The future of medicine and health
15.6K views | +0 today
Follow
 
Scooped by Wildcat2030
onto The future of medicine and health
Scoop.it!

Researchers, Startups Hope One Drop of Blood Could Diagnose All Types of Cancer

Researchers, Startups Hope One Drop of Blood Could Diagnose All Types of Cancer | The future of medicine and health | Scoop.it
As genetics reveals the incredible diversity among cancer cells, researchers have largely given up pursuing a silver bullet to cure all types of cancer.
more...
No comment yet.
The future of medicine and health
all that concerns the rapid evolution of medicine and health
Curated by Wildcat2030
Your new post is loading...
Your new post is loading...
Scooped by Wildcat2030
Scoop.it!

Scientists Have Figured Out How to Make Wounds Heal Without Scars

Scientists Have Figured Out How to Make Wounds Heal Without Scars | The future of medicine and health | Scoop.it
Whether it’s from a surgical procedure, clumsy shaving, or that traumatic biking incident that happened when you were five, just about everyone has a scar they wish would just fade away.

And while there’s not a whole lot that can be done for scars that are already there, researchers have figured out how to make fresh wounds heal as normal, regenerated skin, instead of the usual scar tissue - something that was previously thought to be impossible in mammals.

"Essentially, we can manipulate wound healing so that it leads to skin regeneration rather than scarring," said one of the team, George Cotsarelis, chair of the Department of Dermatology at the University of Pennsylvania.

"The secret is to regenerate hair follicles first. After that, the fat will regenerate in response to the signals from those follicles."

If you've ever wondered why scar tissue looks so different from regular skin, it's because scar tissue doesn't contain any fat cells or hair follicles.

The type of skin that regenerates over a small, superficial cut is filled with fat cells called adipocytes, just like the skin you were born with, which means the two will eventually blend into each other once the wound has healed.

But scar tissue is made up almost entirely of cells called myofibroblasts, and doesn't contain any fat cells at all. So instead of blending into the surrounding skin once the wound has fully healed, it looks completely different - permanently.

The same goes for ageing skin - as we age, we lose our adipocytes, which leads to discolouration and deep, irreversible wrinkles.

But scientists have discovered that existing myofibroblasts can actually be converted into adipocytes, which suggests that as a wound is healing, scar tissue could be converted to regenerated skin instead - something that scientists thought could only be possible in fish and amphibians.
more...
No comment yet.
Scooped by Wildcat2030
Scoop.it!

More evidence backs transposon theory of aging - Futurity

More evidence backs transposon theory of aging - Futurity | The future of medicine and health | Scoop.it
A new study increases and strengthens the links that have led scientists to propose the “transposon theory of aging.”

Transposons are rogue elements of DNA that break free in aging cells and rewrite themselves elsewhere in the genome, potentially creating lifespan-shortening chaos in the genetic makeups of tissues.

As cells get older, prior studies have shown, tightly wound heterochromatin wrapping that typically imprisons transposons becomes looser, allowing them to slip out of their positions in chromosomes and move to new ones, disrupting normal cell function. Meanwhile, scientists have shown that potentially related interventions, such as restricting calories or manipulating certain genes, can demonstrably lengthen lifespans in laboratory animals.
more...
No comment yet.
Scooped by Wildcat2030
Scoop.it!

Aging Is Reversible--at Least in Human Cells and Live Mice

Aging Is Reversible--at Least in Human Cells and Live Mice | The future of medicine and health | Scoop.it
New research suggests it is possible to slow or even reverse aging, at least in mice, by undoing changes in gene activity—the same kinds of changes that are caused by decades of life in humans.

By tweaking genes that turn adult cells back into embryoniclike ones, researchers at the Salk Institute for Biological Studies reversed the aging of mouse and human cells in vitro, extended the life of a mouse with an accelerated-aging condition and successfully promoted recovery from an injury in a middle-aged mouse, according to a study published Thursday in Cell.

The study adds weight to the scientific argument that aging is largely a process of so-called epigenetic changes, alterations that make genes more active or less so. Over the course of life cell-activity regulators get added to or removed from genes. In humans those changes can be caused by smoking, pollution or other environmental factors—which dial the genes’ activities up or down. As these changes accumulate, our muscles weaken, our minds slow down and we become more vulnerable to diseases.

The new study suggests the possibility of reversing at least some of these changes, a process researchers think they may eventually get to work in living humans. “Aging is something plastic that we can manipulate,” says Juan Carlos Izpisua Belmonte, the study’s senior author and an expert in gene expression at Salk. In their study Belmonte and his colleagues rejuvenated cells by turning on, for a short period of time, four genes that have the capacity to convert adult cells back into an embryoniclike state.

