Thematic School S...
Follow
Find
220 views | +0 today
 
Rescooped by Costas Bouyioukos from Bioinformatics Training
onto Thematic School Systems and Synthetic Biology
Scoop.it!

How The Rise Of The "R" Computer Language Is Bringing Open Source To Science

How The Rise Of The "R" Computer Language Is Bringing Open Source To Science | Thematic School Systems and Synthetic Biology | Scoop.it

R is crossing over from just calculating statistics to scientific experimentation--and it's bringing hacker culture with it.


Via Pedro Fernandes
more...
No comment yet.
Thematic School Systems and Synthetic Biology
Systems Biology includes the study of interaction networks and, in particular, their dynamic and spatiotemporal aspects. It typically requires the import of concepts from across the disciplines and crosstalk between theory, benchwork, modelling and simulation. The quintessence of Systems Biology is the discovery of the design principles of Life. The logical next step is to apply these principles to synthesize biological systems. This engineering of biology is the ultimate goal of Synthetic Biology: the rational conception and construction of complex systems based on, or inspired by, biology, and endowed with functions that may be absent in Nature.
Your new post is loading...
Your new post is loading...
Scooped by Costas Bouyioukos
Scoop.it!

aSSB'15 - Call for Student Workshop Papers

aSSB'15 - Call for Student Workshop Papers | Thematic School Systems and Synthetic Biology | Scoop.it
Costas Bouyioukos's insight:

The Thematic School "Advances in Systems and Synthetic Biology - Modelling Complex Biological Systems in the Context of Genomics" is organising an international workshop for students (PhD ans M2) and post-doctoral fellows. This student workshop offers the opportunity for students and post-doctoral fellows to get an official recognition through peer-review, to discuss their projects and to get feedback from other participants by sharing their experience in a favourable environment.

The M2, PhD or post-doc projects can concern either an introductive presentation, works in progress or some first conclusive results. Topics of interest include any contribution helping to understand or to engineer biological systems by using models coming from physics, chemistry, engineering, computer sciences or mathematics.

Submission procedure: The short paper (between 6 and 14 pages in the book format) should be written in English with at least a M2, PhD student or post-doctoral fellow among the authors. It will be reviewed by the scientific committee of the School. Once the paper is accepted, the student must attend the workshop and present his work in English during a 15 minutes-presentation. Free registration is proposed to one of the authors (M2, PhD, post-doc) of an accepted paper. The short papers will be published in the proceedings book of the School.

Important dates:
- Submission deadline of short articles: December 15, 2014 -- EXTENDED 22nd December
- Notification of acceptance: January 16, 2015
- Revised version of accepted short articles: January 30, 2015

Authors are invited to submit online their article in the submission webpage, after carefully reading the formats webpage.

 

Contact: Pascale Le Gall (pascale.legall@ecp.fr)

more...
No comment yet.
Rescooped by Costas Bouyioukos from CxBooks
Scoop.it!

Book of Extremes: Why the 21st Century Isn't Like the 20th Century (by Ted G. Lewis)

Book of Extremes: Why the 21st Century Isn't Like the 20th Century

~ Ted G. Lewis (author) More about this product
List Price: $27.99
Price: $25.79
You Save: $2.20 (8%)

What makes the 21st century different from the 20th century? This century is the century of extremes -- political, economic, social, and global black-swan events happening with increasing frequency and severity. Book of Extremes is a tour of the current reality as seen through the lens of complexity theory – the only theory capable of explaining why the Arab Spring happened and why it will happen again; why social networks in the virtual world behave like flashmobs in the physical world; why financial bubbles blow up in our faces and will grow and burst again; why the rich get richer and will continue to get richer regardless of governmental policies; why the future of economic wealth and national power lies in comparative advantage and global trade; why natural disasters will continue to get bigger and happen more frequently; and why the Internet – invented by the US -- is headed for a global monopoly controlled by a non-US corporation. It is also about the extreme innovations and heroic innovators yet to be discovered and recognized over the next 100 years.Complexity theory combines the predictable with the unpredictable. It assumes a nonlinear world of long-tailed distributions instead of the classical linear world of normal distributions. In the complex 21st century, almost nothing is linear or normal. Instead, the world is highly connected, conditional, nonlinear, fractal, and punctuated. Life in the 21st century is a long-tailed random walk – Levy walks -- through extreme events of unprecedented impact. It is an exciting time to be alive.

