Plant-microbe interaction
47.3K views | +4 today
Follow
Plant-microbe interaction
Current research on plant immunity, effector proteins, the proteasome, autophagy and other inspiring articles
Curated by Suayib Üstün
Your new post is loading...
Your new post is loading...
Scooped by Suayib Üstün
Scoop.it!

Bacteria exploit autophagy for proteasome degradation and enhanced virulence in plants

Bacteria exploit autophagy for proteasome degradation and enhanced virulence in plants | Plant-microbe interaction | Scoop.it
Autophagy and the ubiquitin-proteasome system (UPS) are two major protein degradation pathways implicated in the response to microbial infections in eukaryotes. In animals, the contribution of autophagy and the UPS to anti-bacterial immunity is well documented and several bacteria have evolved measures to target and exploit these systems to the benefit of infection. In plants, the UPS has been established as a hub for immune responses and is targeted by bacteria to enhance virulence. However, the role of autophagy during plant-bacterial interactions is less understood. Here, we have identified both pro- and anti-bacterial functions of autophagy mechanisms upon infection of Arabidopsis with virulent Pseudomonas syringae pv. tomato DC3000 (Pst). We show that Pst activates autophagy in a type-III effector (T3E)-dependent manner, and stimulates the autophagic removal of proteasomes (proteaphagy) to support bacterial proliferation. We further identify the T3E Hrp outer protein M1 (HopM1) as a principle mediator of autophagy-inducing activities during infection. In contrast to the pro-bacterial effects of Pst-induced proteaphagy, NEIGHBOR OF BRCA1 (NBR1)-dependent selective autophagy counteracts disease progression and limits the formation of HopM1-mediated water-soaked lesions. Together, we demonstrate that distinct autophagy pathways contribute to host immunity and bacterial pathogenesis during Pst infection, and provide evidence for an intimate crosstalk between proteasome and autophagy in plant-bacterial interactions.
more...
No comment yet.
Scooped by Suayib Üstün
Scoop.it!

NRG1 functions downstream of EDS1 to regulate TIR-NLR-mediated plant immunity in Nicotiana benthamiana

NRG1 functions downstream of EDS1 to regulate TIR-NLR-mediated plant immunity in Nicotiana benthamiana | Plant-microbe interaction | Scoop.it

Effector-triggered immunity (ETI) in plants involves a large family of nucleotide-binding leucine-rich repeat (NLR) immune receptors, including Toll/IL-1 receptor-NLRs (TNLs) and coiled-coil NLRs (CNLs). Although various NLR immune receptors are known, a mechanistic understanding of NLR function in ETI remains unclear. The TNL Recognition of XopQ 1 (Roq1) recognizes the effectors XopQ and HopQ1 from Xanthomonas and Pseudomonas , respectively, which activates resistance to Xanthomonas euvesicatoria and Xanthomonas gardneri in an Enhanced Disease Susceptibility 1 (EDS1)-dependent way in Nicotiana benthamiana . In this study, we found that the N. benthamiana N requirement gene 1 (NRG1), a CNL protein required for the tobacco TNL protein N-mediated resistance to tobacco mosaic virus, is also essential for immune signaling [including hypersensitive response (HR)] triggered by the TNLs Roq1 and Recognition of Peronospora parasitica 1 (RPP1), but not by the CNLs Bs2 and Rps2, suggesting that NRG1 may be a conserved key component in TNL signaling pathways. Besides EDS1, Roq1 and NRG1 are necessary for resistance to Xanthomonas and Pseudomonas in N. benthamiana . NRG1 functions downstream of Roq1 and EDS1 and physically associates with EDS1 in mediating XopQ-Roq1–triggered immunity. Moreover, RNA sequencing analysis showed that XopQ-triggered gene-expression profile changes in N. benthamiana were almost entirely mediated by Roq1 and EDS1 and were largely regulated by NRG1. Overall, our study demonstrates that NRG1 is a key component that acts downstream of EDS1 to mediate various TNL signaling pathways, including Roq1 and RPP1-mediated HR, resistance to Xanthomonas and Pseudomonas , and XopQ-regulated transcriptional changes in N. benthamiana .

more...
No comment yet.
Scooped by Suayib Üstün
Scoop.it!

An autophagy assay reveals the ESCRT-III component CHMP2A as a regulator of phagophore closure

An autophagy assay reveals the ESCRT-III component CHMP2A as a regulator of phagophore closure | Plant-microbe interaction | Scoop.it

The mechanism of phagophore closure remains unclear due to technical limitations in distinguishing unclosed and closed autophagosomal membranes. Here, we report the HaloTag-LC3 autophagosome completion assay that specifically detects phagophores, nascent autophagosomes, and mature autophagic structures. Using this assay, we identify the endosomal sorting complexes required for transport (ESCRT)-III component CHMP2A as a critical regulator of phagophore closure. During autophagy, CHMP2A translocates to the phagophore and regulates the separation of the inner and outer autophagosomal membranes to form double-membrane autophagosomes. Consistently, inhibition of the AAA-ATPase VPS4 activity impairs autophagosome completion. The ESCRT-mediated membrane abscission appears to be a critical step in forming functional autolysosomes by preventing mislocalization of lysosome-associated membrane glycoprotein 1 to the inner autophagosomal membrane. Collectively, our work reveals a function for the ESCRT machinery in the final step of autophagosome formation and provides a useful tool for quantitative analysis of autophagosome biogenesis and maturation.