In living mice they activated the four genes (known as “Yamanaka factors,” for researcher Shinya Yamanaka, the Nobelist who discovered their combined potential in 2006). This approach rejuvenated damaged muscles and the pancreas in a middle-aged mouse, and extended by 30 percent the life span of a mouse with a genetic mutation responsible for Hutchinson–Gilford progeria syndrome, which causes rapid aging in children.
more...
No comment yet.
Scooped by Wildcat2030
Scoop.it!

Psilocybin: A Journey beyond the Fear of Death?

Psilocybin: A Journey beyond the Fear of Death? | The future of medicine and health | Scoop.it
In one of the largest and most rigorous clinical investigations of psychedelic drugs to date, researchers at Johns Hopkins University and New York University have found that a single dose of psilocybin—the psychoactive compound in “magic” mushrooms—substantially diminished depression and anxiety in patients with advanced cancer.

Psychedelics were the subject of a flurry of serious medical research in the 1960s, when many scientists believed some of the mind-bending compounds held tremendous therapeutic promise for treating a number of conditions including severe mental health problems and alcohol addiction. But flamboyant Harvard psychology professor Timothy Leary—one of the top scientists involved—started aggressively promoting LSD as a consciousness expansion tool for the masses, and the youth counterculture movement answered the call in a big way. Leary lost his job and eventually became an international fugitive. Virtually all legal research on psychedelics shuddered to a halt when federal drug policies hardened in the 1970s.

The decades-long research blackout ended in 1999 when Roland Griffiths of Johns Hopkins was among the first to initiate a new series of studies on psilocybin. Griffiths has been called the grandfather of the current psychedelics research renaissance, and a 21st-century pioneer in the field—but the soft-spoken investigator is no activist or shaman/showman in the mold of Leary. He’s a scientifically cautious clinical pharmacologist and author of more than 300 studies on mood-altering substances from coffee to ketamine.

Much of Griffiths’ fascination with psychedelics stems from his own mindfulness meditation practice, which he says sparked his interest in altered states of consciousness. When he started administering psilocybin to volunteers for his research, he was stunned that more than two-thirds of the participants rated their psychedelic journey one of the most important experiences of their lives.

more...
No comment yet.
Scooped by Wildcat2030
Scoop.it!

New Evidence Suggests Parkinson's Might Start in the Gut, Not the Brain

New Evidence Suggests Parkinson's Might Start in the Gut, Not the Brain | The future of medicine and health | Scoop.it
A new study adds to a growing body of research that suggests we might have been thinking about Parkinson's disease wrong this whole time.

Instead of being isolated to the brain, new evidence in mice suggests that the condition might actually start in the gut. And it could explain some of the strange coincidences seen in the disease, such as why most Parkinson's patients complain of constipation up to a decade before other symptoms arise.

Parkinson's disease is most commonly associated with tremors, stiffness, and difficulty moving, caused by neurons deep in the brain being killed off.

Although there are treatments to slow the progress of the condition, there's no way to prevent or cure it, and researchers still don't really understand what causes it and how it progresses.

For years, scientists have limited the search for the cause of Parkinson's to the brain, but a growing body of evidence suggests that might be the wrong approach.

Parkinson's might actually originate in the gut before spreading to the brain, it could explain some of the strange links researchers have seen with Parkinson's patients.

Researchers have noticed that people with Parkinson's often report constipation, as well as other digestive problems, up to 10 years before they notice tremors. There's also evidence that people with Parkinson's disease have different gut bacteria to other healthy adults.

Now a new study in mice has shown that the toxic fibres that build up around the nerve cells of Parkinson's patients can influence the nerves in the brain in a matter of weeks.

"We have discovered for the first time a biological link between the gut microbiome and Parkinson's disease," said lead researcher Sarkis Mazmanian from the Californian Institute of Technology (Caltech).
more...
Daniel Jimenez Zulic's curator insight, January 19, 9:11 PM
ultimamente todo esta en la microbiota... sorprendente!!!
Scooped by Wildcat2030
Scoop.it!

A handful of nuts a day cuts the risk of a wide range of diseases

A handful of nuts a day cuts the risk of a wide range of diseases | The future of medicine and health | Scoop.it
A large analysis of current research shows that people who eat at least 20g of nuts a day have a lower risk of heart disease, cancer and other diseases.

The analysis of all current studies on nut consumption and disease risk has revealed that 20g a day - equivalent to a handful - can cut people's risk of coronary heart disease by nearly 30 percent, their risk of cancer by 15 percent, and their risk of premature death by 22 percent.

An average of at least 20g of nut consumption was also associated with a reduced risk of dying from respiratory disease by about a half, and diabetes by nearly 40 percent, although the researchers note that there is less data about these diseases in relation to nut consumption.

