Plant-microbe interactions
706 views | +0 today
Follow
 
Scooped by Sridhar Ranganathan
onto Plant-microbe interactions
Scoop.it!

BMC Genomics | Abstract | Dynamics in the resistant and susceptible peanut (Arachis hypogaea L.) root transcriptome on infection with the Ralstonia solanacearum

BMC Genomics | Abstract | Dynamics in the resistant and susceptible peanut (Arachis hypogaea L.) root transcriptome on infection with the Ralstonia solanacearum | Plant-microbe interactions | Scoop.it
Background

Bacterial wilt caused by Ralstonia solanacearum is a serious soil-borne disease of peanut (Arachis hypogaea L). The molecular basis of peanut response to R. solanacearum remains unknown. To understand the resistance mechanism behind peanut resistance to R. solanacearum, we used RNA-Seq to perform global transcriptome profiling on the roots of peanut resistant (R) and susceptible (S) genotypes under R. solanacearum infection.
Results

A total of 4.95 x 108 raw sequence reads were generated and subsequently assembled into 271, 790 unigenes with an average length of 890 bp and a N50 of 1, 665 bp. 179, 641 unigenes could be annotated by public protein databases. The pairwise transcriptome comparsions of time course (6, 12, 24, 48 and 72 h post inoculation) were conducted 1) between inoculated and control samples of each genotype, 2) between inoculated samples of R and S genotypes. The linear dynamics of transcriptome profile was observed between adjacent samples for each genotype, two genotypes shared similar transcriptome pattern at early time points with most significant up regulation at 12 hour, and samples from R genotype at 24 h and S genotype at 48 h showed similar transcriptome pattern, significant differences of transcriptional profile were observed in pairwise comparisons between R and S genotypes. KEGG analysis showed that the primary metabolisms were inhibited in both genotypes and stronger inhibition in R genotype post inoculation. The defense related genes (R gene, LRR-RLK,cell wall genes, etc.) generally showed a genotype-specific down regulation and different expression between both genotypes.
Conclusion

This transcriptome profiling provided the largest data set that explores the dynamic in crosstalk between peanut and R. solanacearum. The results suggested that the down-regulation of primary metabolism is contributed to the resistance difference between R and S genotypes. The genotype-specific expression pattern of defense related DEGs also contributed to the resistance difference between R and S genotype. This study will strongly contribute to better understand the molecular interaction between plant and R. solanacearum.
more...
No comment yet.
Your new post is loading...
Your new post is loading...
Scooped by Sridhar Ranganathan
Scoop.it!

The Wheat Disease Threatening Asia's Food Supply

The Wheat Disease Threatening Asia's Food Supply | Plant-microbe interactions | Scoop.it
Farmers are struggling to control a deadly fungus that jumped two oceans and now has U.S. scientists on guard.
Sridhar Ranganathan's insight:
Share your insight
more...
No comment yet.
Scooped by Sridhar Ranganathan
Scoop.it!

A knowledge-based molecular screen uncovers a broad-spectrum OsSWEET14 resistance allele to bacterial blight from wild rice - The Plant Journal -

Transcription activator-like (TAL) effectors are type III-delivered transcription factors that enhance the virulence of plant pathogenic Xanthomonas species through the activation of host susceptibility (S) genes. TAL effectors recognize their DNA target(s) via a partially degenerate code, whereby modular repeats in the TAL effector bind to nucleotide sequences in the host promoter. Although this knowledge has greatly facilitated our power to identify new S genes, it can also be easily used to screen plant genomes for variations in TAL effector target sequences and to predict for loss-of-function gene candidates in silico. In a proof-of-principle experiment, we screened a germplasm of 169 rice accessions for polymorphism in the promoter of the major bacterial blight susceptibility S gene OsSWEET14, which encodes a sugar transporter targeted by numerous strains of Xanthomonas oryzae pv. oryzae. We identified a single allele with a deletion of 18 bp overlapping with the binding sites targeted by several TAL effectors known to activate the gene. We show that this allele, which we call xa41(t), confers resistance against half of the tested Xoo strains, representative of various geographic origins and genetic lineages, highlighting the selective pressure on the pathogen to accommodate OsSWEET14 polymorphism, and reciprocally the apparent limited possibilities for the host to create variability at this particular S gene. Analysis of xa41(t) conservation across the Oryza genus enabled us to hypothesize scenarios as to its evolutionary history, prior to and during domestication. Our findings demonstrate that resistance through TAL effector-dependent loss of S-gene expression can be greatly fostered upon knowledge-based molecular screening of a large collection of host plants.
more...
No comment yet.
Rescooped by Sridhar Ranganathan from Plant-Microbe Symbiosis
Scoop.it!

