STEM Education models and innovations with Gaming
4.0K views | +0 today
Scooped by Gordon Dahlby
onto STEM Education models and innovations with Gaming!

Rural Students in Florida Get Chance to Become STEM Scholars | Blog

Rural Students in Florida Get Chance to Become STEM Scholars | Blog | STEM Education models and innovations with Gaming |

Phidell Lewis, a senior at a high school in a thinly populated area of the Florida Panhandle, had two big adventures this past summer.

He spent four days with top scientists as part of a group analyzing nanomaterials, and he attended a forum of engineers representing various industries, where he learned about STEM career paths. Both opportunities came about because Phidell is one of hundreds of students from rural communities in Florida who are STEM Scholars—part of a new State initiative to expose students to opportunities in STEM (science, technology, engineering and mathematics) through its Race to the Top grant.

“The STEM program allows our students to make better sense of what they’re learning on a day-to-day basis, and it helps them become better-prepared employees for our local industries,” said Ralph Yoder, superintendent of Calhoun County.

In other efforts to boost the skills of Florida’s labor force, the State is investing in training college graduates in STEM fields to become teachers, and encourages them to share that knowledge by becoming an educator.

“Funds from Florida’s Race to the Top award have expedited efforts already underway to better prepare students for college and careers,” said Brenda Crouch, Program Manager for the FloridaLearns STEM Scholars Program.”  It is a win for Florida’s economic future.

Students chosen to participate in the program are paired with mentors and receive intensive hands-on experiences with STEM professionals, rigorous courses during the school year, and opportunities to collaborate with other advanced students. Pam Stewart, Florida’s Commissioner of Education, said that the State had seen a 49 percent enrollment increase in accelerated STEM courses and STEM career academies since 2009. In some rural counties, students received industry certifications for the first time in 2013. More than 1,000 high school students have participated in the STEM Scholars program since 2012. Roderick Robinson, who mentors students in the program in Franklin County, said watching his students’ interest in STEM grow has been a “phenomenal experience.” Prior to the STEM program, many of his students were unfamiliar with STEM careers. After participating in the program, however, Robinson estimates that 95 percent of his students are now interested in STEM majors.

One component of the STEM Scholars program is a four-day Summer Challenge that gives students opportunities to work with peers to solve problems in a variety of technical fields under the guidance of professional scientists and engineers. This past summer students worked on problems involving ecology, physics, inorganic chemistry, photonics, marine habitats, underwater robotics and alternative energy sources.

Jordan Sparks, a 12th-grader is a STEM Scholar from Freeport High School, east of Pensacola on the Gulf of Mexico. He was one of nine students from Walton County who participated in a summer project at the nearby Choctawhatchee Bay to monitor water quality, learn about sea grass and restore oyster reefs.

“My favorite part was looking at how the little things we do can impact an entire ecosystem,” said Jordan, who is now considering a career in marine biology. “It felt good to fix something that other people had broken. It’s really opened my eyes to the world of science.”

Jordan’s mentor, Linda Young, said the program has provided students in the area with hands-on learning opportunities that they would not have had otherwise. She emphasized the value of the opportunity for students to work with others on demanding projects. “Not only does it improve STEM skills, but it also gets students outside of their comfort zone and working with other students as part of a team.”

Gordon Dahlby's insight:

Read full story:


Victoria Brandon's curator insight, January 18, 2014 4:47 PM

It is interesting to see what other states are doing with STEM education.

STEM Education models and innovations with Gaming
STEM (Science Technology Education & Mathematics) K-20  education models and innovations
Curated by Gordon Dahlby
Your new post is loading...
Your new post is loading...
Scooped by Gordon Dahlby!

Dancing with Robots

Well before the Great Recession, middle class Americans questioned the ability of the public sector to adapt to the wrenching forces re-shaping society. And as we’ve begun to see a “new economic normal,” many Americans are left wondering if anyone or any institution can help them, making it imperative that both parties—but especially the self-identified party of government—re-think their 20th century orthodoxies. With this report Third Way is continuing NEXT—a series of in-depth commissioned research papers that look at the economic trends that will shape policy over the coming decades. In particular, we’re bringing this deeper, more provocative academic work to bear on what we see as the central domestic policy challenge of the 21st century: how to ensure American middle class prosperity and individual success in an era of everintensifying globalization and technological upheaval. It’s the defining question of our time, and one that as a country we’ve yet to answer. Each of the papers we commission over the next several years will take a deeper dive into one aspect of middle class prosperity—such as education, retirement, achievement, and the safety net. Our aim is to challenge, and ultimately change, some of the prevailing assumptions that routinely define, and often constrain, Democratic and progressive economic and social policy debates. And by doing that, we’ll be able to help push the conversation towards a new, more modern understanding of America’s middle class challenges—and spur fresh ideas for a new era. In Dancing with Robots, Frank Levy and Richard Murnane make a compelling case that the hollowing out of middle class jobs in America has as much to do with the technology revolution and computerization of tasks as with global pressures like China. In so doing, they predict what the future of work will be in America and what it will take for the middle class to succeed. The collapse of the once substantial middle class job picture has begun a robust debate among those who argue that it has its roots in policy versus those who argue that it has its roots in structural changes in the economy. Levy and Murnane delve deeply into structural economic changes brought about by technology. These two pioneers in the field (Murnane at Harvard’s Graduate School of Education and Levy at MIT) argue that “the human labor market will center on three kinds of work: solving unstructured problems, working with new information, and carrying out non-routine manual tasks.” The bulk of the rest of the work will be done by computers with some work reserved for low wage workers abroad. They argue that the future success of the middle class rests on the nation’s ability “to sharply increase the fraction of American children with the foundational skills needed to develop ...
Gordon Dahlby's insight:
Societal implications
No comment yet.
Scooped by Gordon Dahlby!