 

 


Via Complexity Digest
more...
No comment yet.
Rescooped by Costas Bouyioukos from CxBooks
Scoop.it!

Nonlinear Dynamics and Quantum Chaos: An Introduction (by Sandro Wimberger)

Nonlinear Dynamics and Quantum Chaos: An Introduction (Graduate Texts in Physics)

~ Sandro Wimberger (author) More about this product
List Price: $69.99
Price: $64.50
You Save: $5.49 (8%)

The field of nonlinear dynamics and chaos has grown very much over the last few decades and is becoming more and more relevant in different disciplines. This book presents a clear and concise introduction to the field of nonlinear dynamics and chaos, suitable for graduate students in mathematics, physics, chemistry, engineering, and in natural sciences in general. It provides a thorough and modern introduction to the concepts of Hamiltonian dynamical systems' theory combining in a comprehensive way classical and quantum mechanical description. It covers a wide range of topics usually not found in similar books. Motivations of the respective subjects and a clear presentation eases the understanding. The book is based on lectures on classical and quantum chaos held by the author at Heidelberg University. It contains exercises and worked examples, which makes it ideal for an introductory course for students as well as for researchers starting to work in the field.

 

 


Via Complexity Digest
more...
No comment yet.
Rescooped by Costas Bouyioukos from Talks
Scoop.it!

▶ Towards a Self-Regulating Society

Towards a Self-Regulating Society. Dirk Helbing, ETH Zurich. 2014/05/20

Via Complexity Digest
more...
Anne Landreat's curator insight, June 17, 7:12 AM

Vers une société auto-régulée. En Anglais.

Scooped by Costas Bouyioukos
Scoop.it!

NBIC/ASCI Course on Algorithms for Biological Networks

NBIC/ASCI Course on Algorithms for Biological Networks | Thematic School Systems and Synthetic Biology | Scoop.it
Costas Bouyioukos's insight:

Interesting course on network science provided by the NBIC in Amsterdam!

more...
No comment yet.
Scooped by Costas Bouyioukos
Scoop.it!

Master 2 in Systems & Synthetic Biology

Master 2 in Systems & Synthetic Biology | Thematic School Systems and Synthetic Biology | Scoop.it
Costas Bouyioukos's insight:

Dear colleagues,
 

The second round of applications for the Master 2 Systems Biology and Synthetic - MSSB - is open until 9 June 2014 on the site www.mssb.fr.


The M2 is offered by the University of Evry -Val d'Essonne , in partnership with AgroParis Tech, Ecole Centrale Paris , Telecom SudParis and Sup'Biotech , it offers an original scientific training in a privileged environment including the proximity of Genopole ®.

 

The MSSB is designed for students wishing to acquire a trans-disciplinary high-level training , regardless of their initial course ( Biology, Computer Science , Applied Mathematics, Physics, Chemistry, Engineering Sciences ) . That is why we are asking for the widest possible dissemination to teachers , managers , and especially students from all scientific and engineering disciplines.
 

We also invite you to share and spread the flyer of the MSSB that you can find at: http://www.issb.genopole.fr/Education/prospectus2014final2.pdf

Thank you in advance for your contribution.

more...
No comment yet.
Rescooped by Costas Bouyioukos from Bioinformatics Training
Scoop.it!

How The Rise Of The "R" Computer Language Is Bringing Open Source To Science

How The Rise Of The "R" Computer Language Is Bringing Open Source To Science | Thematic School Systems and Synthetic Biology | Scoop.it

R is crossing over from just calculating statistics to scientific experimentation--and it's bringing hacker culture with it.


Via Pedro Fernandes
more...
No comment yet.
Scooped by Costas Bouyioukos
Scoop.it!

The Science and Applications of Synthetic and Systems Biology - NCBI Bookshelf

The Science and Applications of Synthetic and Systems Biology - NCBI Bookshelf | Thematic School Systems and Synthetic Biology | Scoop.it
Costas Bouyioukos's insight:

As the Thematic School is about to begin on the coming Monday (24th of March). I will be scooping here some pertinent introductory resources on Systems and Synthetic Biology that are available online.
Starting with a comprehensive set of directives, ideas and strategies as they have been laid down by NCBI in 2011.

more...
No comment yet.
Rescooped by Costas Bouyioukos from CxBooks
Scoop.it!

