Extracellular ATP and plant root development
19 views | +0 today
Follow
Your new post is loading...
Your new post is loading...
Rescooped by Sung-Hwan Cho from Plant-Microbe Symbiosis
Scoop.it!

Corn that acquires its own nitrogen identified, reducing need for fertilizer

Corn that acquires its own nitrogen identified, reducing need for fertilizer | Extracellular ATP and plant root development | Scoop.it
A public-private collaboration of researchers at the University of Wisconsin–Madison, the University of California, Davis, and Mars Inc., have identified varieties of tropical corn from Oaxaca, Mexico, that can acquire a significant amount of the nitrogen they need from the air by cooperating with bacteria.

To do so, the corn secretes copious globs of mucus-like gel out of arrays of aerial roots along its stalk. This gel harbors bacteria that convert atmospheric nitrogen into a form usable by the plant, a process called nitrogen fixation. The corn can acquire 30 to 80 percent of its nitrogen in this way, but the effectiveness depends on environmental factors like humidity and rain.

Scientists have long sought corn that could fix nitrogen, with the goal of reducing the crop’s high demand for artificial fertilizers, which are energy intensive, expensive and polluting. Further research is required to determine if the trait can be bred into commercial cultivars of corn, the world’s most productive cereal crop.

The findings are reported Aug. 7 in the journal PLOS Biology.

Via Jean-Michel Ané
more...
No comment yet.
Rescooped by Sung-Hwan Cho from Publications from The Sainsbury Laboratory
Scoop.it!

New Phytologist: Arabidopsis EF-Tu receptor enhances bacterial disease resistance in transgenic wheat (2015)

New Phytologist: Arabidopsis EF-Tu receptor enhances bacterial disease resistance in transgenic wheat (2015) | Extracellular ATP and plant root development | Scoop.it

Via The Sainsbury Lab
more...
The Sainsbury Lab's curator insight, March 12, 2015 5:48 AM
Perception of pathogen (or microbe)-associated molecular patterns (PAMPs/MAMPs) by pattern recognition receptors (PRRs) is a key component of plant innate immunity. The Arabidopsis PRR EF-Tu receptor (EFR) recognizes the bacterial PAMP elongation factor Tu (EF-Tu) and its derived peptide elf18. Previous work revealed that transgenic expression of AtEFR in Solanaceae confers elf18 responsiveness and broad-spectrum bacterial disease resistance.In this study, we developed a set of bioassays to study the activation of PAMP-triggered immunity (PTI) in wheat. We generated transgenic wheat (Triticum aestivum) plants expressing AtEFR driven by the constitutive rice actin promoter and tested their response to elf18.We show that transgenic expression of AtEFR in wheat confers recognition of elf18, as measured by the induction of immune marker genes and callose deposition. When challenged with the cereal bacterial pathogen Pseudomonas syringae pv. oryzae, transgenic EFR wheat lines had reduced lesion size and bacterial multiplication.These results demonstrate that AtEFR can be transferred successfully from dicot to monocot species, further revealing that immune signalling pathways are conserved across these distant phyla. As novel PRRs are identified, their transfer between plant families represents a useful strategy for enhancing resistance to pathogens in crops.
Rescooped by Sung-Hwan Cho from Intracellular pathogenic bacteria
Scoop.it!

Pseudomonas syringae pv. tomato DC3000: A Model Pathogen for Probing Disease Susceptibility and Hormone Signaling in Plants

Pseudomonas syringae pv. tomato DC3000: A Model Pathogen for Probing Disease Susceptibility and Hormone Signaling in Plants | Extracellular ATP and plant root development | Scoop.it

Scooped from: Annual Review of Phytopathology, 2013
Authors: Xiu-Fang Xin and Sheng Yang He

Summary: Since the early 1980s, various strains of the gram-negative bacterial pathogen Pseudomonas syringae have been used as models for understanding plant-bacterial interactions. In 1991, a P. syringae pathovar tomato (Pst) strain, DC3000, was reported to infect not only its natural host tomato but also Arabidopsis in the laboratory, a finding that spurred intensive efforts in the subsequent two decades to characterize the molecular mechanisms by which this strain causes disease in plants. Genomic analysis shows that Pst DC3000 carries a large repertoire of potential virulence factors, including proteinaceous effectors that are secreted through the type III secretion system and a polyketide phytotoxin called coronatine, which structurally mimics the plant hormone jasmonate ( JA). Study of Pst DC3000 pathogenesis has not only provided several conceptual advances in understanding how a bacterial pathogen employs type III effectors to suppress plant immune responses and promote disease susceptibility but has also facilitated the discovery of the immune function of stomata and key components of JA signaling in plants. The concepts derived from the study of Pst DC3000 pathogenesis may prove useful in understanding pathogenesis mechanisms of other plant pathogens.


Via Nicolas Denancé, Damien Meyer
more...
Damien Meyer's curator insight, June 19, 2013 3:25 PM

remarkable review

Rescooped by Sung-Hwan Cho from Plant-Microbe Symbiosis
Scoop.it!

Can We Grow One of the World’s Largest Food Crops Without Fertilizer?


Via Jean-Michel Ané
more...
Jean-Michel Ané's curator insight, August 12, 11:57 AM

Mars Inc. made a movie about our PLoS Biology paper. 

Rescooped by Sung-Hwan Cho from Plant-Microbe Interaction
Scoop.it!

Why start from scratch when you can recycle and adapt?

Why start from scratch when you can recycle and adapt? | Extracellular ATP and plant root development | Scoop.it

Leaf development is such a fascinating topic, because it reveals the molecular processes the are involved in pattern formation. Interestingly, several genes and small molecules (e.g., auxin) are used repeatedly during the initiation and elaboration of leaves. A pair of papers out in Plant Cell highlights this thrifty genetic strategy.
In the first, we see how the development of the ligule in a maize leaf involves the redeployment of several genes that are involved in leaf initiation, a process that occurs much earlier in the developmental pathway.


Transcriptomic Analyses Indicate That Maize Ligule Development Recapitulates Gene Expression Patterns That Occur during Lateral Organ Initiation (www.plantcell.org/…/early/2014/12/16/tpc.114.132688.abstract).
In the second, we see the KNOX1 / GA module that is so important in leaf developmental patterning also contributes to the environtmental responsiveness of leaf shape (heterophylly), as found in aquatic plants such as Rorippa aquatica.
Regulation of the KNOX-GA Gene Module Induces Heterophyllic Alteration in North American Lake Cress (http://www.plantcell.org/…/20…/12/16/tpc.114.130229.abstract).
These studies also reinforce our understanding of process of evolution; why start from scratch when you can just tweak something that aleady works in another context?

 


Via Mary Williams, Guogen Yang
more...
No comment yet.