Articles
2 views | +0 today
Follow
Your new post is loading...
Your new post is loading...
Rescooped by Broderick Baker from College and Career-Ready Standards for School Leaders
Scoop.it!

Neuroscience on what schools should stop doing

Neuroscience on what schools should stop doing | Articles | Scoop.it
Adolescent-brain science findings suggest four things that middle and high school teachers should stop doing, writes psychologist Thomas Armstrong. Findings from adolescent-brain research also suggest a number of things that educators should stop doing so much of at the middle school and high school levels. For example:• Classroom teaching that focuses largely on delivering content through lectures and textbooks fails to engage the emotional brain and leaves unchanged those prefrontal regions that are important in metacognition.• Public posting of grades and test scores (a practice which in this data-driven world appears to be increasing) humiliates and shames students in front of their highly valued peers.• Locking students into a set academic college-bound program of courses takes away their ability to make decisions about what most interests them (a process that integrates the limbic system's motivational verve with the prefrontal cortex's decisionmaking capacity).
Via Mel Riddile
more...
Celeste Osgood's curator insight, January 31, 7:53 PM
Neuroscience & learning
Rescooped by Broderick Baker from Amazing Science
Scoop.it!

Snapping a picture of the inside of an atom - the internal quantum workings visualized

Snapping a picture of the inside of an atom - the internal quantum workings visualized | Articles | Scoop.it

Physicists have, for the first time, been able to image the quantum workings of electrons in hydrogen atoms, an advance that could open the door to a deeper understanding of the quantum world. Snapping a picture of the inside of an atom - the electrons, the protons, the neutrons - is no easy task. Quantum mechanics makes it virtually impossible to pin down these subatomic particles.

 

Instead of having the ability to describe where a particle is, quantum theory provides a description of its whereabouts called a wave function.

Wave functions work like sound waves, except that whereas the mathematical description of a sound wave defines the motion of molecules in air at a particular place, a wave function describes the probability of finding the particle.

 

Physicists can theoretically predict what a wave function is like, but measuring a wave function is very hard because they are exquisitely fragile.

 

In another bit of quantum weirdness, most attempts to directly observe wave functions actually destroy them in a process called collapse.

So to experimentally measure the properties of a wave function requires researchers to reconstruct it from many separate destructive measurements on identically prepared atoms or molecules.

 

Physicists at AMOLF, a lab of the Netherlands' Foundation for Fundamental Research on Matter (FOM) in Amsterdam, demonstrated a new nondestructive approach in a paper published in Physical Review Letters.

 

Building on a 1981 proposal by three Russian theorists and more recent work that brought that proposal into the realm of possibility, the team first fired two lasers at hydrogen atoms inside a chamber, kicking off electrons at speeds and directions that depended on their underlying wave functions. A strong electric field inside the chamber guided the electrons to positions on a planar detector that depended on their initial velocities rather than on their initial positions.

 

So the distribution of electrons striking the detector matched the wave function the electrons had at the moment they left their hydrogen nuclei behind. The apparatus displays the electron distribution on a phosphorescent screen as light and dark rings, which the team photographed using a high-resolution digital camera.

 

"We are really happy with our results," said team leader Aneta Stodolna, noting that although quantum mechanics was part of daily life for physicists, it was rarely understood in such a visceral way.

 

She said that there may be practical applications in the future - a commentary accompanying the paper suggests that the method could aid in the development of technologies such as molecular wires, atom-thick conductors that could help shrink electronic devices - but that their result concerned "extremely fundamental" physics that might be just as valuable for developing quantum intuition in the next generation of physicists.

 

"It's an interesting experiment, mostly because it's investigating hydrogen," an element that is both a textbook example in undergraduate physics classes and also makes up three-quarters of the universe, said Jeff Lundeen, a physicist at the University of Ottawa in Canada, who has performed related experiments on photon wave functions.


Via Dr. Stefan Gruenwald
more...
No comment yet.
Rescooped by Broderick Baker from School Leadership
Scoop.it!

How leaders can learn to delegate

How leaders can learn to delegate | Articles | Scoop.it
How leaders can learn to delegate

Via Dawn Rife
more...
elsie t's curator insight, July 22, 2015 8:15 PM

interesting pointers on delegating.

Bradley Gomoluch's curator insight, July 23, 2015 4:27 PM

Information about leadership and delegating responsibilities. 

Scooped by Broderick Baker
Scoop.it!

Wood battery could be the future of large energy storage

Wood battery could be the future of large energy storage | Articles | Scoop.it
A new type of battery developed by researchers at University of Maryland is more environmentally friendly version of a sodium-ion battery.
more...
No comment yet.