Evolutionary Dynamics of West Nile Virus in the United States, 1999–2011 | Virology and Bioinformatics from Virology.ca | Scoop.it

West Nile Virus (WNV) is a mosquito-borne virus of African origin that is widespread around the world. The WNV life-cycle involves mosquitoes and birds, but humans and other animals can be infected, although they are not considered to be important players in the transmission cycle. Clinically, most WNV infections are unapparent, but the virus can disseminate to the central nervous system causing a potentially fatal neurological disease, especially in susceptible populations including elderly and immunocompromised individuals. West Nile virus can also be transmitted by organ transplant and by transfusion of blood and blood components. Like other arboviruses, WNV has the extraordinary capacity of growing in the different microenvironments represented by the invertebrate vector and the vertebrate hosts. From an evolutionary standpoint, the arrival of WNV in the US in 1999 represents a unique opportunity to explore the processes involved in the adaptation and dissemination of an arbovirus in a naïve environment. From the study of WNV sequences, we can not only learn about the evolutionary mechanisms that govern arboviruses, but also update diagnostic tests that rely on the detection of the viral genome upon the occurrence of mutations and study the existence of genetic markers that may be responsible for increases in clinical cases and their severity.


 West Nile virus graphic from Russell Kightley Media