The plant microbiome explored: implications for experimental botany

The plant microbiome explored: implications for experimental botany | Plant-microbe interactions | Scoop.it
The importance of microbial root inhabitants for plant growth and health was recognized as early as 100 years ago. Recent insights reveal a close symbiotic relationship between plants and their associated microorganisms, and high structural and functional diversity within plant microbiomes. Plants provide microbial communities with specific habitats, which can be broadly categorized as the rhizosphere, phyllosphere, and endosphere. Plant-associated microbes interact with their host in essential functional contexts. They can stimulate germination and growth, help plants fend off disease, promote stress resistance, and influence plant fitness. Therefore, plants have to be considered as metaorganisms within which the associated microbes usually outnumber the cells belonging to the plant host. The structure of the plant microbiome is determined by biotic and abiotic factors but follows ecological rules. Metaorganisms are co-evolved species assemblages. The metabolism and morphology of plants and their microbiota are intensively connected with each other, and the interplay of both maintains the functioning and fitness of the holobiont. Our study of the current literature shows that analysis of plant microbiome data has brought about a paradigm shift in our understanding of the diverse structure and functioning of the plant microbiome with respect to the following: (i) the high interplay of bacteria, archaea, fungi, and protists; (ii) the high specificity even at cultivar level; (iii) the vertical transmission of core microbiomes; (iv) the extraordinary function of endophytes; and (v) several unexpected functions and metabolic interactions. The plant microbiome should be recognized as an additional factor in experimental botany and breeding strategies.

Via Jean-Michel Ané
more...
No comment yet.
Rescooped by Sridhar Ranganathan from Plants and Microbes
Scoop.it!

PNAS: Host target modification as a strategy to counter pathogen hijacking of the jasmonate hormone receptor (2015)

PNAS: Host target modification as a strategy to counter pathogen hijacking of the jasmonate hormone receptor (2015) | Plant-microbe interactions | Scoop.it

In the past decade, characterization of the host targets of pathogen virulence factors took a center stage in the study of pathogenesis and disease susceptibility in plants and humans. However, the impressive knowledge of host targets has not been broadly exploited to inhibit pathogen infection. Here, we show that host target modification could be a promising new approach to “protect” the disease-vulnerable components of plants. In particular, recent studies have identified the plant hormone jasmonate (JA) receptor as one of the common targets of virulence factors from highly evolved biotrophic/hemibiotrophic pathogens. Strains of the bacterial pathogen Pseudomonas syringae, for example, produce proteinaceous effectors, as well as a JA-mimicking toxin, coronatine (COR), to activate JA signaling as a mechanism to promote disease susceptibility. Guided by the crystal structure of the JA receptor and evolutionary clues, we succeeded in modifying the JA receptor to allow for sufficient endogenous JA signaling but greatly reduced sensitivity to COR. Transgenic Arabidopsisexpressing this modified receptor not only are fertile and maintain a high level of insect defense, but also gain the ability to resist COR-producing pathogens Pseudomonas syringae pv. tomato and P. syringae pv. maculicola. Our results provide a proof-of-concept demonstration that host target modification can be a promising new approach to prevent the virulence action of highly evolved pathogens.


Via Kamoun Lab @ TSL
more...
No comment yet.
Rescooped by Sridhar Ranganathan from Plants and Microbes
Scoop.it!

Nature Plants: Immunity: One receptor, many pathogens (2015)

Nature Plants: Immunity: One receptor, many pathogens (2015) | Plant-microbe interactions | Scoop.it

Most plant pattern recognition receptors induce immune responses by detecting molecular patterns typical to one group of microbes. A newly identified complex, on the other hand, monitors effector proteins widely distributed among bacteria, fungi and oomycetes, casting a new light on the evolution of pattern recognition in plants.

 

See also Albert et al. An RLP23–SOBIR1–BAK1 complex mediates NLP-triggered immunity. Nature Plants http://www.nature.com/articles/nplants2015140


Via Kamoun Lab @ TSL
more...
No comment yet.
Rescooped by Sridhar Ranganathan from MycorWeb Plant-Microbe Interactions
Scoop.it!

Microbial effectors target multiple steps in the salicylic acid production and signaling pathway

Microbial effectors target multiple steps in the salicylic acid production and signaling pathway | Plant-microbe interactions | Scoop.it
Microbes attempting to colonize plants are recognized through the plant immune surveillance system. This leads to a complex array of global as well as specific defense responses, which are often associated with plant cell death and subsequent arrest of the invader. The responses also entail complex changes in phytohormone signaling pathways. Among these, salicylic acid (SA) signaling is an important pathway because of its ability to trigger plant cell death. As biotrophic and hemibiotrophic pathogens need to invade living plant tissue to cause disease, they have evolved efficient strategies to downregulate SA signaling by virulence effectors, which can be proteins or secondary metabolites. Here we review the strategies prokaryotic pathogens have developed to target SA biosynthesis and signaling, and contrast this with recent insights into how plant pathogenic eukaryotic fungi and oomycetes accomplish the same goal.