more...
No comment yet.
Rescooped by Suayib Üstün from Plants and Microbes
Scoop.it!

eLife: Host autophagy machinery is diverted to the pathogen interface to mediate focal defense responses against the Irish potato famine pathogen (2018)

eLife: Host autophagy machinery is diverted to the pathogen interface to mediate focal defense responses against the Irish potato famine pathogen (2018) | Plant-microbe interaction | Scoop.it

During plant cell invasion, the oomycete Phytophthora infestans remains enveloped by host-derived membranes whose functional properties are poorly understood. P. infestans secretes a myriad of effector proteins through these interfaces for plant colonization. Recently we showed that the effector protein PexRD54 reprograms host-selective autophagy by antagonising antimicrobial-autophagy receptor Joka2/NBR1 for ATG8CL binding (Dagdas, 2016). Here, we show that during infection, ATG8CL/Joka2 labelled defense-related autophagosomes are diverted toward the perimicrobial host membrane to restrict pathogen growth. PexRD54 also localizes to autophagosomes across the perimicrobial membrane, consistent with the view that the pathogen remodels host-microbe interface by co-opting the host autophagy machinery. Furthermore, we show that the host-pathogen interface is a hotspot for autophagosome biogenesis. Notably, overexpression of the early autophagosome biogenesis protein ATG9 enhances plant immunity. Our results implicate selective autophagy in polarized immune responses of plants and point to more complex functions for autophagy than the widely known degradative roles.


Via Kamoun Lab @ TSL
more...
No comment yet.
Scooped by Suayib Üstün
Scoop.it!

Salicylic acid-independent role of NPR1 is required for protection from proteotoxic stress in the plant endoplasmic reticulum

Salicylic acid-independent role of NPR1 is required for protection from proteotoxic stress in the plant endoplasmic reticulum | Plant-microbe interaction | Scoop.it

The unfolded protein response (UPR) is an ancient signaling pathway designed to protect cells from the accumulation of unfolded and misfolded proteins in the endoplasmic reticulum (ER). Because misregulation of the UPR is potentially lethal, a stringent surveillance signaling system must be in place to modulate the UPR. The major signaling arms of the plant UPR have been discovered and rely on the transcriptional activity of the transcription factors bZIP60 and bZIP28 and on the kinase and ribonuclease activity of IRE1, which splices mRNA to activate bZIP60. Both bZIP28 and bZIP60 modulate UPR gene expression to overcome ER stress. In this study, we demonstrate at a genetic level that the transcriptional role of bZIP28 and bZIP60 in ER-stress responses is antagonized by nonexpressor of PR1 genes 1 (NPR1), a critical redox-regulated master regulator of salicylic acid (SA)-dependent responses to pathogens, independently of its role in SA defense. We also establish that the function of NPR1 in the UPR is concomitant with ER stress-induced reduction of the cytosol and translocation of NPR1 to the nucleus where it interacts with bZIP28 and bZIP60. Our results support a cellular role for NPR1 as well as a model for plant UPR regulation whereby SA-independent ER stress-induced redox activation of NPR1 suppresses the transcriptional role of bZIP28 and bZIP60 in the UPR.

more...
No comment yet.
Scooped by Suayib Üstün
Scoop.it!

Modular Study of the Type III Effector Repertoire in Pseudomonas syringae pv. tomato DC3000 Reveals a Matrix of Effector Interplay in Pathogenesis

Modular Study of the Type III Effector Repertoire in Pseudomonas syringae pv. tomato DC3000 Reveals a Matrix of Effector Interplay in Pathogenesis | Plant-microbe interaction | Scoop.it
The bacterial pathogen Pseudomonas syringae pv. tomato DC3000 suppresses the two-tiered innate immune system of Nicotiana benthamiana and other plants by injecting a complex repertoire of type III secretion effector (T3E) proteins. Effectorless polymutant DC3000D36E was used with a modularized system for native delivery of the 29 DC3000 T3Es singly and in pairs. Assays of the performance of this T3E library in N. benthamiana leaves revealed a matrix of T3E interplay, with six T3Es eliciting death and eight others variously suppressing the death activity of the six. The T3E library was also interrogated for effects on DC3000D36E elicitation of a reactive oxygen species burst, for growth in planta, and for T3Es that reversed these effects. Pseudomonas fluorescens and Agrobacterium tumefaciens heterologous delivery systems yielded notably different sets of death-T3Es. The DC3000D36E T3E library system highlights the importance of 13 T3Es and their interplay in interactions with N. benthamiana.
more...
No comment yet.
Scooped by Suayib Üstün
Scoop.it!