Signals and Boundaries: Building Blocks for Complex Adaptive Systems (by John H. Holland)

Signals and Boundaries: Building Blocks for Complex Adaptive Systems

~ John H. Holland (author) More about this product
List Price: $20.00
Price: $18.00
You Save: $2.00 (10%)

Complex adaptive systems (cas), including ecosystems, governments, biological cells, and markets, are characterized by intricate hierarchical arrangements of boundaries and signals. In ecosystems, for example, niches act as semi-permeable boundaries, and smells and visual patterns serve as signals; governments have departmental hierarchies with memoranda acting as signals; and so it is with other cas. Despite a wealth of data and descriptions concerning different cas, there remain many unanswered questions about "steering" these systems. In Signals and Boundaries, John Holland argues that understanding the origin of the intricate signal/border hierarchies of these systems is the key to answering such questions. He develops an overarching framework for comparing and steering cas through the mechanisms that generate their signal/boundary hierarchies.

Holland lays out a path for developing the framework that emphasizes agents, niches, theory, and mathematical models. He discusses, among other topics, theory construction; signal-processing agents; networks as representations of signal/boundary interaction; adaptation; recombination and reproduction; the use of tagged urn models (adapted from elementary probability theory) to represent boundary hierarchies; finitely generated systems as a way to tie the models examined into a single framework; the framework itself, illustrated by a simple finitely generated version of the development of a multi-celled organism; and Markov processes.


Via Complexity Digest
Costas Bouyioukos's insight:

John Holland's new book!

more...
António F Fonseca's curator insight, March 23, 5:23 AM

Why communicate, why not, for example, just command?

june holley's curator insight, March 23, 7:43 AM

Just got this. His stuff is usually excellent so I have high hopes.

Rescooped by Costas Bouyioukos from Bioinformatics Training
Scoop.it!

10 Open Education Resource (OER) Tools You Must Know About - EdTechReview™ (ETR)

10 Open Education Resource (OER) Tools You Must Know About - EdTechReview™ (ETR) | Thematic School Systems and Synthetic Biology | Scoop.it
OER(Online Education Resources) are current edtech trend which are providing free online courses from many universities to our teachers and students.

Via Dr. Nellie Deutsch, Heiko Idensen, juandoming, Pedro Fernandes
more...
María Dolores Díaz Noguera's curator insight, February 23, 6:37 AM

OER (Online Education Resources) - Great one

Christoph Meier's curator insight, February 24, 4:55 AM

Eine kurze Zusammenstellung wichtiger OER Ressourcensammlungen

Scooped by Costas Bouyioukos
Scoop.it!

aDVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY

aDVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY | Thematic School Systems and Synthetic Biology | Scoop.it
Costas Bouyioukos's insight:

Dear Colleagues,

 

It is our pleasure to announce the Evry'14 Thematic Research School on "advances in Systems and Synthetic Biology - Modelling complex biological systems in the context of genomics". The upcoming session will take place in Evry on March 24-28, 2014. The program includes conferences (listed below), hands-on tutorials, selected talks by students and post-docs, posters sessions, and meetings between biologists and modellers.
This cross-disciplinary Thematic School on Systems and Synthetic Biology is the thirteenth edition of a series started in 2002. A dedicated website is open at http://epigenomique.free.fr/en/index.php

 

Best wishes,
The Evry'14 Scientific Board,

 

 

EVRY'14 TOPICS AND SPEAKERS:

 

Systems Biology of drug discovery
Nicolas Froloff (Dassault Systems, Velizy, FR) and Cécile Bonnard (Sobios, Boulogne, FR)
Antoine Bril (Centre de Recherches Servier, Suresnes, FR)

 

Modelling methods
Heike Siebert (FU. Berlin, DE)
Olivier Rivoire (U. Joseph Fourier, Grenoble, FR)

 

Metabolism
Ines Thiele (U Luxembourg, LU)
Doug Kell (U. Manchester, UK)

 

Synthetic Biology I - Engineering of regulatory circuits :
Lingchong You (Duke U., Durham NC, US)
Roman Jerala (National Inst. of Chemistry, Ljubljana, SI)