Via Francis Martin
more...
No comment yet.
Rescooped by Sridhar Ranganathan from MycorWeb Plant-Microbe Interactions
Scoop.it!

Host Genotype Shapes the Foliar Fungal Microbiome of Balsam Poplar ( Populus balsamifera )

Host Genotype Shapes the Foliar Fungal Microbiome of Balsam Poplar ( Populus balsamifera ) | Plant-microbe interactions | Scoop.it
Foliar fungal communities of plants are diverse and ubiquitous. In grasses endophytes may increase host fitness; in trees, their ecological roles are poorly understood. We investigated whether the genotype of the host tree influences community structure of foliar fungi. We sampled leaves from genotyped balsam poplars from across the species' range, and applied 454 amplicon sequencing to characterize foliar fungal communities. At the time of the sampling the poplars had been growing in a common garden for two years. We found diverse fungal communities associated with the poplar leaves. Linear discriminant analysis and generalized linear models showed that host genotypes had a structuring effect on the composition of foliar fungal communities. The observed patterns may be explained by a filtering mechanism which allows the trees to selectively recruit fungal strains from the environment. Alternatively, host genotype-specific fungal communities may be present in the tree systemically, and persist in the host even after two clonal reproductions. Both scenarios are consistent with host tree adaptation to specific foliar fungal communities and suggest that there is a functional basis for the strong biotic interaction.

Via Francis Martin
more...
No comment yet.
Rescooped by Sridhar Ranganathan from MycorWeb Plant-Microbe Interactions
Scoop.it!

Harnessing phytomicrobiome signaling for rhizosphere microbiome engineering

Harnessing phytomicrobiome signaling for rhizosphere microbiome engineering | Plant-microbe interactions | Scoop.it
The goal of microbiome engineering is to manipulate the microbiome toward a certain type of community that will optimize plant functions of interest. For instance, in crop production the goal is to reduce disease susceptibility, increase nutrient availability increase abiotic stress tolerance and increase crop yields. Various approaches can be devised to engineer the plant–microbiome, but one particularly promising approach is to take advantage of naturally evolved plant–microbiome communication channels. This is, however, very challenging as the understanding of the plant–microbiome communication is still mostly rudimentary and plant–microbiome interactions varies between crops species (and even cultivars), between individual members of the microbiome and with environmental conditions. In each individual case, many aspects of the plant–microorganisms relationship should be thoroughly scrutinized. In this article we summarize some of the existing plant–microbiome engineering studies and point out potential avenues for further research.

Via Jean-Michel Ané, Francis Martin
more...
No comment yet.
Rescooped by Sridhar Ranganathan from Plant pathogenic fungi
Scoop.it!

Chloroplasts play a central role in plant defence and are targeted by pathogen effectors

Chloroplasts play a central role in plant defence and are targeted by pathogen effectors | Plant-microbe interactions | Scoop.it

Microbe associated molecular pattern (MAMP) receptors in plants recognize MAMPs and activate basal defences; however a complete understanding of the molecular and physiological mechanisms conferring immunity remains elusive. Pathogens suppress active defence in plants through the combined action of effector proteins. Here we show that the chloroplast is a key component of early immune responses. MAMP perception triggers the rapid, large-scale suppression of nuclear encoded chloroplast-targeted genes (NECGs). Virulent Pseudomonas syringae effectors reprogramme NECG expression in Arabidopsis, target the chloroplast and inhibit photosynthetic CO2assimilation through disruption of photosystem II. This activity prevents a chloroplastic reactive oxygen burst. These physiological changes precede bacterial multiplication and coincide with pathogen-induced abscisic acid (ABA) accumulation. MAMP pretreatment protects chloroplasts from effector manipulation, whereas application of ABA or the inhibitor of photosynthetic electron transport, DCMU, abolishes the MAMP-induced chloroplastic reactive oxygen burst, and enhances growth of a P. syringae hrpA mutant that fails to secrete effectors.


Via IPM Lab, Steve Marek
more...
No comment yet.
Scooped by Sridhar Ranganathan
Scoop.it!

Treasure Your Exceptions: Unusual Domains in Immune Receptors Reveal Host Virulence Targets: Cell

Treasure Your Exceptions: Unusual Domains in Immune Receptors Reveal Host Virulence Targets: Cell | Plant-microbe interactions | Scoop.it

Summary:

A mechanistic understanding of how plant pathogens modulate their hosts is critical for rationally engineered disease resistance in agricultural systems. Two new studies show that genomically paired plant immune receptors have incorporated decoy domains that structurally mimic pathogen virulence targets to monitor attempted host immunosuppression.

more...
No comment yet.
Rescooped by Sridhar Ranganathan from Microbes, plant immunity, and crop science
Scoop.it!