The study, led by researchers from Imperial College London and the Norwegian University of Science and Technology, is published in the journal BMC Medicine.

The research team analysed 29 published studies from around the world that involved up to 819,000 participants, including more than 12,000 cases of coronary heart disease, 9,000 cases of stroke, 18,000 cases of cardiovascular disease and cancer, and more than 85,000 deaths.

While there was some variation between the populations that were studied, such as between men and women, people living in different regions, or people with different risk factors, the researchers found that nut consumption was associated with a reduction in disease risk across most of them.

Study co-author Dagfinn Aune from the School of Public Health at Imperial said: "In nutritional studies, so far much of the research has been on the big killers such as heart diseases, stroke and cancer, but now we're starting to see data for other diseases.
more...
No comment yet.
Scooped by Wildcat2030
Scoop.it!

New AI Mental Health Tools Beat Human Doctors at Assessing Patients

New AI Mental Health Tools Beat Human Doctors at Assessing Patients | The future of medicine and health | Scoop.it
About 20 percent of youth in the United States live with a mental health condition, according to the National Institute of Mental Health.

That’s the bad news.

The good news is that mental health professionals have smarter tools than ever before, with artificial intelligence-related technology coming to the forefront to help diagnose patients, often with much greater accuracy than humans.

A new study published in the journal Suicide and Life-Threatening Behavior, for example, showed that machine learning is up to 93 percent accurate in identifying a suicidal person. The research, led by John Pestian, a professor at Cincinnati Children's Hospital Medical Center, involved 379 teenage patients from three area hospitals.

Each patient completed standardized behavioral rating scales and participated in a semi-structured interview, answering five open-ended questions such as "Are you angry?" to stimulate conversation, according to a press release from the university.

The researchers analyzed both verbal and non-verbal language from the data, then sent the information through a machine-learning algorithm that was able to determine with remarkable accuracy whether the person was suicidal, mentally ill but not suicidal, or neither.

“These computational approaches provide novel opportunities to apply technological innovations in suicide care and prevention, and it surely is needed,” Pentian says in the press release.
more...
IT's curator insight, December 13, 2016 10:26 PM
I think that is it the same as tip on a result of game. If you wanna try this method, do it. 
Scooped by Wildcat2030
Scoop.it!

Bioprinting Is One Step Closer to Making a Human Kidney

Bioprinting Is One Step Closer to Making a Human Kidney | The future of medicine and health | Scoop.it
Bioprinting has been all over the news in the past several years with headline-worthy breakthroughs like printed human skin, synthetic bones, and even a fully functional mouse thyroid gland.

3D printing paved the way for bioprinting thanks to the printers’ unique ability to recreate human tissue structures; their software can be written to ‘stack’ cells in precise patterns as directed by a digital model, and they can produce tissue in just hours and make numerous identical samples.

Despite the progress in bioprinting, however, more complex human organs continue to elude scientists, and resting near the top of the ‘more complex’ list are the kidneys.
Kidney basics

The kidneys, bean-shaped and fist-sized, are located below the rib cage on either side of the spine and play a critical role in our day-to-day health. Each kidney cleans the blood by passing fluid and waste products through a biological filter called a nephron that blocks blood cells and important molecules like proteins. Necessary minerals are passed back to the blood, and waste exits the body in urine.

Our kidneys filter 120 to 150 quarts of blood every day, keeping the blood’s composition stable and our bodies functioning properly. Our kidneys prevent waste buildup in the body, stabilize our electrolyte levels, and produce hormones to regulate blood pressure and make red blood cells.
more...
No comment yet.
Scooped by Wildcat2030
Scoop.it!

Why frequent dieting makes you put on weight – and what to do about it

Why frequent dieting makes you put on weight – and what to do about it | The future of medicine and health | Scoop.it
People who regularly go on diets tend to lose weight initially but bounce back and even gain weight after stopping the regime. This phenomenon – dubbed yo-yo dieting – is associated with changes in metabolism and is one reason why the vast majority of calorie-based diets fail. But exactly what causes these metabolic changes has remained a mystery – until now.

Previous studies in identical twins who differed in dieting patterns have shown that non-genetic factors are largely responsible. The working hypothesis was that when you gain weight you somehow “reset” your internal thermostat corresponding to the higher weight level and so when you lose weight – your body does all it can to return to that new higher set point. Now new research, published in Nature, explains why this happens to some people more than others and, importantly, how it could be reversed.

The study, by an Israeli group of scientists, mimicked human yo-yo dieters in lab mice. The researchers fed the mice in several cycles of alternating weight gaining and losing diets. They started with big, high-fat portions to fatten them up then slimmed them down with a diet of normal, light meals, then repeated the regime. Like humans, the mice slowly gained weight compared to other mice on steady diets of similar calories – even those on continuous high-fat diets.