 

Synthetic Biology II - Design:
Jean Peccoud (Virginia Tech, Blacksburg, US)
Guy-Bart Stan (Imperial College London, UK)

 


EVRY'14 SCIENTIFIC BOARD:
Patrick Amar (U. Orsay, FR)
Gilles Bernot (U. Nice-Sophia, FR)
Marie Beurton-Aimar (U. Bordeaux, FR)
Attila Csikasz-Nagy (Edmund Mach Fundation, S. Michele all’Adige, IT)
Jürgen Jost (MPI-MIS Leipzig, DE)
Ivan Junier (CRG, Barcelona, ES)
Marcelline Kaufman (U. Libre de Bruxelles, BE)
François Képès (CNRS Evry, FR), Chair
Pascale Le Gall (Ecole Centrale Paris, FR)
Jean-Pierre Mazat (U. Bordeaux, FR)
Victor Norris (U. Rouen, FR)
William Saurin (Sobios, Sophia-Antipolis, FR)
El Houssine Snoussi (U. Mohammed 5-Souissi, Rabat, MA).
Birgit Wiltschi (Austrian Centre of Industrial Biotechnology, Graz, AT)

 

EVRY'14 EXECUTIVE BOARD
Patrick Amar (U. Orsay, FR), Chair
Gilles Bernot (U. Nice-Sophia, FR)
François Képès (CNRS, Genopole Evry, FR)
Pascale Le Gall (Ecole Centrale Paris, FR)
Jean-Pierre Mazat (U. Bordeaux, FR)
Costas Bouyioukos (BioIntelligence, Evry, FR)
Dominique Zeliszewski (CNRS, Genopole Evry, FR)

more...
No comment yet.
Rescooped by Costas Bouyioukos from CxAnnouncements
Scoop.it!

Introduction to Hypernetworks

Introduction to Hypernetworks | Thematic School Systems and Synthetic Biology | Scoop.it

A new module on the Étoile Platform, by Jeffrey Johnson

 

Based on the course presented at the 4th Ph.D. summer School - conference on “Mathematical Modeling of Complex Systems”, Cultural Foundation “Kritiki Estia”, 14 – 25 July, 2014, Athens.

 

The modern world is complex beyond human understanding and control. The science of complex systems aims to find new ways of thinking about the many interconnected networks of interaction that defy traditional approaches. Thus far, research into networks has largely been restricted to pairwise relationships represented by links between two nodes.

This course marks a major extension of networks to multidimensional hypernetworks for modeling multi-element relationships, such as companies making up the stock market, the neighborhoods forming a city, people making up committees, divisions making up companies, computers making up the internet, men and machines making up armies, or robots working as teams. This course makes an important contribution to the science of complex systems by: (i) extending network theory to include dynamic relationships between many elements; (ii) providing a mathematical theory able to integrate multilevel dynamics in a coherent way; (iii) providing a new methodological approach to analyze complex systems; and (iv) illustrating the theory with practical examples in the design, management and control of complex systems taken from many areas of application.


Via Jorge Louçã, Complexity Digest
more...
No comment yet.
Rescooped by Costas Bouyioukos from CxBooks
Scoop.it!

The Island of Knowledge: The Limits of Science and the Search for Meaning (by Marcelo Gleiser)

The Island of Knowledge: The Limits of Science and the Search for Meaning

~ Marcelo Gleiser (author) More about this product
List Price: $29.99
Price: $18.33
You Save: $11.66 (39%)

Do all questions have answers? How much can we know about the world? Is there such a thing as an ultimate truth?

To be human is to want to know, but what we are able to observe is only a tiny portion of what’s “out there.” In The Island of Knowledge, physicist Marcelo Gleiser traces our search for answers to the most fundamental questions of existence. In so doing, he reaches a provocative conclusion: science, the main tool we use to find answers, is fundamentally limited.

These limits to our knowledge arise both from our tools of exploration and from the nature of physical reality: the speed of light, the uncertainty principle, the impossibility of seeing beyond the cosmic horizon, the incompleteness theorem, and our own limitations as an intelligent species. Recognizing limits in this way, Gleiser argues, is not a deterrent to progress or a surrendering to religion. Rather, it frees us to question the meaning and nature of the universe while affirming the central role of life and ourselves in it. Science can and must go on, but recognizing its limits reveals its true mission: to know the universe is to know ourselves.