Front. Microbiol.: Phylogenomics of Xanthomonas field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificity (2015)

Front. Microbiol.: Phylogenomics of Xanthomonas field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificity (2015) | Plant-microbe interactions | Scoop.it

Bacterial spot disease of pepper and tomato is caused by four distinct Xanthomonas species and is a severely limiting factor on fruit yield in these crops. The genetic diversity and the type III effector repertoires of a large sampling of field strains for this disease have yet to be explored on a genomic scale, limiting our understanding of pathogen evolution in an agricultural setting. Genomes of sixty-seven Xanthomonas euvesicatoria (Xe), Xanthomonas perforans (Xp), and Xanthomonas gardneri (Xg) strains isolated from diseased pepper and tomato fields in the southeastern and midwestern United States were sequenced in order to determine the genetic diversity in field strains. Type III effector repertoires were computationally predicted for each strain, and multiple methods of constructing phylogenies were employed to understand better the genetic relationship of strains in the collection. A division in the Xp population was detected based on core genome phylogeny, supporting a model whereby the host-range expansion of Xp field strains on pepper is due, in part, to a loss of the effector AvrBsT. Xp-host compatibility was further studied with the observation that a double deletion mutant of AvrBsT and XopQ in Xp experiences a host gain for Nicotiana benthamiana. Extensive sampling of field strains and an improved understanding of effector content will aid in efforts to design disease resistance strategies targeted against highly conserved core effectors.

 

Schwartz AR, Potnis N, Timilsina S, Wilson M, Patane J, Martins J, Minsavage GV, Dahlbeck D, Akhunova A, Almeida N, Vallad GE, Barak JD, White FF, Miller SA, Ritchie D, Goss E, Bart RS, Setubal JC, Jones JB and Staskawicz BJ

 

 


Via Nicolas Denancé
more...
No comment yet.
Rescooped by Sridhar Ranganathan from How microbes emerge
Scoop.it!

New insight into a complex plant-fungal pathogen interaction : Nature Genetics : Nature Publishing Group

New insight into a complex plant-fungal pathogen interaction : Nature Genetics : Nature Publishing Group | Plant-microbe interactions | Scoop.it
The coevolution of plants and microbes has shaped plant mechanisms that detect and repel pathogens. A newly identified plant gene confers partial resistance to a fungal pathogen not by preventing initial infection but by limiting its spread through the plant.

Via Niklaus Grunwald
more...
Eric Larson's curator insight, December 29, 2015 7:36 AM

Interesting insight.

Scooped by Sridhar Ranganathan
Scoop.it!

Phylogenomic analyses indicate that early fungi evolved digesting cell walls of algal ancestors of land plants

As decomposers, fungi are key players in recycling plant material in global carbon cycles. We hypothesized that genomes of early diverging fungi may have inherited pectinases from an ancestral species that had been able to extract nutrients from pectin-containing land plants and their algal allies (Streptophytes). We aimed to infer, based on pectinase gene expansions and on the organismal phylogeny, the geological timing of the plant-fungus association. We analyzed 40 fungal genomes, three of which, including Gonapodya prolifera, were sequenced for this study. In the organismal phylogeny from 136 housekeeping loci, Rozella diverged first from all other fungi. Gonapodya prolifera was included among the flagellated, predominantly aquatic fungal species in Chytridiomycota. Sister to the Chytridiomycota were the predominantly terrestrial fungi including zygomycota I and II, along with the ascomycetes and basidiomycetes that comprise Dikarya. The Gonapodya genome has 27 genes representing five of the seven classes of pectin-specific enzymes known from fungi. Most of these share a common ancestry with pectinases from Dikarya. Indicating functional as well as sequence similarity,Gonapodya, like many Dikarya, can use pectin as a carbon source for growth in pure culture. Shared pectinases of Dikarya and Gonapodyaprovide evidence that even ancient aquatic fungi had adapted to extract nutrients from the plants in the green lineage. This implies that 750 million years, the estimated maximum age of origin of the pectin-containing streptophytes represents a maximum age for the divergence of Chytridiomycota from the lineage including Dikarya.

more...
No comment yet.
Rescooped by Sridhar Ranganathan from Plant-microbe interaction
Scoop.it!

Acetylation of an NB-LRR Plant Immune-Effector Complex Suppresses Immunity: Cell Reports

Acetylation of an NB-LRR Plant Immune-Effector Complex Suppresses Immunity: Cell Reports | Plant-microbe interactions | Scoop.it
Highlights


•HopZ3 targets the RPM1 immune complex and effectors that activate this complex
•HopZ3 acetylates Ser, Thr, Lys, as well as His
•HopZ3 acetylates residues important for multiple facets of plant immune signaling
•Bacterial effector-effector interactions are implicated in the outcome of infection


Summary


Modifications of plant immune complexes by secreted pathogen effectors can trigger strong immune responses mediated by the action of nucleotide binding-leucine-rich repeat immune receptors. Although some strains of the pathogen Pseudomonas syringae harbor effectors that individually can trigger immunity, the plant’s response may be suppressed by other virulence factors. This work reveals a robust strategy for immune suppression mediated by HopZ3, an effector in the YopJ family of acetyltransferases. The suppressing HopZ3 effector binds to and can acetylate multiple members of the RPM1 immune complex, as well as two P. syringae effectors that together activate the RPM1 complex. These acetylations modify serine, threonine, lysine, and/or histidine residues in the targets. Through HopZ3-mediated acetylation, it is possible that the whole effector-immune complex is inactivated, leading to increased growth of the pathogen.