Mice who bounced back and had increased weight regain after dieting had a lower energy expenditure than those on steady diets but still ate the same amount of food. We know this change in body metabolism occurs in yo-yo dieters. But the new study managed to figure out why – by looking at a forgotten organ of the body.

In humans, this organ weighs nearly as much as the liver and is located in our lower intestines. It is the microbiome – the community of microbes that outnumber our cells and have a hundred-fold more genes and enzymes capable of digesting food and regulating our metabolism and immune systems. It turns out that changes to the gut microbes were responsible.
more...
No comment yet.
Scooped by Wildcat2030
Scoop.it!

Deleting fears from the brain means you might never need to face them

Deleting fears from the brain means you might never need to face them | The future of medicine and health | Scoop.it
Conventional wisdom suggest that facing your fears is a good way to overcome them, indeed various forms of therapy for fear-related conditions are based on this premise. But by using a combination of artificial intelligence (AI) and neuroscience, an international team of researchers have come up with a way to eliminate specific fears from the brain without the subject actually needing to confront them, an approach that could offer more comfortable ways of treating phobias and post-traumatic stress disorders.

According to the National Institute of Mental Health, 18 percent of US adults are diagnosed with a fear or anxiety disorder each year. A typical approach to treating such fear-related conditions is what is known as exposure therapy, where subjects are made to face their fears in a safe environment, conditioning the brain to embrace the low level or entire absence of any real danger. So somebody with a fear of flying may be shown photo after photo of airplanes, or somebody with arachnophobia may be shown images of spiders. The idea is that through repetition, the anxious response to these cues is gradually erased from the brain.

But the approach does have its flaws. By nature, this type of therapy is not exactly pleasant, and its effects are not permanent so some patients will experience relapses down the road. This has lead scientists to explore different ways to enhance the effectiveness of treatment, or take different approaches altogether.
more...
No comment yet.
Scooped by Wildcat2030
Scoop.it!

Eat your fibre or face the flesh-eating microbe cannibals

Eat your fibre or face the flesh-eating microbe cannibals | The future of medicine and health | Scoop.it
“Eat your bran even if it tastes horrible – its good for you!” Many of us remember this advice from decades ago. While fibre has been a good cure as a bulking agent for exciting disorders like constipation, it has a dull image and has faded into the background behind trendier (and more commercial) food messages like gluten, cholesterol, saturated fat and sugar. Often it can be the hardest item to find on the food label.

But fibre’s fortunes may now be on the turn. New research in the journal Cell sheds light on how fibre works to protect the gut.

An international team used special mice born and raised in sterile conditions with no gut microbes of their own. Normally, all animals from birth have a massive microbe community living mainly in the lower intestine (colon). In humans, this reaches 100 trillion microbes – outnumbering our own cells.

These microbes (mainly bacteria but also viruses and fungi) have co-evolved with us and produce many of our vitamins, hormones and chemicals. They are also key to regulating our immune systems, weight and mood. Abnormalities have been linked to many disorders. Humans have around 17 digestive enzymes and microbes have thousands – the primary role of microbes is digesting high fibre foods (that we can’t) to extract the key nutrients.

In the experiment, the sterile mice received a transplant of 14 well-known bacteria that normally grow in the human gut. They were then starved of fibre, which led the microbes to change their normal eating habits and instead feed on the natural layer of mucus (made up of tasty carbs) that lines the gut. This would be fine for short periods of time, when the body has time to regenerate the layer, but when it is prolonged – as in people on long-term junk food diets – the mucus layer becomes dangerously thin.
more...
No comment yet.
Scooped by Wildcat2030
Scoop.it!

Terminally ill teen won historic ruling to freeze body - BBC News

Terminally ill teen won historic ruling to freeze body - BBC News | The future of medicine and health | Scoop.it
A 14-year-old girl who wanted her body to be frozen so she could be brought back to life, won an historic legal fight shortly before her death.

The girl, who was terminally ill with a rare cancer, was supported in her wish to be cryogenically preserved by her mother - but not by her father.

A High Court judge ruled that the girl's mother should be allowed to decide what happened to the body.

The girl, who died in October, has now been taken to the US and frozen.

The details of her case have just been released.

The teenager - who cannot be named - and who lived in the London area, used the internet to investigate cryonics during the last months of her life.
Future hope

Cryonics is the process of freezing and preserving a whole body in the hope that resuscitation and a cure are possible in the distant future.

Cryogenics: A chance to come back?
What does cryopreservation do to human bodies?

She wrote to the judge explaining that she wanted "to live longer" and did not want "to be buried underground".