The Receptor-like Cytoplasmic Kinase BIK1 Localizes to the Nucleus and Regulates Defense Hormone Expression during Plant Innate Immunity

The Receptor-like Cytoplasmic Kinase BIK1 Localizes to the Nucleus and Regulates Defense Hormone Expression during Plant Innate Immunity | Plant-microbe interaction | Scoop.it
Plants employ cell-surface pattern recognition receptors (PRRs) to detect pathogens. Although phytohormones produced during PRR signaling play an essential role in innate immunity, a direct link between PRR activation and hormone regulation is unknown. EFR is a PRR that recognizes bacterial EF-Tu and activates immune signaling. Here we report that EFR regulates the phytohormone jasmonic acid (JA) through direct phosphorylation of a receptor-like cytoplasmic kinase, BIK1. The BIK1 structure revealed that the EFR-phosphorylated sites reside on a uniquely extended loop away from the BIK1 kinase core domain. Phosphomimetic mutations of these sites resulted in increased phytohormones and enhanced resistance to bacterial infections. In addition to its documented plasma membrane localization, BIK1 also localizes to the nucleus and interacts directly with WRKY transcription factors involved in the JA and salicylic acid (SA) regulation. These findings demonstrate the mechanistic basis of signal transduction from PRR to phytohormones, mediated through a PRR-BIK1-WRKY axis.
more...
No comment yet.
Rescooped by Suayib Üstün from microbial pathogenesis and plant immunity
Scoop.it!

The bacterial type III-secreted protein AvrRps4 is a bipartite effector

The bacterial type III-secreted protein AvrRps4 is a bipartite effector | Plant-microbe interaction | Scoop.it

Bacterial effector proteins secreted into host plant cells manipulate those cells to the benefit of the pathogen, but effector-triggered immunity (ETI) occurs when effectors are recognized by host resistance proteins. The RPS4/RRS1 pair recognizes the Pseudomonas syringae pv. pisi effector AvrRps4. AvrRps4 is processed in planta into AvrRps4N (133 amino acids), homologous to the N-termini of other effectors including the native Psyringae pv. tomato strain DC3000 effector HopK1, and AvrRps4C (88 amino acids). Previous data suggested that AvrRps4C alone is necessary and sufficient for resistance when overexpressed in heterologous systems. We show that delivering AvrRps4C from DC3000, but not from a DC3000 hopK1-strain, triggers resistance in the Arabidopsis accession Col-0. Delivering AvrRps4C in tandem with AvrRps4N, or as a chimera with HopK1N, fully complements AvrRps4-triggered immunity. AvrRps4N in the absence of AvrRps4C enhances virulence in Col-0. In addition, AvrRps4Ntriggers a hypersensitive response in lettuce that is attenuated by coexpression of AvrRps4C, further supporting the role of AvrRps4N as a bona fide effector domain. Based on these results we propose that evolutionarily, fusion of AvrRps4C to AvrRps4N may have counteracted recognition of AvrRps4N, and that the plant RPS4/RRS1 resistance gene pair was selected as a countermeasure. We conclude that AvrRps4 represents an unusual chimeric effector, with recognition in Arabidopsis by RPS4/RRS1 requiring the presence of both processed effector moieties


Via Tatsuya Nobori, Jim Alfano
more...
No comment yet.
Scooped by Suayib Üstün
Scoop.it!

CSI1, PATROL1, and exocyst complex cooperate in delivery of cellulose synthase complexes to the plasma membrane

CSI1, PATROL1, and exocyst complex cooperate in delivery of cellulose synthase complexes to the plasma membrane | Plant-microbe interaction | Scoop.it
Cellulose is synthesized at the plasma membrane by cellulose synthase complexes (CSCs). The ability to deliver CSCs to discrete sites at the cell surface is critical for cellulose synthesis. We discovered that the de novo secretion of CSCs is mediated by cooperation among a recently identified cellulose synthase interacting protein, exocyst complex, and a plant-specific protein PATROL1 in Arabidopsis thaliana . We present a timeline of events for exocytosis of CSCs. CSCs represent unique cargo proteins that are not conserved in the mammalian or yeast system. Plants offer unique opportunities to characterize the function and regulation of exocytosis that may provide insight into the evolution of exocytosis in eukaryotes.

Cellulose synthesis occurs exclusively at the plasma membrane by cellulose synthase complexes (CSCs). Therefore, delivery of CSCs to discrete sites at the plasma membrane is critical for cellulose synthesis. Despite their significance, the delivery of CSCs is poorly understood. Here we used proteomics approaches, functional genetics, and live cell imaging to show that the de novo secretion of CSCs is mediated by cooperation among cellulose synthase interactive 1 (CSI1), the plant-specific protein PATROL1, and exocyst complex in Arabidopsis thaliana . We propose that CSI1 plays a role in marking the docking site, which allows CSCs-containing vesicles access to the plasma membrane through its interaction with microtubules. PATROL1 assists in exocytosis by its interaction with multiple components, including CSI1, CSCs, and exocyst subunits. Both PATROL1 and the exocyst complex determine the rate of delivery of CSCs to the plasma membrane. By monitoring the exocyst complex, PATROL1, CSI1, and CSCs dynamics in real time, we present a timeline of events for exocytosis of CSCs. Our findings provide unique insights into the evolution of exocytosis in eukaryotes.
more...
No comment yet.
Scooped by Suayib Üstün
Scoop.it!