Via Suayib Üstün
more...
No comment yet.
Rescooped by Sridhar Ranganathan from SEED DEV LAB Biblio
Scoop.it!

Structure of a eukaryotic SWEET transporter in a homotrimeric complex : Nature : Nature Publishing Group

Eukaryotes rely on efficient distribution of energy and carbon skeletons between organs in the form of sugars. Glucose in animals and sucrose in plants serve as the dominant distribution forms. Cellular sugar uptake and release require vesicular and/or plasma membrane transport proteins. Humans and plants use proteins from three superfamilies for sugar translocation: the major facilitator superfamily (MFS), the sodium solute symporter family (SSF; only in the animal kingdom), and SWEETs. SWEETs carry mono- and disaccharides across vacuolar or plasma membranes. Plant SWEETs play key roles in sugar translocation between compartments, cells, and organs, notably in nectar secretion, phloem loading for long distance translocation, pollen nutrition, and seed filling. Plant SWEETs cause pathogen susceptibility possibly by sugar leakage from infected cells. The vacuolar Arabidopsis thaliana AtSWEET2 sequesters sugars in root vacuoles; loss-of-function mutants show increased susceptibility to Pythium infection. Here we show that its orthologue, the vacuolar glucose transporter OsSWEET2b from rice (Oryza sativa), consists of an asymmetrical pair of triple-helix bundles, connected by an inversion linker transmembrane helix (TM4) to create the translocation pathway. Structural and biochemical analyses show OsSWEET2b in an apparent inward (cytosolic) open state forming homomeric trimers. TM4 tightly interacts with the first triple-helix bundle within a protomer and mediates key contacts among protomers. Structure-guided mutagenesis of the close paralogue SWEET1 from Arabidopsis identified key residues in substrate translocation and protomer crosstalk. Insights into the structure-function relationship of SWEETs are valuable for understanding the transport mechanism of eukaryotic SWEETs and may be useful for engineering sugar flux.

Via Loïc Lepiniec
more...
No comment yet.
Rescooped by Sridhar Ranganathan from Fungal|Oomycete Biology
Scoop.it!

The two-speed genomes of filamentous pathogens: waltz with plants

The two-speed genomes of filamentous pathogens: waltz with plants | Plant-microbe interactions | Scoop.it

Fungi and oomycetes include deep and diverse lineages of eukaryotic plant pathogens. The last 10 years have seen the sequencing of the genomes of a multitude of species of these so-called filamentous plant pathogens. Already, fundamental concepts have emerged. Filamentous plant pathogen genomes tend to harbor large repertoires of genes encoding virulence effectors that modulate host plant processes. Effector genes are not randomly distributed across the genomes but tend to be associated with compartments enriched in repetitive sequences and transposable elements. These findings have led to the ‘two-speed genome’ model in which filamentous pathogen genomes have a bipartite architecture with gene sparse, repeat rich compartments serving as a cradle for adaptive evolution. Here, we review this concept and discuss how plant pathogens are great model systems to study evolutionary adaptations at multiple time scales. We will also introduce the next phase of research on this topic.


Via Alejandro Rojas
more...
Steve Marek's comment, January 20, 2016 5:52 PM
Interesting!
Scooped by Sridhar Ranganathan
Scoop.it!

A cotton Raf-like MAP3K gene, GhMAP3K40, mediates reduced tolerance to biotic and abiotic stress in Nicotiana benthamiana by negatively regulating growth and development

