitude of growth and developmental processes. How the numerous growth control pathways are coordinated by the ethylene transcriptional response remains elusive. We characterized the dynamic ethylene transcriptional response by identifying targets of the master regulator of the ethylene signaling pathway, ETHYLENE INSENSITIVE3 (EIN3), using chromatin immunoprecipitation sequencing and transcript sequencing during a timecourse of ethylene treatment. Ethylene-induced transcription occurs in temporal waves regulated by EIN3, suggesting distinct layers of transcriptional control. EIN3 binding was found to modulate a multitude of downstream transcriptional cascades, including a major feedback regulatory circuitry of the ethylene signaling pathway, as well as integrating numerous connections between most of the hormone mediated growth response pathways. These findings provide direct evidence linking each of the major plant growth and development networks in novel ways. - See more at: http://elife.elifesciences.org/content/2/e00675#sthash.I8JTZch1.dpufThe gaseous plant hormone ethylene regulates a multitude of growth and developmental processes. How the numerous growth control pathways are coordinated by the ethylene transcriptional response remains elusive. We characterized the dynamic ethylene transcriptional response by identifying targets of the master regulator of the ethylene signaling pathway, ETHYLENE INSENSITIVE3 (EIN3), using chromatin immunoprecipitation sequencing and transcript sequencing during a timecourse of ethylene treatment. Ethylene-induced transcription occurs in temporal waves regulated by EIN3, suggesting distinct layers of transcriptional control. EIN3 binding was found to modulate a multitude of downstream transcriptional cascades, including a major feedback regulatory circuitry of the ethylene signaling pathway, as well as integrating numerous connections between most of the hormone mediated growth response pathways. These findings provide direct evidence linking each of the major plant growth and development networks in novel ways. - See more at: http://elife.elifesciences.org/content/2/e00675#sthash.I8JTZch1.dpufThe gaseous plant hormone ethylene regulates a multitude of growth and developmental processes. How the numerous growth control pathways are coordinated by the ethylene transcriptional response remains elusive. We characterized the dynamic ethylene transcriptional response by identifying targets of the master regulator of the ethylene signaling pathway, ETHYLENE INSENSITIVE3 (EIN3), using chromatin immunoprecipitation sequencing and transcript sequencing during a timecourse of ethylene treatment. Ethylene-induced transcription occurs in temporal waves regulated by EIN3, suggesting distinct layers of transcriptional control. EIN3 binding was found to modulate a multitude of downstream transcriptional cascades, including a major feedback regulatory circuitry of the ethylene signaling pathway, as well as integrating numerous connections between most of the hormone mediated growth response pathways. These findings provide direct evidence linking each of the major plant growth and development networks in novel ways. - See more at: http://elife.elifesciences.org/content/2/e00675#sthash.I8JTZch1.dpuf
more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

The genome and transcriptome of the pine saprophyte Ophiostoma piceae, and a comparison with the bark beetle-associated pine pathogen Grosmannia clavigera

Ophiostoma piceae is a wood-staining fungus that grows in the sapwood of conifer logs and lumber. We sequenced its genome and analyzed its transcriptomes under a range of growth conditions.
Biswapriya Biswavas Misra's insight:
Abstract (provisional)Background

Ophiostoma piceae is a wood-staining fungus that grows in the sapwood of conifer logs and lumber. We sequenced its genome and analyzed its transcriptomes under a range of growth conditions. A comparison with the genome and transcriptomes of the mountain pine beetle-associated pathogen Grosmannia clavigera highlights differences between a pathogen that colonizes and kills living pine trees and a saprophyte that colonizes wood and the inner bark of dead trees.

Results

We assembled a 33 Mbp genome in 45 scaffolds, and predicted approximately 8,884 genes. The genome size and gene content were similar to those of other ascomycetes. Despite having similar ecological niches, O. piceae and G. clavigera showed no large-scale synteny. We identified O. piceae genes involved in the biosynthesis of melanin, which causes wood discoloration and reduces the commercial value of wood products. We also identified genes and pathways involved in growth on simple carbon sources and in sapwood, O. piceae's natural substrate. Like the pathogen, the saprophyte is able to tolerate terpenes, which are a major class of pine tree defense compounds; unlike the pathogen, it cannot utilize monoterpenes as a carbon source.