Under Pressure: New technique could make large, flexible solar panels more feasible — Eberly College of Science

Under Pressure: New technique could make large, flexible solar panels more feasible — Eberly College of Science | STEM Education models and innovations with Gaming |
A new, high-pressure technique may allow the production of huge sheets of thin-film silicon semiconductors at low temperatures in simple reactors at a fraction of the size and cost of current technology. A paper describing the research by scientists at Penn State University appears May 13, 2016 in the journal Advanced Materials.
"We have developed a new, high-pressure, plasma-free approach to creating large-area, thin-film semiconductors," said John Badding, professor of chemistry, physics, and materials science and engineering at Penn State and the leader of the research team. "By putting the process under high pressure, our new technique could make it less expensive and easier to create the large, flexible semiconductors that are used in flat-panel monitors and solar cells and are the second most commercially important semiconductors."

Thin-film silicon semiconductors typically are made by the process of chemical vapor deposition, in which silane -- a gas composed of silicon and hydrogen -- undergoes a chemical reaction to deposit the silicon and hydrogen atoms in a thin layer to coat a surface. To create a functioning semiconductor, the chemical reaction that deposits the silicon onto the surface must happen at a low enough temperature so that the hydrogen atoms are incorporated into the coating rather than being driven off like steam from boiling water. With current technology, this low temperature is achieved by creating plasma -- a state of matter similar to a gas made up of ions and free electrons -- in a large volume of gas at low pressure. Massive and expensive reactors so large that they are difficult to ship by air are needed to generate the plasma and to accommodate the large volume of gas required.
No comment yet.
Scooped by Gordon Dahlby!

How Teens Benefit From Reading About the Struggles of Scientists

How Teens Benefit From Reading About the Struggles of Scientists | STEM Education models and innovations with Gaming |
What kind of people can become scientists?  When a group of researchers posed that question to ninth- and 10th-graders, almost every student gave empowering responses, such as “People who work hard” or “Anyone who seems interested in the field of science.”

But despite these generalized beliefs, many of these same students struggled to imagine themselves as scientists, citing concerns such as “I’m not good at science” and “Even if I work hard, I will not do well.”

It’s understandable that students might find imagining themselves as scientists a stretch — great achievements in science get far more attention than the failed experiments, so it’s easy to see a scientist’s work as stemming from an innate talent. Additionally, several science fields have a long way to go to be more inclusive of women and underrepresented minorities.  

But for high school students, learning more about some of the personal and intellectual struggles of scientists can help students feel more motivated to learn science. Researchers at Teachers College, Columbia University and the University of Washington designed an intervention to “confront students’ beliefs that scientific achievement reflects ability rather than effort by exposing students to stories of how accomplished scientists struggled and overcame challenges in their scientific endeavors.”

During the study, the students read one of three types of stories about Albert Einstein, Marie Curie and Michael Faraday:

Intellectual struggle stories: stories about how scientists “struggled intellectually,” such as making mistakes while tackling a scientific problem and learning from these setbacks.
Life struggle stories: stories about how scientists struggled in their personal lives, such as persevering in the face of poverty or lack of family support.
Achievement stories: stories about how scientists made great discoveries, without any discussion of concurrent challenges.
Researchers found that students who heard
No comment yet.
Scooped by Gordon Dahlby!

ASCD Express 11.17 - How to Feed Your Makers

Margaret Koenig 

"Can we just keep working on this through recess?" If you are a teacher who has integrated making into your instruction, hearing that phrase from students isn't rare at all.
Making (also known as "tinkering" and "hacking") has been a movement for many years, but one only recently embraced by the education community. Makers build something new, often out of repurposed materials, with the intention of solving problems or expressing themselves in a creative way. In education, giving students the opportunity to design and build something as an alternative to completing a worksheet or book report lights a fire within them, no matter their age.
Science Hacks
Recently, after teaching a lesson on Newton's laws of motion and basic forces, I challenged my 5th grade students to create a marble run using materials from our school makerspace. To engage them even more, I timed the students' marble runs. This time, the slowest moving marble run won the design competition. This twist—incorporating friction to slow down the marble—added an extra layer of challenge and engagement. After all, how often do we value being the slowest?
As students were planning their initial designs, most were counting on using cardboard tubes from paper towels and toilet paper rolls for the "track." Because our makerspace is mainly stocked by donations from students' families, we sometimes run short on materials. This was the case for the paper tubes—there were none in stock! My students had to come up with more creative ways to create a high friction track for their marbles. Many used bubble wrap, crumpled aluminum foil, or fabric. One group even used toothpicks as spikes to create friction.
After the students finished building their tracks and timing the runs, I asked them to reflect on the evolution of their designs. In most cases, the finished products bore very little resemblance to the original designs. As the students built, they tested, which allowed them to evaluate and redesign as they went. What better way to integrate physics content, collaboration, conservation (through upcycling materials), and the engineering design process than to make something in school?
Reading Hacks
Making in schools is by no means limited to science content. In fact,