Arabidopsis thaliana SOBER1 (SUPPRESSOR OF AVRBST‐ELICITED RESISTANCE 1) suppresses plant immunity triggered by multiple bacterial acetyltransferase effectors - Choi - - New Phytologist - Wiley Onl...

Arabidopsis thaliana SOBER1 (SUPPRESSOR OF AVRBST‐ELICITED RESISTANCE 1) suppresses plant immunity triggered by multiple bacterial acetyltransferase effectors - Choi - - New Phytologist - Wiley Onl... | Plant-microbe interaction | Scoop.it
Plants evolved disease resistance (R) proteins that recognize corresponding pathogen effectors and activate effector‐triggered immunity (ETI). However, it is largely unknown why, in some cases, a suppressor of ETI exists in plants.
Arabidopsis SOBER1 (Suppressor of AvrBsT‐elicited Resistance 1) was identified previously as a suppressor of Xanthomonas acetyltransferase effector AvrBsT‐triggered immunity. Nevertheless, the extent to which SOBER1 suppresses ETI is unclear.
Here, we identified SOBER1 as a suppressor of Pseudomonas acetyltransferase effector HopZ5‐triggered immunity in Arabidopsis using recombinant inbred lines. Further analysis showed that SOBER1 suppresses immunity triggered by multiple bacterial acetyltransferases.
Interestingly, SOBER1 interferes with the immunity signalling activated by some but not all tested acetyltransferase effectors, indicating that SOBER1 might target components that are shared between several ETI pathways.
more...
No comment yet.
Scooped by Suayib Üstün
Scoop.it!

The Monocot-Specific Receptor-like Kinase SDS2 Controls Cell Death and Immunity in Rice

The Monocot-Specific Receptor-like Kinase SDS2 Controls Cell Death and Immunity in Rice | Plant-microbe interaction | Scoop.it
Programmed cell death (PCD) plays critical roles in plant immunity but must be regulated to prevent excessive damage. The E3 ubiquitin ligase SPL11 negatively regulates PCD and immunity in plants. We show that SPL11 cell-death suppressor 2 (SDS2), an S-domain receptor-like kinase, positively regulates PCD and immunity in rice by engaging and regulating SPL11 and related kinases controlling defense responses. An sds2 mutant shows reduced immune responses and enhanced susceptibility to the blast fungus Magnaporthe oryzae. Conversely, SDS2 over-expression induces constitutive PCD accompanied by elevated immune responses and enhanced resistance to M. oryzae. SDS2 interacts with and phosphorylates SPL11, which in turn ubiquitinates SDS2, leading to its degradation. In addition, SDS2 interacts with related receptor-like cytoplasmic kinases, OsRLCK118/176, that positively regulate immunity by phosphorylating the NADPH oxidase OsRbohB to stimulate ROS production. Thus, a plasma membrane-resident protein complex consisting of SDS2, SPL11, and OsRLCK118/176 controls PCD and immunity in rice.
more...
No comment yet.
Rescooped by Suayib Üstün from Microbiome and plant immunity
Scoop.it!

Pseudomonas syringae: what it takes to be a pathogen

Pseudomonas syringae: what it takes to be a pathogen | Plant-microbe interaction | Scoop.it

Pseudomonas syringae is one of the best-studied plant pathogens and serves as a model for understanding host–microorganism interactions, bacterial virulence mechanisms and host adaptation of pathogens as well as microbial evolution, ecology and epidemiology. Comparative genomic studies have identified key genomic features that contribute to P. syringae virulence. P. syringae has evolved two main virulence strategies: suppression of host immunity and creation of an aqueous apoplast to form its niche in the phyllosphere. In addition, external environmental conditions such as humidity profoundly influence infection. P. syringae may serve as an excellent model to understand virulence and also of how pathogenic microorganisms integrate environmental conditions and plant microbiota to become ecologically robust and diverse pathogens of the plant kingdom.


Via Tatsuya Nobori, Giannis Stringlis
more...
No comment yet.
Scooped by Suayib Üstün
Scoop.it!