Conclusions

This work makes available the second annotated genome of a softwood ophiostomatoid fungus, and suggests that O. piceae's tolerance to terpenes may be due in part to these chemicals being removed from the cells by an ABC transporter that is highly induced by terpenes. The data generated will provide the research community with resources for work on host-vector-fungus interactions for wood-inhabiting, beetle-associated saprophytes and pathogens.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Quantitative trait loci in hop (Humulus lupulus L.) reveal complex genetic architecture underlying variation in sex, yield and cone chemistry

Hop (Humulus lupulus L.) is cultivated for its cones, the secondary metabolites of which contribute bitterness, flavour and aroma to beer.
Biswapriya Biswavas Misra's insight:

Abstract (provisional)Background

Hop (Humulus lupulus L.) is cultivated for its cones, the secondary metabolites of which contribute bitterness, flavour and aroma to beer. Molecular breeding methods, such as marker assisted selection (MAS), have great potential for improving the efficiency of hop breeding. The success of MAS is reliant on the identification of reliable marker-trait associations. This study used quantitative trait loci (QTL) analysis to identify marker-trait associations for hop, focusing on traits related to expediting plant sex identification, increasing yield capacity and improving bittering, flavour and aroma chemistry.

Results

QTL analysis was performed on two new linkage maps incorporating transferable Diversity Arrays Technology (DArT) markers. Sixty-three QTL were identified, influencing 36 of the 50 traits examined. A putative sex-linked marker was validated in a different pedigree, confirming the potential of this marker as a screening tool in hop breeding programs. An ontogenetically stable QTL was identified for the yield trait dry cone weight; and a QTL was identified for essential oil content, which verified the genetic basis for variation in secondary metabolite accumulation in hop cones. A total of 60 QTL were identified for 33 secondary metabolite traits. Of these, 51 were pleiotropic/linked, affecting a substantial number of secondary metabolites; nine were specific to individual secondary metabolites.

Conclusions

Pleiotropy and linkage, found for the first time to influence multiple hop secondary metabolites, have important implications for molecular selection methods. The selection of particular secondary metabolite profiles using pleiotropic/linked QTL will be challenging because of the difficulty of selecting for specific traits without adversely changing others. QTL specific to individual secondary metabolites, however, offer unequalled value to selection programs. In addition to their potential for selection, the QTL identified in this study advance our understanding of the genetic control of traits of current economic and breeding significance in hop and demonstrate the complex genetic architecture underlying variation in these traits. The linkage information obtained in this study, based on transferable markers, can be used to facilitate the validation of QTL, crucial to the success of MAS.

 

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

The Norway spruce genome sequence and conifer genome evolution : Nature : Nature Publishing Group

The Norway spruce genome sequence and conifer genome evolution : Nature : Nature Publishing Group | Plant Genomics | Scoop.it
Biswapriya Biswavas Misra's insight:

Conifers have dominated forests for more than 200 million years and are of huge ecological and economic importance. Here we present the draft assembly of the 20-gigabase genome of Norway spruce (Picea abies), the first available for any gymnosperm. The number of well-supported genes (28,354) is similar to the >100 times smaller genome of Arabidopsis thaliana, and there is no evidence of a recent whole-genome duplication in the gymnosperm lineage. Instead, the large genome size seems to result from the slow and steady accumulation of a diverse set of long-terminal repeat transposable elements, possibly owing to the lack of an efficient elimination mechanism. Comparative sequencing of Pinus sylvestris, Abies sibirica, Juniperus communis, Taxus baccata and Gnetum gnemon reveals that the transposable element diversity is shared among extant conifers. Expression of 24-nucleotide small RNAs, previously implicated in transposable element silencing, is tissue-specific and much lower than in other plants. We further identify numerous long (>10,000 base pairs) introns, gene-like fragments, uncharacterized long non-coding RNAs and short RNAs. This opens up new genomic avenues for conifer forestry and breeding.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Comparative Genomic and Transcriptomic Analysis of Tandemly and Segmentally Duplicated Genes in Rice

Comparative Genomic and Transcriptomic Analysis of Tandemly and Segmentally Duplicated Genes in Rice | Plant Genomics | Scoop.it
PLOS ONE: an inclusive, peer-reviewed, open-access resource from the PUBLIC LIBRARY OF SCIENCE. Reports of well-performed scientific studies from all disciplines freely available to the whole world.
Biswapriya Biswavas Misra's insight:
Abstract