No comment yet.
Scooped by Gordon Dahlby!

From STEM to STEAM: What Works, Exemplary Practices, Schools, and Models

From STEM to STEAM: What Works, Exemplary Practices, Schools, and Models | STEM Education models and innovations with Gaming |
Driving Question: What makes a STEM School

What makes a STEM school? That is the question that is most often asked. I have literally sat on so many panels (K12,Higher Ed, political, policy, and industry), participated in meetings from the White House to the schoolhouse, been active in research think tanks and included in numerous case studies to define what STEM is and what makes a STEM school and we are still asking this question.  Although some are attempting to answer this question by justifying the literal acronym for the taxonomy of STEM, I believe this is too simplistic and takes away from the true mission and meaning of STEM.

Because this blog gives me the chance, I will use my 10 years as a highly successful, inclusive, whole STEM school practitioner to present my answer to this question. I have told the beginning of this story thousands of times, but it bares repeating now as another STEM story is filling the the ears of some and attempting a new, exclusive definition in an attempt to hoist selective STEM schools as the Gold Standard for STEM.  As a passionate STEM proponent for ALL I take issue with this attempt to define STEM as good only for the affluent and already successful student. This post will explain why.


In 2006, the initial STEM campaign was launched in Texas as well as in a few other States to address the shortage of STEM workers entering into the workforce. The message delivered expressed a dire shortage of minority and underrepresented workers needed to close the STEM gap. Our charge as pioneer STEM leaders and educators was simple, yet daunting: to get underrepresented students to take more science, technology, engineering, and math courses in order to help expose them to STEM curriculum and develop an interest and desire to pursue STEM careers and STEM college pathways.  In fact, in order to be a designated a State STEM school in the few States that had designations, one had to meet qualifying indicators to serve a majority of underrepresented students that qualified as low socioeconomic status and have an inclusive open enrollment school with no selective criteria to attend. We had our mission and for the most part implementation was left to individual schools how best to do this.

As the architect of this new inclusive whole Texas STEM (TSTEM) school design, I needed to attract underrepresented students who for the most part were not successful in math and science, had little interest in STEM to leave their current school. They had to join this new STEM school to take more math and science courses, close the achievement gap, have student success where there had been none before, and continue to meet the higher operating standards of success with good attendance, less discipline, high graduation rates, and increased high-stakes student test scores.  As an experienced high school principal, I knew there was only way to make this happen and that was to redesign the entire STEM high school concept to meet all these needs and make it truly an inclusive whole STEM school.

With help, I designed, implemented and opened one of the first 31 STEM schools in Texas. Little did I know then that there were only a few hundred STEM schools across the country at that time and very few schools, if any to model STEM after. This STEM school redesigning phase shaped my whole definition of STEM and still drives my passion of STEM to this day.


How was I going to find underrepresented students who had not been successful in math and science to s school that would ask them to take more math and science? This was the crux of the challenge. Being one of the first STEM schools in the country, I knew we had to have a story that would be a model for others. That part was easy. We were going to take all students without any selection criteria, give them more science, technology, engineering, math, and they were going to be successful.

More wasn’t enough. As part of my redesign efforts, I had to answer a nagging question. Why were these students for the most part unsuccessful in math and science,  especially with the countless hours and attempts at interventions provided in their traditional schools? The traditional direct teach model of instruction was part of the culprit. Many of these students were either bored, lost, or disengaged from lecture “sit and get” and the worksheets that followed.  Our answer was to change how we taught and helped these students learn not only more math and science, but math and science that was more rigorous. The answer came in a synthesis of practices which provide a new model of instruction and other ingredients that would change how the students learned.