Loss of alkaline ceramidase inhibits autophagy in Arabidopsis and plays an important role during environmental stress response

Loss of alkaline ceramidase inhibits autophagy in Arabidopsis and plays an important role during environmental stress response | Plant-microbe interaction | Scoop.it
Sphingolipids, a class of bioactive lipids found in cell membranes, can modulate the biophysical properties of the membranes and play a critical role in signal transduction. Sphingolipids are involved in autophagy in humans and yeast, but their role in autophagy in plants is not well understood. In this study, we reported that the AtACER, an alkaline ceramidase that hydrolyses ceramide to long-chain base (LCB), functions in autophagy process in Arabidopsis. Our empirical data showed that the loss of AtACER inhibited autophagy, and its overexpression promoted autophagy under nutrient, salinity, and oxidative stresses. Interestingly, nitrogen deprivation significantly affected the sphingolipid's profile in Arabidopsis thaliana, especially the LCBs. Furthermore, the exogenous application of LCBs also induced autophagy. Our findings revealed a novel function of AtACER, where it was found to involve in the autophagy process, thus, playing a crucial role in the maintenance of a dynamic loop between sphingolipids and autophagy for cellular homeostasis under various environmental stresses.
more...
No comment yet.
Rescooped by Suayib Üstün from Publications from The Sainsbury Laboratory
Scoop.it!

bioRxiv: N-terminal β-strand underpins biochemical specialization of an ATG8 isoform (2018)

bioRxiv: N-terminal β-strand underpins biochemical specialization of an ATG8 isoform (2018) | Plant-microbe interaction | Scoop.it
ATG8 is a highly-conserved ubiquitin-like protein that modulates autophagy pathways by binding autophagic membranes and numerous proteins, including cargo receptors and core autophagy components. Throughout plant evolution, ATG8 has expanded from a single protein in algae to multiple isoforms in higher plants. However, the degree to which ATG8 isoforms have functionally specialized to bind distinct proteins remains unclear. Here, we describe a comprehensive protein-protein interaction resource, obtained using in planta immunoprecipitation followed by mass spectrometry, to define the potato ATG8 interactome. We discovered that ATG8 isoforms bind distinct sets of plant proteins with varying degrees of overlap. This prompted us to define the biochemical basis of ATG8 specialization by comparing two potato ATG8 isoforms using both in vivo protein interaction assays and in vitro quantitative binding affinity analyses. These experiments revealed that the N-terminal β-strand -and, in particular, a single amino acid polymorphism- underpins binding specificity to the substrate PexRD54 by shaping the hydrophobic pocket that accommodates this protein′s ATG8 interacting motif. Additional proteomics experiments indicated that the N-terminal β-strand shapes the ATG8 interactor profiles, defining interaction specificity with about 80 plant proteins. Our findings are consistent with the view that ATG8 isoforms comprise a layer of specificity in the regulation of selective autophagy pathways in plants.

Via The Sainsbury Lab
more...
No comment yet.
Scooped by Suayib Üstün
Scoop.it!

A Phytophthora effector recruits a host cytoplasmic transacetylase into nuclear speckles to enhance plant susceptibility

A Phytophthora effector recruits a host cytoplasmic transacetylase into nuclear speckles to enhance plant susceptibility | Plant-microbe interaction | Scoop.it
Oomycete pathogens secrete host cell-entering effector proteins to manipulate host immunity during infection. We previously showed that PsAvh52, an early-induced RxLR effector secreted from the soybean root rot pathogen, Phytophthora sojae, could suppress plant immunity. Here, we found that PsAvh52 is required for full virulence on soybean and binds to a novel soybean transacetylase, GmTAP1, in vivo and in vitro. PsAvh52 could cause GmTAP1 to relocate into the nucleus where GmTAP1 could acetylate histones H2A and H3 during early infection, thereby promoting susceptibility to P. sojae. In the absence of PsAvh52, GmTAP1 remained confined to the cytoplasm and did not modify plant susceptibility. These results demonstrate that GmTAP1 is a susceptibility factor that is hijacked by PsAvh52 in order to promote epigenetic modifications that enhance the susceptibility of soybean to P. sojae infection.
more...
No comment yet.
Scooped by Suayib Üstün
Scoop.it!

Autophagosome Biogenesis and the Endoplasmic Reticulum: A Plant Perspective

Autophagosome Biogenesis and the Endoplasmic Reticulum: A Plant Perspective | Plant-microbe interaction | Scoop.it

Highlights
Recent studies have uncovered new cargoes for selective autophagy in plants, including organelles, ribosomes, pathogens, proteasomes, and plant-specific proteins.

Recent studies have suggested various models and mechanisms for autophagosome initiation in yeast, mammals, and plants. Advanced techniques including super-resolution imaging, electron tomography, and cryo-electron microscopy have been applied in autophagy research to reveal the mechanisms of phagophore assembly.

The ER is interconnected with autophagosome biogenesis by serving as the main membrane/lipid source of autophagosome biogenesis, by providing a cradle for the assembly of the core autophagic machinery including the ATG1/ULK1 complex, the ATG9 complex, and the PI3K complex, and by acting as a signaling platform and cargo during ER stress to maintain cellular homeostasis.

ATG9 vesicles from the Golgi–endosomal system have been recently identified as a crucial component contributing to autophagosome biogenesis in a plant-specific manner.