She wrote: "I think being cryopreserved gives me a chance to be cured and woken up - even in hundreds of years' time."

The judge, Mr Justice Peter Jackson, visited the girl in hospital and said he was moved by "the valiant way in which she was facing her predicament".

His ruling, he said, was not about the rights or wrongs of cryonics but about a dispute between parents over the disposal of their daughter's body.
more...
No comment yet.
Scooped by Wildcat2030
Scoop.it!

Scientists Have Rejuvenated Old Mice With the Blood of Human Teenagers

Scientists Have Rejuvenated Old Mice With the Blood of Human Teenagers | The future of medicine and health | Scoop.it
It might sound like something out of a creepy folk tale, but scientists have found evidence that injecting young human blood into older bodies does seem to offer powers of rejuvenation – even if those old bodies aren't human themselves.

In a new study, researchers took blood samples from a group of healthy, young 18-year-old human participants and injected them into 12-month-old mice – late middle age in mice years, or the equivalent of being about 50 years old in human terms.

For three weeks, the mice received twice-weekly injections of human blood plasma – blood's liquid component, which scientists think is responsible for its rejuvenating properties.

After this, scientists from California-based biopharmaceutical company Alkahest compared the injected animals' behaviour to young and old control groups of three-month-old and 12-month-old mice – neither of which had received the plasma injections.

The new blood made the old mice act young again, with the treated animals running around in open spaces much like their younger controls.

But there was also evidence that their powers of memory had improved.

The researchers put the treated mice in a device called a Barnes maze – a tool used to measure spatial learning and memory in rodents.

Due to weaker memory, older mice tend to fare poorly at navigating the Barnes maze, but in the tests, the treated animals performed as well as young mice.

"We see a rejuvenation effect," one of the Alkahest researchers, Sakura Minami, told Jessica Hamzelou at New Scientist. "Young human plasma improves cognition. Their memory was preserved."
more...
No comment yet.
Scooped by Wildcat2030
Scoop.it!

The Wrong Eating Habits Can Hurt Your Brain, Not Just Your Waistline

The Wrong Eating Habits Can Hurt Your Brain, Not Just Your Waistline | The future of medicine and health | Scoop.it
Being overweight can raise your blood pressure, cholesterol and risk for developing diabetes. It could be bad for your brain, too.

A diet high in saturated fats and sugars, the so-called Western diet, actually affects the parts of the brain that are important to memory and make people more likely to crave the unhealthful food, says psychologist Terry Davidson, director of the Center for Behavioral Neuroscience at American University in Washington, D.C.

He didn't start out studying what people ate. Instead, he was interested in learning more about the hippocampus, a part of the brain that's heavily involved in memory.

He was trying to figure out which parts of the hippocampus do what. He did that by studying rats that had very specific types of hippocampal damage and seeing what happened to them.

In the process, Davidson noticed something strange. The rats with the hippocampal damage would go to pick up food more often than the other rats, but they would eat a little bit, then drop it.

Davidson realized these rats didn't know they were full. He says something similar may happen in human brains when people eat a diet high in fat and sugar. Davidson says there's a vicious cycle of bad diets and brain changes. He points to a 2015 study in the Journal of Pediatrics that found obese children performed more poorly on memory tasks that test the hippocampus compared with kids who weren't overweight.

He says if our brain system is impaired by that kind of diet, "that makes it more difficult for us to stop eating that diet. ... I think the evidence is fairly substantial that you have an effect of these diets and obesity on brain function and cognitive function."

The evidence is growing. Research from the Cambridge Centre for Ageing and Neuroscience published in July found that obese people have less white matter in their brains than their lean peers — as if their brains were 10 years older. A more recent study from researchers at the University of Arizona supports one of the leading theories, that high body mass is linked to inflammation, which affects the brain.
more...
No comment yet.
Scooped by Wildcat2030
Scoop.it!

Ten people to get NHS bionic eyes - BBC News

Ten people to get NHS bionic eyes - BBC News | The future of medicine and health | Scoop.it
The NHS will pay for 10 blind patients to have "bionic eyes" to help treat an inherited form of blindness.

The bionic eye is a retinal implant which interprets images captured by a miniature video camera worn on a pair of glasses.

Five patients will be treated at Manchester Royal Eye Hospital and five at Moorfields Eye Hospital in 2017.

They will be monitored for a year afterwards to see how they get on in everyday life.

"I'm delighted," said Prof Paulo Stanga from the Manchester hospital.

He has been involved in earlier trials of the Argus II Bionic Eye, made by the company Second Sight, in retinitis pigmentosa.

He added: "It surpassed all of our expectations when we realised that one of the retinitis pigmentosa patients using the bionic eye could identify large letters for the first time in his adult life."