Project-Based Learning. The first redesign STEM was in pedagogy from traditional direct teach to Project Based Learning. Curriculum would be delivered in teacher-made authentic projects designed with students’ interests at the core of their inquiry. These projects grouped students to work and learn collaboratively. Projects were active, hands-on learning experiences that not only provided the required knowledge, but also the opportunities for the application of that knowledge to solve authentic problems. This 100% PBL implementation would provide a different way of  learning for each student in an average of 50 projects a year.
21st Century Essential Skills. After further questioning STEM industry executives asking “What makes a person successful in today’s organizations?”, I found that  the 21st Century “ESSENTIAL” skills of written and oral communication, collaboration, critical thinking/problem solving, and creativity/self efficacy/agency were almost unanimous nominees as the most important qualities of a successful employee. I was told by industry leader after leader, “We will teach them what they need to know about our company and products. We cannot teach them these real essential skills when they come to us.”
I concluded A STEM school must incorporate all of these 21st century essential skills to be designed, implemented, and assessed in units of learning. I ensured that we incorporated these essential 21st century skills in every project so as to prepare students for the real world by implementing these essential learning outcomes in every project. These outcomes were easily measured using a created rubric for each outcome as well as the observable student’s progress in public speaking skills, direct ownership of each project, and the cooperation within each group of students to ensure all group members were successful as well as each student’s voice in choice was heard in the end products.

A Learning First Schedule. A critical STEM redesign change was the easiest to communicate with the addition of rigorous science, technology, engineering, and math courses for all students. What was not easy was implementation of additional classes within the confines of a school day and the approved district school calendar while determining the PBL scheduling and how that would work in an all PBL environment.
No comment yet.
Scooped by Gordon Dahlby!

Statewide Grant Program Will Spread Robotics Education to More Indiana Elementary Schools

Statewide Grant Program Will Spread Robotics Education to More Indiana Elementary Schools | STEM Education models and innovations with Gaming |

A statewide grant program will give students the opportunity to learn about robotics both inside and outside the classroom.

Over the next two years, the Indiana Department of Workforce Development will put $300,000 in General Assembly career and technical education funds toward the endeavor in the heavy manufacturing state. And the department, along with a number of organizations — including the TechPoint Foundation for Youth, the Robotics Education and Competition Foundation (REC), VEX Robotics, Project Lead the Way and NASA — are starting more robotics competitions in Indiana, and exposing students to robotics in their classes.

The reason? Indiana needs more skilled workers in science, technology, engineering and math (STEM), and robotics' competitions provide a great opportunity for students to learn teamwork and collaboration skills that will be useful in their future careers, said Dennis Wimer, associate chief operating officer at the Indiana Department of Workforce Development.

For the 2016-17 school year, 400 elementary schools across the state will be able to apply for grants that will cover teacher training, robotics kits, team registration fees for competitions and educational materials for the classroom. The next year, 400 schools will be able to apply for grants as well, and organizers plan to expand their efforts to middle and high school in subsequent years.

No comment yet.
Scooped by Gordon Dahlby!

MakerBot Thingiverse

MakerBot Thingiverse | STEM Education models and innovations with Gaming |

Thingiverse is a universe of things. Download our files and build them with your lasercutter, 3D printer, or CNC.

What is Thingiverse? MakerBot's Thingiverse is a thriving design community for discovering, making, and sharing 3D printable things. As the world's largest 3D printing community, we believe that everyone should be encouraged to create and remix 3D things, no matter their technical expertise or previous experience. In the spirit of maintaining an open platform, all designs are encouraged to be licensed under a Creative Commons license, meaning that anyone can use or alter any design.

Gordon Dahlby's insight:
Sponsored 3D object idea spot, but grab and print isn't a great value-add for learning.
No comment yet.
Scooped by Gordon Dahlby!

12 Inspiring Women In Data Science, Big Data - InformationWeek

12 Inspiring Women In Data Science, Big Data   - InformationWeek | STEM Education models and innovations with Gaming |
Women make up half the population, yet it's been well documented that they don't come close to parity in STEM fields. Could the rise of big data and data science offer women a clearer path to success in technology?
No comment yet.
Scooped by Gordon Dahlby!

Here Are The 6 Most Important Tech Trends According to Alphabet/Google's Eric Schmidt

Here Are The 6 Most Important Tech Trends According to Alphabet/Google's Eric Schmidt | STEM Education models and innovations with Gaming |
Eric Schmidt, executive chairman of Google’s parent, Alphabet, has spent his entire career predicting how technology can change the world. While traveling the globe as essentially the company’s global ambassador, meeting with world leaders and giving talks, he isn’t slowing down on espousing about what he says are the most important future technologies.

Schmidt laid out six game changing technologies, or moonshots, as he called them, that he says will improve important parts of society on Monday. Thousands of investors and business executives filled a ballroom in Los Angeles at the Milken Institute’s Global Conference to hear him speak.
No comment yet.
Scooped by Gordon Dahlby!

Flinn’s List of the 40 Devils The Flinn "40 Devils"

Flinn’s List of the 40 Devils The Flinn "40 Devils" list includes those chemical that are routine sources of trouble on school premises. Examples are the bottle of bromine that is slowly destroying all the metal in its immediate vicinity, the broken bottle of butyric acid, the stench of which forces evacuation of the school building, or formaldehyde, the source of constant inquiries from biology teachers. The point of the "40 Devils" list is simple. If you are looking for a place to start getting chemical substances under control, use this list as your guide.  The first step is to determine if you have any of these substances.  The second step is to familiarize your self with their hazardous character by reviewing the detailed listing for each substance in the Flinn Scientific Catalog/Reference Manual.  The third step is to contain and control these devil chemicals by using plastic bags and paint cans to properly store them.
No comment yet.
Scooped by Gordon Dahlby!