The autophagosome is a double-membrane compartment formed during autophagy that sequesters and delivers cargoes for their degradation or recycling into the vacuole. Analyses of the AuTophaGy-related (ATG) proteins have unveiled dynamic mechanisms for autophagosome biogenesis. Recent advances in plant autophagy research highlight a complex interplay between autophagosome biogenesis and the endoplasmic reticulum (ER): on the one hand ER serves as a membrane source for autophagosome initiation and a signaling platform for autophagy regulation; on the other hand ER turnover is connected to selective autophagy. We provide here an integrated view of ER-based autophagosome biogenesis in plants in comparison with the newest findings in yeast and mammals, with an emphasis on the hierarchy of the core ATG proteins, ATG9 trafficking, and ER-resident regulators in autophagy.

more...
No comment yet.
Scooped by Suayib Üstün
Scoop.it!

Plant–Pathogen Warfare under Changing Climate Conditions

Plant–Pathogen Warfare under Changing Climate Conditions | Plant-microbe interaction | Scoop.it
Global environmental changes caused by natural and human activities have accelerated in the past 200 years. The increase in greenhouse gases is predicted to continue to raise global temperature and change water availability in the 21st century. In this Review, we explore the profound effect the environment has on plant diseases — a susceptible host will not be infected by a virulent pathogen if the environmental conditions are not conducive for disease. The change in CO2 concentrations, temperature, and water availability can have positive, neutral, or negative effects on disease development, as each disease may respond differently to these variations. However, the concept of disease optima could potentially apply to all pathosystems. Plant resistance pathways, including pattern-triggered immunity to effector-triggered immunity, RNA interference, and defense hormone networks, are all affected by environmental factors. On the pathogen side, virulence mechanisms, such as the production of toxins and virulence proteins, as well as pathogen reproduction and survival are influenced by temperature and humidity. For practical reasons, most laboratory investigations into plant–pathogen interactions at the molecular level focus on well-established pathosystems and use a few static environmental conditions that capture only a fraction of the dynamic plant–pathogen–environment interactions that occur in nature. There is great need for future research to increasingly use dynamic environmental conditions in order to fully understand the multidimensional nature of plant–pathogen interactions and produce disease-resistant crop plants that are resilient to climate change.
more...
No comment yet.
Scooped by Suayib Üstün
Scoop.it!

Integration of two RAB5 groups during endosomal transport in plants

Integration of two RAB5 groups during endosomal transport in plants | Plant-microbe interaction | Scoop.it
RAB5 is a key regulator of endosomal functions in eukaryotic cells. Plants possess two different RAB5 groups, canonical and plant-unique types, which act via unknown counteracting mechanisms. Here, we identified an effector molecule of the plant-unique RAB5 in Arabidopsis thaliana, ARA6, which we designated PLANT-UNIQUE RAB5 EFFECTOR 2 (PUF2). Preferential colocalization with canonical RAB5 on endosomes and genetic interaction analysis indicated that PUF2 coordinates vacuolar transport with canonical RAB5, although PUF2 was identified as an effector of ARA6. Competitive binding of PUF2 with GTP-bound ARA6 and GDP-bound canonical RAB5, together interacting with the shared activating factor VPS9a, showed that ARA6 negatively regulates canonical RAB5-mediated vacuolar transport by titrating PUF2 and VPS9a. These results suggest a unique and unprecedented function for a RAB effector involving the integration of two RAB groups to orchestrate endosomal trafficking in plant cells.
more...
No comment yet.
Scooped by Suayib Üstün
Scoop.it!

Opposite Roles of Salicylic Acid Receptors NPR1 and NPR3/NPR4 in Transcriptional Regulation of Plant Immunity

Opposite Roles of Salicylic Acid Receptors NPR1 and NPR3/NPR4 in Transcriptional Regulation of Plant Immunity | Plant-microbe interaction | Scoop.it

Highlights


•SA receptors NPR3 and NPR4 function redundantly as transcriptional co-repressors
•SA inhibits the transcriptional repression activities of SA receptors NPR3/NPR4
•NPR1 and NPR4 have opposite roles in early defense gene expression in response to SA
•NPR4 and NPR1 function in parallel to regulate SA-induced defense gene expression


Summary


Salicylic acid (SA) is a plant defense hormone required for immunity. Arabidopsis NPR1 and NPR3/NPR4 were previously shown to bind SA and all three proteins were proposed as SA receptors. NPR1 functions as a transcriptional co-activator, whereas NPR3/NPR4 were suggested to function as E3 ligases that promote NPR1 degradation. Here we report that NPR3/NPR4 function as transcriptional co-repressors and SA inhibits their activities to promote the expression of downstream immune regulators. npr4-4D, a gain-of-function npr4 allele that renders NPR4 unable to bind SA, constitutively represses SA-induced immune responses. In contrast, the equivalent mutation in NPR1 abolishes its ability to bind SA and promote SA-induced defense gene expression. Further analysis revealed that NPR3/NPR4 and NPR1 function independently to regulate SA-induced immune responses. Our study indicates that both NPR1 and NPR3/NPR4 are bona fide SA receptors, but play opposite roles in transcriptional regulation of SA-induced defense gene expression.

more...
No comment yet.
Scooped by Suayib Üstün
Scoop.it!