A cotton Raf-like MAP3K gene, GhMAP3K40, mediates reduced tolerance to biotic and abiotic stress in Nicotiana benthamiana by negatively regulating growth and development | Plant-microbe interactions | Scoop.it
Mitogen-activated protein kinase (MAPK) cascades mediate various responses in plants. As the top component, MAP3Ks deserve more attention; however, little is known about the role of MAP3Ks, especially in cotton, a worldwide economic crop. In this study, a gene encoding a putative Raf-like MAP3K, GhMAP3K40, was isolated. GhMAP3K40 expression was induced by stress and multiple signal molecules. The plants overexpressing GhMAP3K40 had an enhanced tolerance to drought and salt stress at the germination stage. However, at the seedling stage, the transgenic plants suffered more severe damage after drought, exposure to pathogens and oxidative stress. The defence-related genes and the antioxidant system were activated in transgenic palnts, suggesting that GhMAP3K40 positively regulate the defence response. The transgenic plants were less able to prevent pathogenic invasion, which was due to defects in the cell structure of the leaves. The root system of the control plants were stronger compared with the transgenic plants. These results indicated a negative role of GhMAP3K40 in growth and development and GhMAP3K40 possibly caused the defects by down-regulating the lignin biosynthesis. Overall, these results suggest that GhMAP3K40 may positively regulate defence response but cause reduced tolerance to biotic and abiotic stress by negatively regulating growth and development.
more...
No comment yet.
Rescooped by Sridhar Ranganathan from microbial pathogenesis and plant immunity
Scoop.it!

Nature: A new cyanogenic metabolite in Arabidopsis required for inducible pathogen defence

Nature: A new cyanogenic metabolite in Arabidopsis required for inducible pathogen defence | Plant-microbe interactions | Scoop.it

Thousands of putative biosynthetic genes in Arabidopsis thaliana have no known function, which suggests that there are numerous molecules contributing to plant fitness that have not yet been discovered1, 2. Prime among these uncharacterized genes are cytochromes P450 upregulated in response to pathogens3, 4. Here we start with a single pathogen-induced P450 (ref. 5), CYP82C2, and use a combination of untargeted metabolomics and coexpression analysis to uncover the complete biosynthetic pathway to 4-hydroxyindole-3-carbonyl nitrile (4-OH-ICN), a previously unknown Arabidopsis metabolite. This metabolite harbours cyanogenic functionality that is unprecedented in plants and exceedingly rare in nature6, 7; furthermore, the aryl cyanohydrin intermediate in the 4-OH-ICN pathway reveals a latent capacity for cyanogenic glucoside biosynthesis8, 9 in Arabidopsis. By expressing 4-OH-ICN biosynthetic enzymes in Saccharomyces cerevisiae and Nicotiana benthamiana, we reconstitute the complete pathway in vitro and in vivo and validate the functions of its enzymes. Arabidopsis 4-OH-ICN pathway mutants show increased susceptibility to the bacterial pathogen Pseudomonas syringae, consistent with a role in inducible pathogen defence. Arabidopsis has been the pre-eminent model system10, 11 for studying the role of small molecules in plant innate immunity12; our results uncover a new branch of indole metabolism distinct from the canonical camalexin pathway, and support a role for this pathway in the Arabidopsis defence response13. These results establish a more complete framework for understanding how the model plant Arabidopsis uses small molecules in pathogen defence.


Via Jim Alfano
more...
No comment yet.
Rescooped by Sridhar Ranganathan from Plants and Microbes
Scoop.it!

News: How plant sensors detect pathogens (2015)

News: How plant sensors detect pathogens (2015) | Plant-microbe interactions | Scoop.it

In the mid-20th century, an American scientist named Harold Henry Flor helped explain how certain varieties of plants can fight off some plant killers (pathogens), but not others, with a model called the “gene-for-gene” hypothesis. Seventy years later, an international team of scientists describes precisely how a plant senses a pathogen, bringing an unprecedented level of detail to Flor’s model.

 

“We know that plants have sensors to detect pathogens but we knew little about how they work,” says Professor Banfield from the John Innes Centre (UK).

 

In a study published in eLife, the team led by Professor Mark Banfield, in collaboration with the Iwate Biotechnology Research Centre (Japan) and The Sainsbury Laboratory (UK), investigated how one sensor protein from rice called Pik binds AVR-Pik, a protein from the rice blast pathogen. This fungus causes the most devastating disease of rice crops. Using X-ray crystallography facilities at Diamond Light Source in Oxfordshire, the team succeeded in imaging the contact points between the plant and pathogen proteins at the molecular level – the first time this has been done for a pair of plant and pathogen proteins that follow the gene-for-gene model.

 

Dr Abbas Maqbool from the JIC, first author of the study added, “Harold Flor predicted that plant sensors discriminate between different pathogen types, but at the time he had no knowledge of the molecules involved. It is remarkable that his ideas have now crystallized into detailed molecular models.”

 

Dr Maqbool, Professor Banfield and colleagues went on to discover that the strength at which the Pik sensor binds the pathogen AVR-Pik protein correlates with the strength of the plant’s response. This opens up new avenues for engineering better plant responses against pathogens by building sensors with increased strength of binding to pathogen proteins, and therefore conferring enhanced resistance to disease.

 

“Once we understand how these plant sensors detect invading pathogens, we can devise strategies to ‘boost’ the plant immune system and help protect rice and other important food crops from disease,” says Professor Banfield.