Closing the Equity Gap Through Capstone Projects

Closing the Equity Gap Through Capstone Projects | STEM Education models and innovations with Gaming |
We are all concerned about the growing gap in education equity. Sadly, students are experiencing a vast difference in education quality depending on where they live, with many urban core schools lacking the resources available to the wealthy suburbs. Although the root causes stem more from using a school funding model based on real estate taxes and on lack of socioeconomic mobility, the gap is apparent to all. The good news is that there are steps we can take to reduce it, even while working at the macro level to change policy for the long term.

Personalized learning that’s integrated in tightly to the local community is one way we can effect change, and give all kids the same opportunities.

Capstone projects, when required of all seniors to graduate, give all students access to the business and civic community. All kids get a chance to practice the same agency skills, and all kids gain access to engaged, professional adults. Capstones demystify the working world for students, and help them understand what’s possible. It can also open the eyes of the community itself, as professionals engage with real students from a variety of backgrounds, including some unlike their own.

Educators can tend to think about implementing community-education partnerships as their issues to lead and resolve, but looking at the problem from the other way around can help get a new program off the ground. Businesses and trade organizations want to help students, but are largely unaware of the need. Many companies have community engagement goals or even requirements for their employees, and welcome new options to provide for them.

Successful capstone programs ensure that the students are actually in the workplace, whether it’s a construction office, manufacturing site, health care facility or a business office. It’s important to teach agency skills before the project starts: how to network, participate in a meeting, set goals, and communicate through business email. To gain buy-in between business in your community and your school district, engage with the businesses at the top level, then have management communicate the opportunity down through their teams. Businesses can submit project ideas to engage the community even further. Team-based capstones are a good option if such projects are large, and are actually more reflective of a real-world experience.

Take care, though, to continually review the process with an eye towards equity. Schools and students with ready access to family professionals and resources will use them, and those without may have a harder time making the right connections. Actively pairing students with professionals and managing the matching process is one way to guard against this.

Capstone projects can serve to bring an entire community together. When implemented, such cross-pollination of real people across societal segments builds the fiber of a healthy, vibrant community for the long term.

Written by: Catherine Allshouse
No comment yet.
Scooped by Gordon Dahlby!

STEM news site for students launches - eCampus News

STEM news site for students launches - eCampus News | STEM Education models and innovations with Gaming |
Science and Technology Research News (STRN), a site posting news with discoveries from researchers around the world, has been created for STEM students and faculty.

Designed specifically for those students interested in pursuing science or technology careers, STRN’s objective is to help students stay on top of the latest developments in of their area of study.

“We gather news from the research community to help students stay up-to-date on the latest discoveries and developments going on all around the world,” said publisher, Ray Rasmussen. “We sort through hundreds of news items everyday from great research universities like: MIT, Caltech, Cal Berkeley, Stanford, UCL, Hokkaido, Twente, McGill, KAIST, along with hundreds more. In addition, we gather news from dozens of government research labs in the U.S., Europe and Asia along with items from innovative companies like IBM, Google and Siemens.

For students choosing a STEM curriculum, STRN provides a daily snapshot of the many discoveries and innovations from leading scientists and technologists. STRN was created to offer students a comprehensive view of their area of study and, perhaps, open them up to another area of interest. “Very few students entering university have a good grasp on what really interests them. Sure, they have an aptitude for science or technology but, for many, their exposure to all the different facets of what STEM offers, is limited. STRN gives them an opportunity to see what else is out there. It’s our hope that we can help them discover their passion,” said Rasmussen.
Gordon Dahlby's insight:
No comment yet.
Scooped by Gordon Dahlby!

When Kids Have Structure for Thinking, Better Learning Emerges

When Kids Have Structure for Thinking, Better Learning Emerges | STEM Education models and innovations with Gaming |

Amidst the discussions about content standards, curriculum and teaching strategies, it’s easy to lose sight of the big goals behind education, like giving students tools to deepen their quantitative and qualitative understanding of the world. Teaching for understanding has always been a challenge, which is why Harvard’s Project Zero has been trying to figure out how great teachers do it.

Some teachers discuss metacognition with students, but they often simplify the concept by describing only one of its parts — thinking about thinking. Teachers are trying to get students to slow down and take note of how and why they are thinking and to see thinking as an action they are taking. But two other core components of metacognition often get left out of these discussions — monitoring thinking and directing thinking. When a student is reading and stops to realize he’s not really understanding the meaning behind the words, that’s monitoring. And most powerfully, directing thinking happens when students can call upon specific thinking strategies to redirect or challenge their own thinking.

“When we have a rich meta-strategic base for our thinking, that helps us to be more independent learners,” said Project Zero senior research associate Ron Ritchhart at a Learning and the Brain conference. “If we don’t have those strategies, if we aren’t aware of them, then we’re waiting for someone else to direct our thinking.”

Gordon Dahlby's insight:
More nomenclature for students?
No comment yet.
Scooped by Gordon Dahlby!