The ER Contact Proteins VAPA/B Interact with Multiple Autophagy Proteins to Modulate Autophagosome Biogenesis

The ER Contact Proteins VAPA/B Interact with Multiple Autophagy Proteins to Modulate Autophagosome Biogenesis | Plant-microbe interaction | Scoop.it
The endoplasmic reticulum (ER) is the site of biogenesis of the isolation membrane (IM, autophagosome precursor) and forms extensive contacts with IMs during their expansion into double-membrane autophagosomes. Little is known about the molecular mechanism underlying the formation and/or maintenance of the ER/IM contact. The integral ER proteins VAPA and VAPB (VAPs) participate in establishing ER contacts with multiple membranes by interacting with different tethers. Here, we demonstrate that VAPs also modulate ER/IM contact formation. Depletion of VAPs impairs progression of IMs into autophagosomes. Upon autophagy induction, VAPs are recruited to autophagosome formation sites on the ER, a process mediated by their interactions with FIP200 and PI(3)P. VAPs directly interact with FIP200 and ULK1 through their conserved FFAT motifs and stabilize the ULK1/FIP200 complex at the autophagosome formation sites on the ER. The formation of ULK1 puncta is significantly reduced by VAPA/B depletion. VAPs also interact with WIPI2 and enhance the formation of the WIPI2/FIP200 ER/IM tethering complex. Depletion of VMP1, which increases the ER/IM contact, greatly elevates the interaction of VAPs with these autophagy proteins. The VAPB P56S mutation, which is associated with amyotrophic lateral sclerosis, reduces the ULK1/FIP200 interaction and impairs autophagy at an early step, similar to the effect seen in VAPA/B-depleted cells. Our study reveals that VAPs directly interact with multiple ATG proteins, thereby contributing to ER/IM contact formation for autophagosome biogenesis.
more...
No comment yet.
Scooped by Suayib Üstün
Scoop.it!

Beclin1 restricts RNA virus infection in plants through suppression and degradation of the viral polymerase

Beclin1 restricts RNA virus infection in plants through suppression and degradation of the viral polymerase | Plant-microbe interaction | Scoop.it
Autophagy emerges as an essential immunity defense against intracellular pathogens. Here we report that turnip mosaic virus (TuMV) infection activates autophagy in plants and that Beclin1 (ATG6), a core component of autophagy, inhibits virus replication. Beclin1 interacts with NIb, the RNA-dependent RNA polymerase (RdRp) of TuMV, via the highly conserved GDD motif and the interaction complex is targeted for autophagic degradation likely through the adaptor protein ATG8a. Beclin1-mediated NIb degradation is inhibited by autophagy inhibitors. Deficiency of Beclin1 or ATG8a enhances NIb accumulation and promotes viral infection and vice versa. These data suggest that Beclin1 may be a selective autophagy receptor. Overexpression of a Beclin1 truncation mutant that binds to NIb but lacks the ability to mediate NIb degradation also inhibits virus replication. The Beclin1–RdRp interaction further extends to several RNA viruses. Thus Beclin1 restricts viral infection through suppression and also likely autophagic degradation of the viral RdRp.
more...
No comment yet.
Scooped by Suayib Üstün
Scoop.it!

SUMOylome Profiling Reveals a Diverse Array of Nuclear Targets Modified by the SUMO Ligase SIZ1 During Heat Stress

SUMOylome Profiling Reveals a Diverse Array of Nuclear Targets Modified by the SUMO Ligase SIZ1 During Heat Stress | Plant-microbe interaction | Scoop.it
The post-translational addition of Small Ubiquitin-Like Modifier (SUMO) is an essential protein modification in plants that provides protection against numerous environmental challenges. Ligation is accomplished by a small set of SUMO ligases, with the SAP-MIZ domain-containing SIZ1 and METHYL METHANESULFONATE-SENSITIVE 21 (MMS21) ligases having critical roles in stress protection and DNA endoreduplication/repair, respectively. To help identify their corresponding targets in Arabidopsis thaliana, we used siz1 and mms21 mutants for proteomic analyses of SUMOylated proteins enriched via an engineered SUMO1 isoform suitable for mass spectrometric studies. Through multiple datasets from seedlings grown at normal temperatures or exposed to heat stress, we identified over 1,000 SUMO targets, most of which are nuclear localized. Whereas no targets could be assigned to MMS21, suggesting that it modifies only a few low abundance proteins, numerous targets could be assigned to SIZ1, including major transcription factors, co-activators/repressors, and chromatin modifiers connected to abiotic and biotic stress defense, some of which associate into multi-subunit regulatory complexes. SIZ1 itself is also a target, but studies with mutants protected from SUMOylation failed to uncover a regulatory role. The catalog of SIZ1 substrates indicates that SUMOylation by this ligase provides stress protection by modifying a large array of key nuclear regulators.
more...
No comment yet.
Scooped by Suayib Üstün
Scoop.it!