Tandem and segmental duplications significantly contribute to gene family expansion and genome evolution. Genome-wide identification of tandem and segmental genes has been analyzed before in several plant genomes. However, comparative studies in functional bias, expression divergence and their roles in species domestication are still lacking. We have carried out a genome-wide identification and comparative analysis of tandem and segmental genes in the rice genome. A total of 3,646 and 3,633 pairs of tandem and segmental genes, respectively, were identified in the genome. They made up around 30% of total annotated rice genes (excluding transposon-coding genes). Both tandem and segmental duplicates showed different physical locations and exhibited a biased subset of functions. These two types of duplicated genes were also under different functional constrains as shown by nonsynonymous substitutions per site (Ka) and synonymous substitutions per site (Ks) analysis. They are also differently regulated depending on the tissues and abiotic and biotic stresses based on transcriptomics data. The expression divergence might be related to promoter differentiation and DNA methylation status after tandem or segmental duplications. Both tandem and segmental duplications differ in their contribution to genetic novelty but evidence suggests that they play their role in species domestication and genome evolution.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Mining genes involved in the stratification of Paris Polyphylla seeds using high-throughput embryo Transcriptome sequencing

Paris polyphylla var. yunnanensis is an important medicinal plant. Seed dormancy is one of the main factors restricting artificial cultivation.
Biswapriya Biswavas Misra's insight:
Abstract (provisional)Background

Paris polyphylla var. yunnanensis is an important medicinal plant. Seed dormancy is one of the main factors restricting artificial cultivation. The molecular mechanisms of seed dormancy remain unclear, and little genomic or transcriptome data are available for this plant.

Results

In this study, massive parallel pyrosequencing on the Roche 454-GS FLX Titanium platform was used to generate a substantial sequence dataset for the P. polyphylla embryo. 369,496 high quality reads were obtained, ranging from 50 to 1146 bp, with a mean of 219 bp. These reads were assembled into 47,768 unigenes, which included 16,069 contigs and 31,699 singletons. Using BLASTX searches of public databases, 15,757 (32.3%) unique transcripts were identified. Gene Ontology and Cluster of Orthologous Groups of proteins annotations revealed that these transcripts were broadly representative of the P. polyphylla embryo transcriptome. The Kyoto Encyclopedia of Genes and Genomes assigned 5961 of the unique sequences to specific metabolic pathways. Relative expression levels analysis showed that eleven phytohormone-related genes and five other genes have different expression patterns in the embryo and endosperm in the seed stratification process.

Conclusions

Gene annotation and quantitative RT-PCR expression analysis identified 464 transcripts that may be involved in phytohormone catabolism and biosynthesis, hormone signal, seed dormancy, seed maturation, cell wall growth and circadian rhythms. In particular, the relative expression analysis of sixteen genes (CYP707A, NCED, GA20ox2, GA20ox3, ABI2, PP2C, ARP3, ARP7, IAAH, IAAS, BRRK, DRM, ELF1, ELF2, SFR6, and SUS) in embryo and endosperm and at two temperatures indicated that these related genes may be candidates for clarifying the molecular basis of seed dormancy in P. polyphlla var. yunnanensis.

 
more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Tomato breeding in the genomics era: insights from a SNP array

The major bottle neck in genetic and linkage studies in tomato has been the lack of a sufficient number of molecular markers. This has radically changed with the application of next generation sequencing and high throughput genotyping.
Biswapriya Biswavas Misra's insight:
Abstract (provisional)Background

The major bottle neck in genetic and linkage studies in tomato has been the lack of a sufficient number of molecular markers. This has radically changed with the application of next generation sequencing and high throughput genotyping. A set of 6000 SNPs was identified and 5528 of them were used to evaluate tomato germplasm at the level of species, varieties and segregating populations.

Results

From the 5528 SNPs, 1980 originated from 454-sequencing, 3495 from Illumina Solexa sequencing and 53 were additional known markers. Genotyping different tomato samples allowed the evaluation of the level of heterozygosity and introgressions among commercial varieties. Cherry tomatoes were especially different from round/beefs in chromosomes 4, 5 and 12. We were able to identify a set of 750 unique markers distinguishing S. lycopersicum 'Moneymaker' from all its distantly related wild relatives. Clustering and neighbour joining analysis among varieties and species showed expected grouping patterns, with S. pimpinellifolium as the most closely related to commercial tomatoesearlier results.