The Maker Movement Isn't Just About Making and Electronics: EdSurge Talks to MIT's Mitch Resnick

The Maker Movement Isn't Just About Making and Electronics: EdSurge Talks to MIT's Mitch Resnick | STEM Education models and innovations with Gaming |
Mitchel Resnick (or Mitch, for short) knows his making—from a lot of different angles. And he’s not too bought into the whole “electronics and gadgets” side of the maker movement.

Resnick has been in this business for more than 30 years, and it’s safe to say that he’s seen the maker movement—and the state of STEM education, in general—go through its phases, its ups and downs. He’s currently the LEGO Papert Professor of Learning Research and head of the Lifelong Kindergarten group at the MIT Media Lab, where he and his team have developed products familiar to many a science educator: the "programmable brick" technology that inspired the LEGO Mindstorms robotics kit, and Scratch, an online computing environment for students to learn about computer science.

It's not the media or materials, but what you do with it.
Mitch Resnick, MIT Professor and head of Lifelong Kindergarten group
Is making something that every school should be doing—and are all interpretations of “making” of equitable value? EdSurge sat down with Resnick in his office at the MIT Media Lab to learn more, and to find out how he and his team are working to bring more creativity into the learning process.

E: Thanks for sitting down with us, Mitch. Let’s start off with a big question: When you have so many students in existence… how do you work with so many different types of learners?

A: Rather than trying to think how we educate all of these students, I think "how can we create opportunities for learning?" The spaces, the technologies that support everyone having rich learning experiences? Of course, everyone is going to have different pathways to learning, so you have to be aware that one size doesn't fit all.
No comment yet.
Scooped by Gordon Dahlby!

Get Involved - National Week of Making

Get Involved

There are many different ways that you can get involved and participate in the run up to and during the Week of Making!

Tell your Story as a Maker, Maker Educator or Maker Advocate

Are you a Maker with an innovative project or an interesting story? Do you know someone who has been an amazing advocate for supporting the Maker community in your city or town? If so, we want to get to know him/her. In the run up to the Week of Making, we’ll be featuring profiles of incredible Makers, Maker Educators and Maker Advocates across the U.S. on the Week of Making site.

To tell your story, submit a profile here.

Host an Event

Whether you’re one person, a maker space, community center, university, company or other organization, you can organize an event during the week and invite others in your community to participate. The event can be big or small, for students or adults, or both. It doesn’t matter as long as you’re having fun and making something! Make sure submit your event to this site here, so others can learn about it.

If you need some ideas, below is a snapshot of amazing events that took place throughout the country in 2015:

East Central High School (San Antonio, TX) offered an electronics and hardware programming course.
Muncie Public Library (Muncie IN) hosted a series of courses focused on designing, prototyping, and building things that fly.
Hofstra University (Hempstead, NY) organized iDesign student conferences to engage 6th-9th graders in designing and creating digital games.
The Alamance Makers Guild (Burlington, NC) hosted the Burlington Makeover Takeover, a free community celebration where Makers shared their projects, from wood turning to upcycled toys.
To get your event noticed, submit it here.

Attend an Event

Find an event in your community that you’re interested in and participate! Extra brownie points if you bring friends or family members with you. To check out the events near you, visit here.
No comment yet.
Scooped by Gordon Dahlby!

ASCD Express  What's All the Fuss About Coding?

When I was a young musician learning to play the vibraphone, I remember listening to Milt Jackson and thinking I could never make an instrument sing like he did. While I never did reach his level of genius, I did become proficient enough to earn a master's degree in music performance and play a concerto as a soloist with the Indianapolis Symphony (ironically, the piece was originally written for Milt Jackson).
Likewise, people who don't know how to code see a complicated process that must surely be beyond their abilities. They think, "I could never design and write the code for an iPhone app." True: there are some genius programmers. But you don't need to be a genius to program.
So why should teachers take valuable time away from math and science instruction to involve their students in coding? Simply put, coding applies math and science to the creation of something tangible and useful. It empowers students to move from passive recipients and consumers of learning to true producers of content. Coding puts students in control of their devices.
Hour of Code, Code Academy,—many resources to support more coding in the classroom exist. As teachers, where should you start? Here are some tips.
Gordon Dahlby's insight:
Simply put, coding applies math and science to the creation of something tangible and useful. It empowers students to move from passive recipients and consumers of learning to true producers of content. Coding puts students in control of their devices.

No...not that simple, IMHO, but is simply put.
No comment yet.
Scooped by Gordon Dahlby!

MakeHers Report

MakeHers Report | STEM Education models and innovations with Gaming |
New Research Findings: Engaging Girls and Women in Technology Through Making
No comment yet.
Scooped by Gordon Dahlby!

Alternative pathways: Perks, but there also many pitfalls - eCampus News

Alternative pathways: Perks, but there also many pitfalls - eCampus News | STEM Education models and innovations with Gaming |
Career and Technical Education (CTE), competency-based learning, digital badging, credentialing, and coding bootcamps are becoming some of the fastest-growing, and oft-discussed, alternative pathways for learning in higher education—mainly due to the promise of entry in today’s increasingly selective job market. But do these non-traditional on-ramps to postsecondary ed always lead to successful implementations within institutions; and are students really getting their investments’ worth?