This disease, which is often passed down through families, destroys the light-sensing cells in the retina. It leads to vision loss and eventually blindness.
more...
No comment yet.
Scooped by Wildcat2030
Scoop.it!

Frequent sauna sessions may lower dementia risk

Frequent sauna sessions may lower dementia risk | The future of medicine and health | Scoop.it
We've already heard that things like special enzymes and fresh produce may help ward off Alzheimer's disease and other forms of dementia. According to new research from the University of Eastern Finland, however, you can now add "taking saunas" to that list – and the more often you take them, the better.

The university's Kuopio Ischaemic Heart Disease Risk Factor Study involved over 2,000 healthy men aged between 42 and 60, living in eastern Finland. At the start of the study period, the men were divided into three groups: those taking a sauna once a week, those taking a sauna two to three times a week, and those taking a sauna four to seven times a week.

After approximately 20 years the scientists checked back on them, to see how many test subjects from each group had developed Alzheimer's or other types of dementia. According to the university, "Among those taking a sauna four to seven times a week, the risk of any form of dementia was 66 percent lower and the risk of Alzheimer's disease 65 percent lower than among those taking a sauna just once a week."
more...
No comment yet.
Scooped by Wildcat2030
Scoop.it!

Human evolution 'not over yet' - BBC News

Human evolution 'not over yet' - BBC News | The future of medicine and health | Scoop.it
The regular use of Caesarean sections is having an impact on human evolution, say scientists.

More mothers now need surgery to deliver a baby due to their narrow pelvis size, according to a study.

Researchers estimate cases where the baby cannot fit down the birth canal have increased from 30 in 1,000 in the 1960s to 36 in 1,000 births today.

Historically, these genes would not have been passed from mother to child as both would have died in labour.

Researchers in Austria say the trend is likely to continue, but not to the extent that non-surgical births will become obsolete.

Dr Philipp Mitteroecker, of the department of theoretical biology at the University of Vienna, said there was a long standing question in the understanding of human evolution.

"Why is the rate of birth problems, in particular what we call fetopelvic disproportion - basically that the baby doesn't fit through the maternal birth canal - why is this rate so high?" he said.

"Without modern medical intervention such problems often were lethal and this is, from an evolutionary perspective, selection.

"Women with a very narrow pelvis would not have survived birth 100 years ago. They do now and pass on their genes encoding for a narrow pelvis to their daughters."
Opposing forces

It has been a long standing evolutionary question why the human pelvis has not grown wider over the years.

The head of a human baby is large compared with other primates, meaning animals such as chimps can give birth relatively easily.

The researchers devised a mathematical model using data from the World Health Organization and other large birth studies.

They found opposing evolutionary forces.

One is a trend towards larger newborns, which are more healthy.

However, if they grow too large, they get stuck during labour, which historically would have proved disastrous for mother and baby, and their genes would not be passed on.

"One side of this selective force - namely the trend towards smaller babies - has vanished due to Caesarean sections," said Dr Mitteroecker.

"Our intent is not to criticise medical intervention," he said. "But it's had an evolutionary effect. "
more...
Scooped by Wildcat2030
Scoop.it!

Scientists Have Figured Out Why Human Skin Doesn’t Leak

Scientists Have Figured Out Why Human Skin Doesn’t Leak | The future of medicine and health | Scoop.it
Our skin might give us grief sometimes, but one thing we can always depend on it to do is not start indiscriminately leaking blood and sweat everywhere - despite the fact that we’re shedding roughly 500 million cells every 24 hours.

Yep, somehow we replace our entire outer layer of skin every two to four weeks, but it never leaks, and now scientists say they’ve figured out why - it’s made of a unique arrangement of shapes called tetrakaidecahedrons, which never leave a gap, even as individual cells are sloughed away.

"Our study is also helping us to see how the cells that make up our skin can switch on a mechanism to make a kind of glue, which binds the cells together, ensuring that our skin maintains its integrity," says one of the team, Reiko Tanaka, from the Imperial College London.

Tanaka and her team decided to investigate the various layers that make up the mammalian epidermis - our protective barrier of skin.

Previous studies have found that the mammalian epidermis has two main physical barriers in the top two layers of the epidermis.

Near the surface is an air-liquid interface barrier formed by the outermost layer of the skin, called the stratum corneum, and below that is a liquid-liquid interface barrier formed by tight junctions - incredibly narrow areas between tessellating skin cells that are virtually impermeable to fluid.
more...
No comment yet.
Scooped by Wildcat2030
Scoop.it!

