Mycorrhizal thought feed
21 views | +0 today
Follow
Your new post is loading...
Your new post is loading...
Rescooped by Rohan Riley from MycorWeb Plant-Microbe Interactions
Scoop.it!

Topology of tree-mycorrhizal fungus interaction networks in xeric and mesic Douglas-fir forests

Topology of tree-mycorrhizal fungus interaction networks in xeric and mesic Douglas-fir forests | Mycorrhizal thought feed | Scoop.it

1.From the phytocentric perspective, a mycorrhizal network (MN) is formed when the roots of two or more plants are colonized by the same fungal genet. MNs can be modelled as interaction networks with plants as nodes and fungal genets as links. The potential effects of MNs on facilitation or competition between plants are increasingly recognized, but their network topologies remain largely unknown. This information is needed to understand the ecological significance of MN functional traits.

2.The objectives of this study were to describe the interaction network topologies of MNs formed between two ectomycorrhizal fungal species, Rhizopogon vesiculosus and R. vinicolor, and interior Douglas-fir trees at the forest stand scale, identify factors leading to this structure and to contrast MN structures between forest plots with xeric versus mesic soil moisture regimes.

3.Tuberculate mycorrhizas were sampled in six 10 x 10 m plots with either xeric or mesic soil moisture regimes. Microsatellite DNA markers were used to identify tree and fungal genotypes isolated from mycorrhizas and for comparison with reference tree boles above-ground.

4.In all six plots, trees and fungal genets were highly interconnected. Size asymmetries between different tree cohorts led to non-random MN topologies, while differences in size and connectivity between Rhizopogon species-specific sub-network components contributed towards MN nestedness. Large mature trees acted as network hubs with a significantly higher node degree compared to smaller trees. MNs representing trees linked by R. vinicolor genets were mostly nested within larger, more highly connected R. vesiculosus-linked MNs.

5.Attributes of network nodes showed that hub trees were more important to MN topology on xeric than mesic sites, but the emergent structures of MNs were similar in the two soil moisture regimes.

6.Synthesis: This study suggests MNs formed between interior Douglas-fir trees and R. vesiculosus and R. vinicolor genets are resilient to the random loss of participants, and to soil water stress, but may be susceptible to the loss of large trees or fungal genets. Our results regarding the topology of MNs contribute to the understanding of forest stand dynamics and the resilience of forests to stress or disturbance.


Via Francis Martin
more...
No comment yet.
Scooped by Rohan Riley
Scoop.it!

BMC Systems Biology | Full text | Latent phenotypes pervade gene regulatory circuits

Latent phenotypes are non-adaptive byproducts of adaptive phenotypes. They exist in biological systems as different as promiscuous enzymes and genome-scale metabolic reaction networks, and can give rise to evolutionary adaptations and innovations. We know little about their prevalence in the gene expression phenotypes of regulatory circuits, important sources of evolutionary innovations.
more...
No comment yet.
Rescooped by Rohan Riley from MycorWeb Plant-Microbe Interactions
Scoop.it!

Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics

Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics | Mycorrhizal thought feed | Scoop.it
Symbioses represent a frequent and successful lifestyle on earth and lichens are one of their classic examples. Recently, bacterial communities were identified as stable, specific and structurally integrated partners of the lichen symbiosis, but their role has remained largely elusive in comparison to the well-known functions of the fungal and algal partners. We have explored the metabolic potentials of the microbiome using the lung lichen Lobaria pulmonaria as the model. Metagenomic and proteomic data were comparatively assessed and visualized by Voronoi treemaps. The study was complemented with molecular, microscopic and physiological assays. We have found that more than 800 bacterial species have the ability to contribute multiple aspects to the symbiotic system, including essential functions such as (i) nutrient supply, especially nitrogen, phosphorous and sulfur, (ii) resistance against biotic stress factors (that is, pathogen defense), (iii) resistance against abiotic factors, (iv) support of photosynthesis by provision of vitamin B12, (v) fungal and algal growth support by provision of hormones, (vi) detoxification of metabolites, and (vii) degradation of older parts of the lichen thallus. Our findings showed the potential of lichen-associated bacteria to interact with the fungal as well as algal partner to support health, growth and fitness of their hosts. We developed a model of the symbiosis depicting the functional multi-player network of the participants, and argue that the strategy of functional diversification in lichens supports the longevity and persistence of lichens under extreme and changing ecological conditions.

Via Jean-Michel Ané, Francis Martin
more...
No comment yet.