In our recent Symposium, two higher education experts—one specializing in education research and one in policy analysis—discuss the overarching benefits of alternative higher-ed pathways, as well as the roadblocks and pitfalls to their success.

Though both agree that non-traditional learning pathways are needed for today’s diverse student body seeking entry into the job market, Alana Dunagan, higher education researcher at the Clayton Christensen Institute discusses traditional programs’ problems in implementation and adaptation of multiple career-based pathways.
No comment yet.
Scooped by Gordon Dahlby!

Eleven @MinecraftEDU Educators To Follow | @Microsoft_EDU · TeacherCast Educational Broadcasting Network by Jeffrey Bradbury

Eleven @MinecraftEDU Educators To Follow | @Microsoft_EDU · TeacherCast Educational Broadcasting Network by Jeffrey Bradbury | STEM Education models and innovations with Gaming |

Here are 11 educator resources to follow on twitter if you are interested in Minecraft Education. |

No comment yet.
Scooped by Gordon Dahlby!

Ask a Scientist: When Are Children Ready to Learn Abstract Math?

Ask a Scientist: When Are Children Ready to Learn Abstract Math? | STEM Education models and innovations with Gaming |
Zane Wubbena is a doctoral candidate in education at Texas State University. He studies cognition as it relates to early mathematics. As a former special education teacher, Wubbena wanted to know how brain development affected students' ability to comprehend the math curriculum for their grade level. The conversation below has been edited for length and clarity.

What led you to be interested in studying early-childhood math?

I was troubled by this problem that I found in almost every grade.

For example, in basic addition and subtraction problems, [teachers would ] maybe hand out a sheet and have children work through these addition and subtraction problems without really having a background into each child and whether or not they have developed the concrete skills to be able to do more abstract reasoning.

Do they have one-to-one correspondence where they understand that every time I say if I touch the number 1, this means 1? [Do they know] when I hold two marbles in my hand that means there are two marbles? From 1 to 9, are they able to understand that 1 comes before 2, and 3 comes after 2?

That led me to my research question for the study I conducted: How can we ensure that the expectations we place on children are appropriate for each child at that grade level?

Please explain how your experiment worked.

I wanted to look at 1st grade children. That's a very pivotal year when kids are really expected to become fluent in mathematics, specifically addition and subtraction. Fluency is really indicative of skill mastery, being able to master something or to suggest that I'm ready to move on to more complex mathematical operations.
No comment yet.
Scooped by Gordon Dahlby!

NISE announces STEM certification, degree programs

NISE announces STEM certification, degree programs | STEM Education models and innovations with Gaming |
Through a partnership with American College of Education, teachers earning the National Certificate for STEM Teaching with NISE gain access to an affordable, accelerated master’s degree in STEM Leadership
As science, technology, engineering and mathematics (STEM) jobs continue to grow, the U.S. Department of Education has set a priority to increase the number of students and teachers who are proficient in these fields.

Yet, as school districts launch STEM schools and programs, there has been no easy way to certify that they are actually prepared to teach STEM — until now. Accelerate Learning has announced the formation of the National Institute for STEM Education (NISE).

Headquartered in Houston, NISE was conceived by practicing educators and is based on thousands of hours of research, professional development, curriculum design and educational leadership. Using an online learning platform and unique digital portfolio, NISE offers a STEM certification program for campuses and districts, as well as teachers. Through the self-paced, competency-based programs, participants can learn and apply their proficiency in the key domains of STEM teaching that are essential to creating effective classrooms that increase student achievement.

For campuses and districts, the program leading to the National Certificate for STEM Excellence helps participants develop an in-depth understanding of what it takes to transform into a STEM campus or district of excellence. The process includes building leadership capacity, certifying teachers, validating authenticity through observation and learning through data-driven professional development.

For teachers and educators, it certifies that individuals are incorporating the 15 key teacher actions necessary to create a STEM classroom of excellence. Participants are guided by academic coaches to ensure the proper support for successful completion of the program and their portfolio artifacts, which demonstrate proficiency in the 15 action areas.
No comment yet.
Scooped by Gordon Dahlby!

Big Data Review 2015: A Detailed Investigation into the Maturing of Big Data Analytics

Big Data Review 2015: A Detailed Investigation into the Maturing of Big Data Analytics | STEM Education models and innovations with Gaming |
2015 was the year that Big Data went from being something that a few bigger organizations were doing to being something that a majority of organizations were either doing or at the very least actively considering. The maturing of cloud-based Big Data services has made Big Data analytics a feasible reality for organizations of all sizes. The benefits of Big Data are more widely understood – driven by the increasing numbers of case studies available. Vendors of Big Data software and services have become better at explaining exactly how their solutions benefit businesses.