Brain-fade? Your neurons might be taking a powernap

Brain-fade? Your neurons might be taking a powernap | The future of medicine and health | Scoop.it
We all live our lives in a daily cycle of alertness and tiredness, but the brain functions that drive this are still mostly a mystery. Stanford scientists have now uncovered a strange new finding: different sections of the brain cycle in and out of sleep all day, while you're awake, suggesting that the ability (or inability) to pay attention may be linked to brain wave cycles while asleep.

While much research has focussed on mechanisms that guide us in and out of sleep, this new study recorded the activity of columns of neurons in the brain, and noticed, for the first time, that all the neurons in each column would cycle together between phases of high and low activity.

"During an on state the neurons all start firing rapidly," says Kwabena Boahen, a senior author on the paper. "Then all of a sudden they just switch to a low firing rate. This on and off switching is happening all the time, as if the neurons are flipping a coin to decide if they are going to be on or off."

These cycles are similar to those that occur during sleep, suggesting that bits of the brain are regularly falling asleep and waking back up – a phenomenon that's been seen in birds that rest with microsleeps during long-haul flights. We may not have observed these cycles in humans before because they're hard to detect, on account of occurring in a matter of seconds or less, and the brain waves don't spread out much beyond that column of neurons.
more...
No comment yet.
Scooped by Wildcat2030
Scoop.it!

Now your smartphone can even analyze sperm

Now your smartphone can even analyze sperm | The future of medicine and health | Scoop.it
If a couple is having difficulty conceiving a child, it's important that the man get a motility test done – it shows how active his sperm are. The problem is, a lot of guys feel awkward about going to a clinic and "providing a sample" on-site. That's where Medical Electronic Systems' YO system comes in. It lets users check their motility at home (or wherever else they feel inclined to do so) using their iPhone or Galaxy smartphone.

First of all, there are indeed other male fertility tests already on the market.

According to Medical Electronic Systems, however, these typically just measure the concentration of sperm in a semen sample. If all those sperm are poor swimmers, they're not going to do much good. YO goes a step farther, by indicating what percentage of them are actually moving, and doing so in a correct manner.

The hardware end of the system consists mainly of the YO Clip, a miniature microscope which is placed over the phone's camera lens. A semen sample is subsequently put on an accompanying slide via an included pipette, then inserted into the Clip. A free iOS/Android app on the phone analyzes that sample, providing an on-screen rating of its Motile Sperm Concentration – it also shows actual video of the sperm, so users can see for themselves just how motivated they are.

YO is available now for preorder, with delivery scheduled to begin in January. It's priced at US$49.95, which includes the Clip and two slides.

Source: YO
more...
Ziggi Ivan Santini's curator insight, December 2, 2016 3:19 AM

Smartphones can do anything these days.

Scooped by Wildcat2030
Scoop.it!

For the First Time, Living Cells Have Formed Carbon-Silicon Bonds

For the First Time, Living Cells Have Formed Carbon-Silicon Bonds | The future of medicine and health | Scoop.it
Scientists have managed to coax living cells into making carbon-silicon bonds, demonstrating for the first time that nature can incorporate silicon - one of the most abundant elements on Earth - into the building blocks of life.

While chemists have achieved carbon-silicon bonds before - they’re found in everything from paints and semiconductors to computer and TV screens - they’ve so far never been found in nature, and these new cells could help us understand more about the possibility of silicon-based life elsewhere in the Universe.

After oxygen, silicon is the second most abundant element in Earth’s crust, and yet it has nothing to do with biological life.

Why silicon has never be incorporated into any kind of biochemistry on Earth has been a long-standing puzzle for scientists, because, in theory, it would have been just as easy for silicon-based lifeforms to have evolved on our planet as the carbon-based ones we know and love.

Not only are carbon and silicon both extremely abundant in Earth’s crust - they’re also very similar in their chemical make-up.
more...
No comment yet.
Scooped by Wildcat2030
Scoop.it!

This Is How Teenage Depression and Anxiety Could Affect Your Body

This Is How Teenage Depression and Anxiety Could Affect Your Body | The future of medicine and health | Scoop.it
Research over the past decade has definitively shown that mental disorders such as depression aren't just in our heads - they affect our entire bodies.

And now, for the first time, scientists have mapped out which physical disorders are linked to which mental disorders in teenagers - and the results suggest that depression, anxiety, and eating disorders all leave their own physical signature marks on the body.

A new study has found that digestive system diseases and arthritis are more common after depression, and teenagers who've suffered from anxiety are more likely to go on to have skin disorders.

Now, let's be clear - this study only shows a correlation between these disorders, and no one is saying for sure that these mental disorders cause these physical issues.

But the researchers have found a link between them, which is enough to suggest that there's some kind of relationship here that's worth investigating - particularly since one in five young people in the US experience mental health issues.