 

Maqbool et al. eLife http://elifesciences.org/content/4/e08709


Via Kamoun Lab @ TSL
more...
FOOD SERVICES NO.1 TESTING/CERTIFICATION/INSPEC/ GIREESAN's curator insight, September 22, 2015 9:19 AM

Harold Flor predicted that plant sensors discriminate between different pathogen types, but at the time he had no knowledge of the molecules involved. It is remarkable that his ideas have now crystallized into detailed molecular models.”

Rescooped by Sridhar Ranganathan from Publications from The Sainsbury Laboratory
Scoop.it!

Annual Review of Phytopathology: A Moving View: Subcellular Trafficking Processes in Pattern Recognition Receptor–Triggered Plant Immunity (2015)

Annual Review of Phytopathology: A Moving View: Subcellular Trafficking Processes in Pattern Recognition Receptor–Triggered Plant Immunity (2015) | Plant-microbe interactions | Scoop.it

Via The Sainsbury Lab
Sridhar Ranganathan's insight:

A significant challenge for plants is to induce localized defense responses at sites of pathogen attack. Therefore, host subcellular trafficking processes enable accumulation and exchange of defense compounds, which contributes to the plant on-site defenses in response to pathogen perception. This review summarizes our current understanding of the transport processes that facilitate immunity, the significance of which is highlighted by pathogens reprogramming membrane trafficking through host cell translocated effectors. Prominent immune-related cargos of plant trafficking pathways are the pattern recognition receptors (PRRs), which must be present at the plasma membrane to sense microbes in the apoplast. We focus on the dynamic localization of the FLS2 receptor and discuss the pathways that regulate receptor transport within the cell and their link to FLS2-mediated immunity. One emerging theme is that ligand-induced late endocytic trafficking is conserved across different PRR protein families as well as across different plant species.

more...
The Sainsbury Lab's curator insight, August 7, 2015 4:36 AM

A significant challenge for plants is to induce localized defense responses at sites of pathogen attack. Therefore, host subcellular trafficking processes enable accumulation and exchange of defense compounds, which contributes to the plant on-site defenses in response to pathogen perception. This review summarizes our current understanding of the transport processes that facilitate immunity, the significance of which is highlighted by pathogens reprogramming membrane trafficking through host cell translocated effectors. Prominent immune-related cargos of plant trafficking pathways are the pattern recognition receptors (PRRs), which must be present at the plasma membrane to sense microbes in the apoplast. We focus on the dynamic localization of the FLS2 receptor and discuss the pathways that regulate receptor transport within the cell and their link to FLS2-mediated immunity. One emerging theme is that ligand-induced late endocytic trafficking is conserved across different PRR protein families as well as across different plant species.

Rescooped by Sridhar Ranganathan from Plant-microbe interaction
Scoop.it!

Spatial and temporal regulation of biosynthesis of the plant immune signal salicylic acid

Spatial and temporal regulation of biosynthesis of the plant immune signal salicylic acid | Plant-microbe interactions | Scoop.it
The plant hormone salicylic acid (SA) is essential for local defense and systemic acquired resistance (SAR). When plants, such as Arabidopsis, are challenged by different pathogens, an increase in SA biosynthesis generally occurs through transcriptional induction of the key synthetic enzyme isochorismate synthase 1 (ICS1). However, the regulatory mechanism for this induction is poorly understood. Using a yeast one-hybrid screen, we identified two transcription factors (TFs), NTM1-LIKE 9 (NTL9) and CCA1 HIKING EXPEDITION (CHE), as activators of ICS1 during specific immune responses. NTL9 is essential for inducing ICS1 and two other SA synthesis-related genes, PHYTOALEXIN-DEFICIENT 4 (PAD4) and ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), in guard cells that form stomata. Stomata can quickly close upon challenge to block pathogen entry. This stomatal immunity requires ICS1 and the SA signaling pathway. In the ntl9 mutant, this response is defective and can be rescued by exogenous application of SA, indicating that NTL9-mediated SA synthesis is essential for stomatal immunity. CHE, the second identified TF, is a central circadian clock oscillator and is required not only for the daily oscillation in SA levels but also for the pathogen-induced SA synthesis in systemic tissues during SAR. CHE may also regulate ICS1 through the known transcription activators CALMODULIN BINDING PROTEIN 60g (CBP60g) and SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD1) because induction of these TF genes is compromised in the che-2 mutant. Our study shows that SA biosynthesis is regulated by multiple TFs in a spatial and temporal manner and therefore fills a gap in the signal transduction pathway between pathogen recognition and SA production.

Via Suayib Üstün
more...
No comment yet.
Rescooped by Sridhar Ranganathan from Plant-microbe interaction
Scoop.it!