The Computing Big Data Review 2015 summarizes the results of a comprehensive research program undertaken by Computing during the first quarter of 2015.
Gordon Dahlby's insight:
Data analysis and representation as a STEM activity
No comment yet.
Scooped by Gordon Dahlby!

Managing Chemical Wastes in the High School Classroom | Chemistry Solutions, Vol. 2, Issue 4

Managing Chemical Wastes in the High School Classroom | Chemistry Solutions, Vol. 2, Issue 4 | STEM Education models and innovations with Gaming |
By Jennifer Panther Bishoff
When it’s time to dispose of chemicals in the laboratory, high school teachers have many sources for proper disposal guidelines… perhaps too many sources, if you ask me. While researching disposal issues for my own lab, I discovered that many colleges and universities have their own carefully designed protocols—and some even have people specifically tasked with overseeing the process and answering related questions.

Unfortunately, many high school teachers do not have such helpful guidance and resources. If your school’s or district’s Chemical Hygiene Plan (CHP) does not clearly outline disposal procedures (or if it doesn’t have a formal CHP to begin with), you may face a lengthy and frustrating process for finding the information you need to clean up your lab. This is especially true for teachers who don’t have a chemistry degree; vague recommendations to “weed out oxidizers” or “look up hazardous chemicals” don’t mean much if you can’t remember the necessary terminology or don’t have a strong chemistry background.

Some reasons to dispose of a chemical
It is expired. Many companies now print expiration or purchase dates on their chemicals. Fischer Scientific recommends disposal after five years.
Its condition has degraded. For example, if a hygroscopic chemical has taken on water, or a container was not sealed properly, disposal is recommended.
You don’t use/need it. Keep track of the chemicals you use in demonstrations and labs, and dispose of those no longer required.
It carries hazards to your laboratory instruction that outweigh the benefits.
No comment yet.
Scooped by Gordon Dahlby!

2016 Ignite Innovative Education Summit

2016 Ignite Innovative Education Summit | STEM Education models and innovations with Gaming |
Destination Imagination (DI) and Share Fair Nation are excited to announce the 2016 Ignite Innovative Education Summit. This year’s conference will be hosted in partnership with the U.S. Space & Rocket Center© and Space Camp© in Huntsville, Alabama and will bring together a diverse group of DI volunteers, educators and education leaders from the United States and around the world.
No comment yet.
Scooped by Gordon Dahlby!

White House: National Week of Making: June 17-23

White House: National Week of Making: June 17-23 | STEM Education models and innovations with Gaming |
Welcome to the Week of Making
The White House will be celebrating the National Week of Making, June 17 -23. We invite libraries, museums, rec centers, schools, universities and community spaces to support and grow the number of our citizen-makers by hosting events, making commitments, and highlighting new innovations.

The week will coincide with the National Maker Faire here in D.C. at the University of D.C. campus on June 18 and 19, which will feature makers from around the country in addition to federal agencies or departments. Last year, exhibitions or presentations at the Faire included: the National Science Foundation, U.S. Agency for International Development, Institute for Museum and Library Services, the U.S. Navy, the U.S. Army, National Institute of Standards and Technology, Department of Energy, National Aeronautics and Space Administration, Department of Homeland Security, the Smithsonian National Air and Space Museum, Veterans Affairs, U.S. Department of Agriculture, National Institutes of Health, the Federal Laboratory Consortium, National Endowment for the Arts, General Services Administration and U.S. Patent and Trademark Office.

This year’s celebration continues the initiative originating in June 2014 when President Obama hosted the first-ever White House Maker Faire and issued a call to action that “every company, every college, every community, every citizen joins us as we lift up makers and builders and doers across the country.” Last year, President Obama built on the single event by proclaiming a National Week of Making and inviting people of all ages to hold events around the country celebrating ingenuity, inspiring creative problem-solving, and supporting opportunities for those from all backgrounds to tinker and make.


Stay Engaged
Communities across America will be sharing and celebrating their involvement in the Maker Movement, using #NationOfMakers and #WeekofMakingon Twitter and Facebook to share their amazing work and connect with other Makers like you.

Want to join in the fun? Here are a few ideas to get you thinking:

Post photos of a current Maker project you are working on or choose a new project to work on, even asking a couple of friends or family members to build it with you, and tag it with #NationofMakers. You can find fun and creative projects ideas from a variety of websites for Makers.
Organize an event and/or host an open house at your local school, library, rec center, makerspace or set up a hangout online to connect and share your inventions with Makers across the country. Be sure to share out the event on so others can find it.
Volunteer to be a mentor for someone who is interested in learning a new skill or find a mentor who would be interested in teaching a new skill you’ve been wanting to learn for a while.
Create a project of your own and then share the plans for your project online through Maker platforms so others can also make, modify, or remix your project.
Organize a maker roundtable, maker town hall, or maker tour to convene thought leaders and decision makers in your community.
If you’re an organization or company, encourage your employees to volunteer as an educator and/or mentor to host maker-oriented workshops or classes in your community.
Your idea here!
Stay updated here, and follow along at #NationOfMakers and #WeekofMaking.
No comment yet.