Flavin Monooxygenase-Generated N-Hydroxypipecolic Acid Is a Critical Element of Plant Systemic Immunity

Flavin Monooxygenase-Generated N-Hydroxypipecolic Acid Is a Critical Element of Plant Systemic Immunity | Plant-microbe interaction | Scoop.it
Following a previous microbial inoculation, plants can induce broad-spectrum immunity to pathogen infection, a phenomenon known as systemic acquired resistance (SAR). SAR establishment in Arabidopsis thaliana is regulated by the Lys catabolite pipecolic acid (Pip) and flavin-dependent-monooxygenase1 (FMO1). Here, we show that elevated Pip is sufficient to induce an FMO1-dependent transcriptional reprogramming of leaves that is reminiscent of SAR. In planta and in vitro analyses demonstrate that FMO1 functions as a pipecolate N-hydroxylase, catalyzing the biochemical conversion of Pip to N-hydroxypipecolic acid (NHP). NHP systemically accumulates in plants after microbial attack. When exogenously applied, it overrides the defect of NHP-deficient fmo1 in acquired resistance and acts as a potent inducer of plant immunity to bacterial and oomycete infection. Our work has identified a pathogen-inducible L-Lys catabolic pathway in plants that generates the N-hydroxylated amino acid NHP as a critical regulator of systemic acquired resistance to pathogen infection.
more...
No comment yet.
Scooped by Suayib Üstün
Scoop.it!

Autophagy: The Master of Bulk and Selective Recycling | Annual Review of Plant Biology

Autophagy: The Master of Bulk and Selective Recycling | Annual Review of Plant Biology | Plant-microbe interaction | Scoop.it
Plants have evolved sophisticated mechanisms to recycle intracellular constituents, which are essential for developmental and metabolic transitions; for efficient nutrient reuse; and for the proper disposal of proteins, protein complexes, and even entire organelles that become obsolete or dysfunctional. One major route is autophagy, which employs specialized vesicles to encapsulate and deliver cytoplasmic material to the vacuole for breakdown. In the past decade, the mechanics of autophagy and the scores of components involved in autophagic vesicle assembly have been documented. Now emerging is the importance of dedicated receptors that help recruit appropriate cargo, which in many cases exploit ubiquitylation as a signal. Although operating at a low constitutive level in all plant cells, autophagy is upregulated during senescence and various environmental challenges and is essential for proper nutrient allocation. Its importance to plant metabolism and energy balance in particular places autophagy at the nexus of robust crop performance, especially under suboptimal conditions.
more...
No comment yet.
Scooped by Suayib Üstün
Scoop.it!

Dicot-specific ATG8-interacting ATI3 proteins interact with conserved UBAC2 proteins and play critical roles in plant stress responses

Dicot-specific ATG8-interacting ATI3 proteins interact with conserved UBAC2 proteins and play critical roles in plant stress responses | Plant-microbe interaction | Scoop.it
Selective macroautophagy/autophagy targets specific cargo by autophagy receptors through interaction with ATG8 (autophagy-related protein 8)/MAP1LC3 (microtubule associated protein 1 light chain 3) for degradation in the vacuole. Here, we report the identification and characterization of 3 related ATG8-interacting proteins (AT1G17780/ATI3A, AT2G16575/ATI3B and AT1G73130/ATI3C) from Arabidopsis. ATI3 proteins contain a WxxL LC3-interacting region (LIR) motif at the C terminus required for interaction with ATG8. ATI3 homologs are found only in dicots but not in other organisms including monocots. Disruption of ATI3A does not alter plant growth or development but compromises both plant heat tolerance and resistance to the necrotrophic fungal pathogen Botrytis cinerea. The critical role of ATI3A in plant stress tolerance and disease resistance is dependent on its interaction with ATG8. Disruption of ATI3B and ATI3C also significantly compromises plant heat tolerance. ATI3A interacts with AT3G56740/UBAC2A and AT2G41160/UBAC2B (Ubiquitin-associated [UBA] protein 2a/b), 2 conserved proteins implicated in endoplasmic reticulum (ER)-associated degradation. Disruption of UBAC2A and UBAC2B also compromised heat tolerance and resistance to B. cinerea. Overexpression of UBAC2 induces formation of ATG8- and ATI3-labeled punctate structures under normal conditions, likely reflecting increased formation of phagophores or autophagosomes. The ati3 and ubac2 mutants are significantly compromised in sensitivity to tunicamycin, an ER stress-inducing agent, but are fully competent in autophagy-dependent ER degradation under conditions of ER stress when using an ER lumenal marker for detection. We propose that ATI3 and UBAC2 play an important role in plant stress responses by mediating selective autophagy of specific unknown ER components.
more...
No comment yet.