To figure this out, a team from the University of Basel in Switzerland and Ruhr University Bochum in Germany looked at data on 6,483 teenagers aged between 13 and 18 in the US.
more...
No comment yet.
Scooped by Wildcat2030
Scoop.it!

Upgraded implants predict heart failure

Upgraded implants predict heart failure | The future of medicine and health | Scoop.it
Implanted defibrillators already serve a valuable role, by delivering electric shocks to restart hearts that stop beating. Thanks to new research, however, the devices are now able to be more proactive – they can warn of heart problems as they're developing, before heart failure occurs.

In a multi-institute study, a Boston Scientific-designed software system known as HeartLogic was uploaded to defibrillators already implanted in 900 heart failure patients. The software allows the devices to also serve as sensors that monitor factors such as heart rate, physical activity, breathing, heart sounds and electrical activity in the chest.

Throughout the observation period (which was up to a year in the case of some patients), HeartLogic successfully predicted 70 percent of the test subjects' heart failure events, often over a month before they actually occurred. While there were some false positives, the number was deemed to be within an acceptable range.

"It's like having high blood sugar, if you're managing diabetes," says Prof. John Boehmer of Penn State University. "The doctor doesn't need to know about every high blood sugar and every high blood sugar doesn't result in a hospitalization. But you want to treat it before it gets very high and the patient becomes so symptomatic they become ill and end up in the hospital. This is the same concept."
more...
No comment yet.
Scooped by Wildcat2030
Scoop.it!

China is at the forefront of manipulating DNA to create a new class of superhumans

China is at the forefront of manipulating DNA to create a new class of superhumans | The future of medicine and health | Scoop.it
Would you want to alter your future children’s genes to make them smarter, stronger, or better looking? As the state of science brings prospects like these closer to reality, an international debate has been raging over the ethics of enhancing human capacities with biotechnologies such as so-called smart pills, brain implants, and gene editing. This discussion has only intensified in the past year with the advent of the CRISPR-cas9 gene editing tool, which raises the specter of tinkering with our DNA to improve traits like intelligence, athleticism, and even moral reasoning.

So are we on the brink of a brave new world of genetically enhanced humanity? Perhaps. And there’s an interesting wrinkle: It’s reasonable to believe that any seismic shift toward genetic enhancement will not be centered in Western countries like the US or the UK, where many modern technologies are pioneered. Instead, genetic enhancement is more likely to emerge out of China.
Attitudes toward enhancement

Numerous surveys among Western populations have found significant opposition to many forms of human enhancement. For example, a recent Pew study of 4,726 Americans found that most would not want to use a brain chip to improve their memory, and a plurality view such interventions as morally unacceptable.

A broader review of public opinion studies found significant opposition in countries like Germany, the US, and the UK to selecting the best embryos for implantation based on non-medical traits like appearance or intelligence. There is even less support for editing genes directly to improve traits in so-called designer babies.

Opposition to enhancement, especially genetic enhancement, has several sources. The above-mentioned Pew poll found that safety is a big concern—in line with experts who say that tinkering with the human genome carries significant risks. These risks may be accepted when treating medical conditions, but less so for enhancing non-medical traits like intelligence and appearance. At the same time, ethical objections often arise. Scientists can be seen as “playing God” and tampering with nature. There are also worries about inequality, creating a new generation of enhanced individuals who are heavily advantaged over others. Brave New World is a dystopia, after all.
more...
No comment yet.
Scooped by Wildcat2030
Scoop.it!

CRISPR Gene-Editing Tested in a Person for the First Time

CRISPR Gene-Editing Tested in a Person for the First Time | The future of medicine and health | Scoop.it
A Chinese group has become the first to inject a person with cells that contain genes edited using the revolutionary CRISPR–Cas9 technique.

On October 28, a team led by oncologist Lu You at Sichuan University in Chengdu delivered the modified cells into a patient with aggressive lung cancer as part of a clinical trial at the West China Hospital, also in Chengdu.

Earlier clinical trials using cells edited with a different technique have excited clinicians. The introduction of CRISPR, which is simpler and more efficient than other techniques, will probably accelerate the race to get gene-edited cells into the clinic across the world, says Carl June, who specializes in immunotherapy at the University of Pennsylvania in Philadelphia and led one of the earlier studies.

"I think this is going to trigger ‘Sputnik 2.0’, a biomedical duel on progress between China and the United States, which is important since competition usually improves the end product,” he says.

June is the scientific adviser for a planned US trial that will use CRISPR to target three genes in participants’ cells, with the goal of treating various cancers. He expects the trial to start in early 2017. And in March 2017, a group at Peking University in Beijing hopes to start three clinical trials using CRISPR against bladder, prostateand renal-cell cancers. Those trials do not yet have approval or funding.
more...
No comment yet.