Telling the dramatic story of our quest for understanding, The Island of Knowledge offers a highly original exploration of the ideas of some of the greatest thinkers in history, from Plato to Einstein, and how they affect us today. An authoritative, broad-ranging intellectual history of our search for knowledge and meaning, The Island of Knowledge is a unique view of what it means to be human in a universe filled with mystery.


Via Complexity Digest
more...
No comment yet.
Scooped by Costas Bouyioukos
Scoop.it!

Can You Really Teach a MOOC in a Refugee Camp? – Wired Campus - Blogs - The Chronicle of Higher Education

Can You Really Teach a MOOC in a Refugee Camp? – Wired Campus - Blogs - The Chronicle of Higher Education | Thematic School Systems and Synthetic Biology | Scoop.it
Costas Bouyioukos's insight:

Where does this leave MOOCs and the lofty ambition of helping universities use them to educate the world? In the United States, efforts to integrate MOOCs into the existing higher-education credentialing system have been rebuffed. Professors might be amenable to using the courses in place of textbooks, but a recent study suggested that doing that might be more costly than expected. Lately Coursera has focused on making inroads in foreign countries. But how deep can those inroads go?

 

- See more at: http://chronicle.com/blogs/wiredcampus/can-you-really-teach-a-mooc-in-a-refugee-camp/54191#sthash.W4YARJvl.dpuf

more...
No comment yet.
Rescooped by Costas Bouyioukos from Talks
Scoop.it!

Nonlinear Dynamics and Chaos - Steven Strogatz, Cornell University - YouTube

Nonlinear Dynamics and Chaos - Steven Strogatz, Cornell University - YouTube | Thematic School Systems and Synthetic Biology | Scoop.it

This course of 25 lectures, filmed at Cornell University in Spring 2014, is intended for newcomers to nonlinear dynamics and chaos. It closely follows Prof. Strogatz's book, "Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering." The mathematical treatment is friendly and informal, but still careful. Analytical methods, concrete examples, and geometric intuition are stressed. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors. A unique feature of the course is its emphasis on applications. These include airplane wing vibrations, biological rhythms, insect outbreaks, chemical oscillators, chaotic waterwheels, and even a technique for using chaos to send secret messages. In each case, the scientific background is explained at an elementary level and closely integrated with the mathematical theory. The theoretical work is enlivened by frequent use of computer graphics, simulations, and videotaped demonstrations of nonlinear phenomena. The essential prerequisite is single-variable calculus, including curve sketching, Taylor series, and separable differential equations. In a few places, multivariable calculus (partial derivatives, Jacobian matrix, divergence theorem) and linear algebra (eigenvalues and eigenvectors) are used. Fourier analysis is not assumed, and is developed where needed. Introductory physics is used throughout. Other scientific prerequisites would depend on the applications considered, but in all cases, a first course should be adequate preparation

 

Nonlinear Dynamics and Chaos - Steven Strogatz, Cornell University

https://www.youtube.com/playlist?list=PLbN57C5Zdl6j_qJA-pARJnKsmROzPnO9V


Via Complexity Digest
more...
Jean-Michel Livowsky's curator insight, June 2, 3:22 AM

Nonlinear Dynamics and Chaos...

Jean-Michel Livowsky's curator insight, June 2, 3:23 AM

Nonlinear Dynamics and Chaos

Rescooped by Costas Bouyioukos from Open Science
Scoop.it!

3 simple things GitHub can do for science

3 simple things GitHub can do for science | Thematic School Systems and Synthetic Biology | Scoop.it

The topic “GitHub for Science” has been explored quite a few times before and with good reason: it is quite exciting to envision what breakthroughs in scientific collaboration could come from GitHub backed explorations, with substantial capital to invest and a formidable team to execute.

With GitHub’s founder saying that: "In science, I think there’s huge changes that can be made there as well. — Tom Preston-Werner" (...) - by Jure Triglav, 11 January 2014


Via Tree of Science
more...
No comment yet.
Rescooped by Costas Bouyioukos from CxBooks
Scoop.it!