Capping protein integrates multiple MAMP signalling pathways to modulate actin dynamics during plant innate immunity : Nature Communications : Nature Publishing Group

Capping protein integrates multiple MAMP signalling pathways to modulate actin dynamics during plant innate immunity : Nature Communications : Nature Publishing Group | Plant-microbe interactions | Scoop.it
Plants and animals perceive diverse microbe-associated molecular patterns (MAMPs) via pattern recognition receptors and activate innate immune signalling. The actin cytoskeleton has been suggested as a target for innate immune signalling and a key transducer of cellular responses. However, the molecular mechanisms underlying actin remodelling and the precise functions of these rearrangements during innate immunity remain largely unknown. Here we demonstrate rapid actin remodelling in response to several distinct MAMP signalling pathways in plant epidermal cells. The regulation of actin dynamics is a convergence point for basal defence machinery, such as cell wall fortification and transcriptional reprogramming. Our quantitative analyses of actin dynamics and genetic studies reveal that MAMP-stimulated actin remodelling is due to the inhibition of capping protein (CP) by the signalling lipid, phosphatidic acid. In addition, CP promotes resistance against bacterial and fungal phytopathogens. These findings demonstrate that CP is a central target for the plant innate immune response.

Via Suayib Üstün
more...
No comment yet.
Scooped by Sridhar Ranganathan
Scoop.it!

A Plant Immune Receptor Detects Pathogen Effectors that Target WRKY Transcription Factors: Cell

A Plant Immune Receptor Detects Pathogen Effectors that Target WRKY Transcription Factors: Cell | Plant-microbe interactions | Scoop.it

Summary:

Defense against pathogens in multicellular eukaryotes depends on intracellular immune receptors, yet surveillance by these receptors is poorly understood. Several plant nucleotide-binding, leucine-rich repeat (NB-LRR) immune receptors carry fusions with other protein domains. The Arabidopsis RRS1-R NB-LRR protein carries a C-terminal WRKY DNA binding domain and forms a receptor complex with RPS4, another NB-LRR protein. This complex detects the bacterial effectors AvrRps4 or PopP2 and then activates defense. Both bacterial proteins interact with the RRS1 WRKY domain, and PopP2 acetylates lysines to block DNA binding. PopP2 and AvrRps4 interact with other WRKY domain-containing proteins, suggesting these effectors interfere with WRKY transcription factor-dependent defense, and RPS4/RRS1 has integrated a “decoy” domain that enables detection of effectors that target WRKY proteins. We propose that NB-LRR receptor pairs, one member of which carries an additional protein domain, enable perception of pathogen effectors whose function is to target that domain.

more...
No comment yet.
Rescooped by Sridhar Ranganathan from Microbes, plant immunity, and crop science
Scoop.it!

Front. Microbiol.: Phylogenomics of Xanthomonas field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificity (2015)

Front. Microbiol.: Phylogenomics of Xanthomonas field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificity (2015) | Plant-microbe interactions | Scoop.it

Bacterial spot disease of pepper and tomato is caused by four distinct Xanthomonas species and is a severely limiting factor on fruit yield in these crops. The genetic diversity and the type III effector repertoires of a large sampling of field strains for this disease have yet to be explored on a genomic scale, limiting our understanding of pathogen evolution in an agricultural setting. Genomes of sixty-seven Xanthomonas euvesicatoria (Xe), Xanthomonas perforans (Xp), and Xanthomonas gardneri (Xg) strains isolated from diseased pepper and tomato fields in the southeastern and midwestern United States were sequenced in order to determine the genetic diversity in field strains. Type III effector repertoires were computationally predicted for each strain, and multiple methods of constructing phylogenies were employed to understand better the genetic relationship of strains in the collection. A division in the Xp population was detected based on core genome phylogeny, supporting a model whereby the host-range expansion of Xp field strains on pepper is due, in part, to a loss of the effector AvrBsT. Xp-host compatibility was further studied with the observation that a double deletion mutant of AvrBsT and XopQ in Xp experiences a host gain for Nicotiana benthamiana. Extensive sampling of field strains and an improved understanding of effector content will aid in efforts to design disease resistance strategies targeted against highly conserved core effectors.

 

Schwartz AR, Potnis N, Timilsina S, Wilson M, Patane J, Martins J, Minsavage GV, Dahlbeck D, Akhunova A, Almeida N, Vallad GE, Barak JD, White FF, Miller SA, Ritchie D, Goss E, Bart RS, Setubal JC, Jones JB and Staskawicz BJ

 

 


Via Nicolas Denancé
more...
No comment yet.
Rescooped by Sridhar Ranganathan from Computational biology
Scoop.it!

New insight into a complex plant-fungal pathogen interaction : Nature Genetics

New insight into a complex plant-fungal pathogen interaction : Nature Genetics | Plant-microbe interactions | Scoop.it
The coevolution of plants and microbes has shaped plant mechanisms that detect and repel pathogens. A newly identified plant gene confers partial resistance to a fungal pathogen not by preventing initial infection but by limiting its spread through the plant.

Via Francis Martin, Asela Wijeratne
more...
No comment yet.