Conclusions

Our results show that a SNP search in only a few breeding lines already provides generally applicable markers in tomato and its wild relatives. It also shows that the Illumina bead array generated data are highly reproducible. Our SNPs can roughly be divided in two categories: SNPs of which both forms are present in the wild relatives and in domesticated tomatoes (originating from common ancestors) and SNPs unique for the domesticated tomato (originating from after the domestication event). The SNPs can be used for genotyping, identification of varieties, comparison of genetic and physical linkage maps and to confirm (phylogenetic) relations. In the SNPs used for the array there is hardly any overlap with the SolCAP array and it is strongly recommended to combine both SNP sets and to select a core collection of robust SNPs completely covering the entire tomato genome.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Autotoxicity mechanism of Oryza sativa: transcriptome response in rice roots exposed to ferulic acid

Autotoxicity plays an important role in regulating crop yield and quality.
Biswapriya Biswavas Misra's insight:
Abstract (provisional)Background

Autotoxicity plays an important role in regulating crop yield and quality. To help characterize the autotoxicity mechanism of rice, we performed a large-scale, transcriptomic analysis of the rice root response to ferulic acid, an autotoxin from rice straw.

Results

Root growth rate was decreased and reactive oxygen species, calcium content and lipoxygenase activity were increased with increasing ferulic acid concentration in roots. Transcriptome analysis revealed more transcripts responsive to short ferulic-acid exposure (1- and 3-h treatments, 1,204 genes) than long exposure (24 h, 176 genes). Induced genes were involved in cell wall formation, chemical detoxification, secondary metabolism, signal transduction, and abiotic stress response. Genes associated with signaling and biosynthesis for ethylene and jasmonic acid were upregulated with ferulic acid. Ferulic acid upregulated ATP-binding cassette and amino acid/auxin permease transporters as well as genes encoding signaling components such as leucine-rich repeat VIII and receptor-like cytoplasmic kinases VII protein kinases, APETALA2/ethylene response factor, WRKY, MYB and Zinc-finger protein expressed in inflorescence meristem transcription factors.

Conclusions

The results of a transcriptome analysis suggest the molecular mechanisms of plants in response to FA, including toxicity, detoxicification and signaling machinery. FA may have a significant effect on inhibiting rice root elongation through modulating ET and JA hormone homeostasis. FA-induced gene expression of AAAP transporters may contribute to detoxicification of the autotoxin. Moreover, the WRKY and Myb TFs and LRR-VIII and SD-2b kinases might regulate downstream genes under FA stress but not general allelochemical stress. This comprehensive description of gene expression information could greatly facilitate our understanding of the mechanisms of autotoxicity in plants.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Genomic and expression analysis of the flax (Linum usitatissimum) family of glycosyl hydrolase 35 genes

Several beta-galactosidases of the Glycosyl Hydrolase 35 (GH35) family have been characterized, and many of these modify cell wall components, including pectins, xyloglucans, and arabinogalactan proteins.
Biswapriya Biswavas Misra's insight:
Abstract (provisional)Background

Several beta-galactosidases of the Glycosyl Hydrolase 35 (GH35) family have been characterized, and many of these modify cell wall components, including pectins, xyloglucans, and arabinogalactan proteins. The phloem fibres of flax (Linum usitatissimum) have gelatinous-type cell walls that are rich in crystalline cellulose and depend on beta-galactosidase activity for their normal development. In this study, we investigate the transcript expression patterns and inferred evolutionary relationships of the complete set of flax GH35 genes, to better understand the functions of these genes in flax and other species.

Results

Using the recently published flax genome assembly, we identified 43 beta-galactosidase-like (BGAL) genes, based on the presence of a GH35 domain. Phylogenetic analyses of their protein sequences clustered them into eight sub-families. Sub-family B, whose members in other species were known to be expressed in developing flowers and pollen, was greatly under represented in flax (p-value < 0.01). Sub-family A5, whose sole member from arabidopsis has been described as its primary xyloglucan BGAL, was greatly expanded in flax (p-value < 0.01). A number of flax BGALs were also observed to contain non-consensus GH35 active sites. Expression patterns of the flax BGALs were investigated using qRT-PCR and publicly available microarray data. All predicted flax BGALs showed evidence of expression in at least one tissue.