Biological Bits

Biological Bits | Thematic School Systems and Synthetic Biology | Scoop.it

A BRIEF GUIDE TO THE IDEAS AND ARTEFACTS OF COMPUTATIONAL ARTIFICIAL LIFE
Alan Dorin, Animaland, 2014
This guide provides broad coverage of computational Artificial Life, a field encompassing the theories and discoveries underpinning the invention and study of technology-based living systems. It is targetted at students of all ages who are new to Artificial Life or are hoping to gain a broad understanding of its themes.
The book focusses specifically on Artificial Life realised in computer software. Topics include:
• pre-history of Artificial Life
• artificial chemistry
• artificial cells
• organism development
• locomotion
• group behaviour
• evolution
• ecosystem simulation

Biological Bits includes animations and interactive software for experimentation with key processes. Simulations are included to allow exploration of cellular automata, developmental models, group behaviour and ecosystem simulation to aid in illustrating the text. The book can be read cover-to-cover as a general introduction to Artificial Life, or it can serve as a textbook for university or advanced high-school courses.

 

http://www.csse.monash.edu.au/~aland/BiologicalBits.html


Via Complexity Digest
more...
No comment yet.
Scooped by Costas Bouyioukos
Scoop.it!

abSYNTH Bioinformatics Tools

abSYNTH Bioinformatics Tools | Thematic School Systems and Synthetic Biology | Scoop.it
Costas Bouyioukos's insight:

Our tutorial on tools for the systematic analysis of periodicities on genomic sequences run (almost) smoothly yesterday at the 2014 aSSB Evry Thematic School.

 

Find the tools of MEGA team on iSSB webtools server https://absynth.issb.genopole.fr/Bioinformatics/

under the systems biology section.
(registration, simple and free, is required)

more...
Rescooped by Costas Bouyioukos from Complexity - Complex Systems Theory
Scoop.it!

Why Model? Joshua M. Epstein

Why Model? Joshua M. Epstein | Thematic School Systems and Synthetic Biology | Scoop.it

This lecture treats some enduring misconceptions about modeling. One of these is that the goal is always prediction. The lecture distinguishes between explanation and prediction as modeling goals, and offers sixteen reasons other than prediction to build a model. It also challenges the common assumption that scientific theories arise from and 'summarize' data, when often, theories precede and guide data collection; without theory, in other words, it is not clear what data to collect. Among other things, it also argues that the modeling enterprise enforces habits of mind essential to freedom. It is based on the author's 2008 Bastille Day keynote address to the Second World Congress on Social Simulation, George Mason University, and earlier addresses at the Institute of Medicine, the University of Michigan, and the Santa Fe Institute.


Via Bernard Ryefield
more...
António F Fonseca's curator insight, March 23, 5:20 AM

The classical paper about modelling and simulation. Very clear.

Rescooped by Costas Bouyioukos from Papers
Scoop.it!

Shock waves on complex networks

Shock waves on complex networks | Thematic School Systems and Synthetic Biology | Scoop.it

Power grids, road maps, and river streams are examples of infrastructural networks which are highly vulnerable to external perturbations. An abrupt local change of load (voltage, traffic density, or water level) might propagate in a cascading way and affect a significant fraction of the network. Almost discontinuous perturbations can be modeled by shock waves which can eventually interfere constructively and endanger the normal functionality of the infrastructure. We study their dynamics by solving the Burgers equation under random perturbations on several real and artificial directed graphs. Even for graphs with a narrow distribution of node properties (e.g., degree or betweenness), a steady state is reached exhibiting a heterogeneous load distribution, having a difference of one order of magnitude between the highest and average loads. Unexpectedly we find for the European power grid and for finite Watts-Strogatz networks a broad pronounced bimodal distribution for the loads. To identify the most vulnerable nodes, we introduce the concept of node-basin size, a purely topological property which we show to be strongly correlated to the average load of a node.


Via Claudia Mihai, Complexity Digest
more...
Eli Levine's curator insight, March 10, 6:46 PM

Very intuitive and vital to our strategy of defense and preparedness.

 

Start with the homeland.

 

THEN cover the world.

 

If you can do that, honestly.  You'll need popular support of people in order to carry out that kind of feat.

 

Not guns or bombs.

 

Silly generals.

 

Think about it.

