Global Organization of a Positive-strand RNA Virus Genome | Virology and Bioinformatics from |

The genomes of many important pathogenic viruses are made of RNA. These genomes encode viral proteins and contain regulatory sequences and structures. In some viruses, distant regions of the RNA genome can interact with each other via base pairing, which suggests that certain genomes may take on well-defined conformations. This concept was investigated using a tombusvirus RNA genome that contains several long-range RNA interactions. The results of microscopic and biochemical analyses indicated a compact genome conformation with structured regions radiating from a central core. The structural model was compatible with some, but not all, long-range interactions, suggesting that the genome is a dynamic molecule that assumes different conformations. The analysis also revealed new structural features of the genome, some of which were shown to be functionally relevant. This study advances our understanding of the role played by global structure in virus genome function and provides a model to further investigate its in role virus reproduction. We anticipate that organizational principles revealed by this investigation will be applicable to other viruses.