Conclusion

Flax has a large number of BGAL genes, which display a distinct distribution among the BGAL sub-families, in comparison to other closely related species with available whole genome assemblies. Almost every flax BGAL was expressed in fibres, the majority of which expressed predominately in fibres as compared to other tissues, suggesting an important role for the expansion of this gene family in the development of this species as a fibre crop. Variations displayed in the canonical GH35 active site suggest a variety of roles unique to flax, which will require further characterization.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Genome-scale transcriptional analyses of first-generation interspecific sunflower hybrids reveals broad regulatory compatibility

Interspecific hybridization creates individuals harboring diverged genomes. The interaction of these genomes can generate successful evolutionary novelty or disadvantageous genomic conflict. Annual sunflowers Helianthus annuus and H.
Biswapriya Biswavas Misra's insight:
Abstract (provisional)Background

Interspecific hybridization creates individuals harboring diverged genomes. The interaction of these genomes can generate successful evolutionary novelty or disadvantageous genomic conflict. Annual sunflowers Helianthus annuus and H. petiolaris have a rich history of hybridization in natural populations. Although first-generation hybrids generally have low fertility, hybrid swarms that include later generation and fully fertile backcross plants have been identified, as well as at least three independently-originated stable hybrid taxa. We examine patterns of transcript accumulation in the earliest stages of hybridization of these species via analyses of transcriptome sequences from laboratory-derived F1 offspring of an inbred H. annuus cultivar and a wild H. petiolaris accession.

Results

While nearly 14% of the reference transcriptome showed significant accumulation differences between parental accessions, total F1 transcript levels showed little evidence of dominance, as midparent transcript levels were highly predictive of transcript accumulation in F1 plants. Allelic bias in F1 transcript accumulation was detected in 20% of transcripts containing sufficient polymorphism to distinguish parental alleles; however the magnitude of these biases were generally smaller than differences among parental accessions.

Conclusions

While analyses of allelic bias suggest that cis regulatory differences between H. annuus and H. petiolaris are common, their effect on transcript levels may be more subtle than trans-acting regulatory differences. Overall, these analyses found little evidence of regulatory incompatibility or dominance interactions between parental genomes within F1 hybrid individuals, although it is unclear whether this is a legacy or an enabler of introgression between species.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

[1305.4206] The rise and fall of the Phytophthora infestans lineage that triggered the Irish potato famine

Biswapriya Biswavas Misra's insight:

Phytophthora infestans, the cause of potato late blight, is infamous for having triggered the Irish Great Famine in the 1840s. Until the late 1970s, P. infestans diversity outside of its Mexican center of origin was low, and one scenario held that a single strain, US-1, had dominated the global population for 150 years; this was later challenged based on DNA analysis of historical herbarium specimens. We have compared the genomes of 11 herbarium and 15 modern strains. We conclude that the nineteenth century epidemic was caused by a unique genotype, HERB-1, that persisted for over 50 years. HERB-1 is distinct from all examined modern strains, but it is a close relative of US-1, which replaced it outside of Mexico in the twentieth century. We propose that HERB-1 and US-1 emerged from a metapopulation that was established in the early 1800s outside of the species' center of diversity.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Evolutionary, Molecular and Genetic Analyses of Tic22 Homologues in Arabidopsis thaliana Chloroplasts

Evolutionary, Molecular and Genetic Analyses of Tic22 Homologues in Arabidopsis thaliana Chloroplasts | Plant Genomics | Scoop.it
PLOS ONE: an inclusive, peer-reviewed, open-access resource from the PUBLIC LIBRARY OF SCIENCE. Reports of well-performed scientific studies from all disciplines freely available to the whole world.
Biswapriya Biswavas Misra's insight:
Abstract

The Tic22 protein was previously identified in pea as a putative component of the chloroplast protein import apparatus. It is a peripheral protein of the inner envelope membrane, residing in the intermembrane space. In Arabidopsis, there are two Tic22 homologues, termed atTic22-III and atTic22-IV, both of which are predicted to localize in chloroplasts. These two proteins defined clades that are conserved in all land plants, which appear to have evolved at a similar rates since their separation >400 million years ago, suggesting functional conservation. The atTIC22-IV gene was expressed several-fold more highly than atTIC22-III, but the genes exhibited similar expression profiles and were expressed throughout development. Knockout mutants lacking atTic22-IV were visibly normal, whereas those lacking atTic22-III exhibited moderate chlorosis. Double mutants lacking both isoforms were more strongly chlorotic, particularly during early development, but were viable and fertile. Double-mutant chloroplasts were small and under-developed relative to those in wild type, and displayed inefficient import of precursor proteins. The data indicate that the two Tic22 isoforms act redundantly in chloroplast protein import, and that their function is non-essential but nonetheless required for normal chloroplast biogenesis, particularly during early plant development.

more...
No comment yet.