Scooped by Costas Bouyioukos
Scoop.it!

chromosomesictp2014

Costas Bouyioukos's insight:

Understanding how the genetic material is organized in space in eukaryotes and bacteria is one of the big challenges of current molecular biology.

 

It is now clear that the complexity of the cellular machinery is so profound that its full comprehension can be pursued only through the joint efforts of scientists coming from cross-related disciplines like molecular biology, systems biology, bioinformatics and physics.

 

The Workshop aims at bringing scientists from these different disciplines in a real interdisciplinary context. The state-of-the-art of experimental, modeling and physical aspects in chromosome organization will be discussed, with particular emphasis on future important challenges.

 

Topics include:

- High-throughput and imaging methods for chromosome structure and dynamics;

- Gene regulatory networks in eukaryotes and bacteria: experiments and modeling;

- Large-scale physical modeling and simulation of chromosome structure;

- System biology of gene expression and regulation.

A poster session is previewed.

The best 4-5 posters will be selected for short (~15 minutes) oral presentations.

more...
No comment yet.
Scooped by Costas Bouyioukos
Scoop.it!

ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY

ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY | Thematic School Systems and Synthetic Biology | Scoop.it
Dear all,
It is our pleasure to announce the Nice'13 Thematic Research School on "Advances in Systems and Synthetic Biology - Modelling complex biological systems in the context of genomics". The upcoming session will take place in La Colle sur Loup (Nice), in the south of France, on March 25-29, 2013. The program includes conferences, hands-on tutorials, selected talks by students and post-docs, and posters sessions. This Thematic School on Systems and Synthetic Biology is the twelfth edition of a series started in 2002. A dedicated website is open at http://epigenomique.free.fr/en/index.php

 


We look forward to seeing you at Nice in March, best wishes! The Nice'13 Scientific Board,  
Nice'13 TOPICS AND SPEAKERS:  

SYNTHETIC BIOLOGY

Day1

Richard Kitney (Dept of BioEngineering, Imperial College London, UK)

Birgit Wiltschi (Austrian Center of Industrial Biotechnology, Graz, AT) 

Day2

Mark Bedau (Reed College, Portland, OR, US)

Ricard Solé (U. Pompeu Fabra, Barcelona, SP) 

 

EVOLUTION OF NETWORKS

Day3

Orkun S. Soyer (U. Exeter, UK)

Dominique Schneider (U. Joseph Fourier, Grenoble, FR)

 

TISSUE MORPHOLOGY AND THE HUMAN TOPONOME PROJECT

Day4

Andreas Dress (MPG-CAS, Shangai, China & MPI Leipzig, DE)

Walter Schubert (MPG-CAS, Shangai, China & U. Magdeburg, DE)

 

SYSTEMS MEDICINE

Day5

Rachel Giles (Univ Medical Center, Utrecht, NL)

Helen Byrne (OCCAM, U Oxford, UK)

 ---

 

NICE'13 SCIENTIFIC BOARD:

Patrick Amar (U. Orsay, FR)

Gilles Bernot (U. Nice-Sophia, FR)

Marie Beurton-Aimar (U. Bordeaux, FR)

Attila Csikasz-Nagy (U. Trento, IT)

Jürgen Jost (MPI-MIS Leipzig, DE)

Ivan Junier (CRG, Barcelona, ES)

Marcelline Kaufman (U. Libre de Bruxelles, BE)

François Képès (CNRS Evry, FR), Chair

Pascale Le Gall (Ecole Centrale Paris, FR)

Reinhard Lipowsky (MPI-KG Potsdam, DE)

Jean-Pierre Mazat (U. Bordeaux, DE)

Victor Norris (U. Rouen, FR)

William Saurin (Sobios, Sophia-Antipolis, FR)

El Houssine Snoussi (U. Mohammed 5-Souissi, Rabat, MA).

--------

NICE'13 EXECUTIVE BOARD

Patrick Amar (U. Orsay, FR), Chair

Gilles Bernot (U. Nice-Sophia, FR)

François Képès (CNRS, Genopole Evry, FR)

Pascale Le Gall (Ecole Centrale Paris, FR)

Jean-Pierre Mazat (U. Bordeaux, FR)

Costas Bouyioukos (BioIntelligence, Evry, FR)

Dominique Zeliszewski (CNRS, Genopole Evry, FR)

more...
No comment yet.