Neuroscience_topics
20.5K views | +0 today
Follow
Neuroscience_topics
Neuroscience: CNS disease, pain, brain research, ion channels, synaptic transmission, channelopathies, neuronal network
Your new post is loading...
Your new post is loading...
Scooped by Julien Hering, PhD
Scoop.it!

Connectomics: Jeff Lichtman at TEDxCaltech

Jeff Lichtman is Jeremy R. Knowles Professor of Molecular and Cellular Biology at Harvard. He received an A.B. from Bowdoin (1973), and an M.D. and Ph.D. from Washington University in St. Louis (1980) where he worked for 30 years before moving to Cambridge (2004). He is a member of Harvard's newly established Center for Brain Science. Jeff's research interests revolve around the question of how mammalian brain circuits are physically altered by experiences, especially in early life. He has focused on the dramatic re-wiring of neural connections in early postnatal development. More recently his research has focused on developing new electron microscopy methods to map the entire wiring diagram of the developing and adult brain. One of the principal aims of this "connectomics" approach is to uncover the ways information is stored in neural networks. (...) 

more...
Jim Siders's curator insight, February 11, 2013 1:42 PM

Practical and engaging overview of neural connections

Emre Erdogan's curator insight, April 17, 2013 1:36 AM

Our early childhood experiences shape our brain... 

Scooped by Julien Hering, PhD
Scoop.it!

From Functional Architecture to Functional Connectomics

From Functional Architecture to Functional Connectomics | Neuroscience_topics | Scoop.it

[Review] “Receptive Fields, Binocular Interaction and Functional Architecture in the Cat's Visual Cortex” by Hubel and Wiesel (1962) reported several important discoveries: orientation columns, the distinct structures of simple and complex receptive fields, and binocular integration. But perhaps the paper's greatest influence came from the concept of functional architecture (the complex relationship between in vivo physiology and the spatial arrangement of neurons) and several models of functionally specific connectivity. They thus identified two distinct concepts, topographic specificity and functional specificity, which together with cell-type specificity constitute the major determinants of nonrandom cortical connectivity. Orientation columns are iconic examples of topographic specificity, whereby axons within a column connect with cells of a single orientation preference. Hubel and Wiesel also saw the need for functional specificity at a finer scale in their model of thalamic inputs to simple cells, verified in the 1990s. The difficult but potentially more important question of functional specificity between cortical neurons is only now becoming tractable with new experimental techniques. - by Reid RC, Neuron 75(2), 26 July 2012, Pages 209–217 

more...
No comment yet.