STEM Education mo...
Follow
Find
3.2K views | +0 today
 
Scooped by Dr. Gordon Dahlby
onto STEM Education models and innovations with Gaming
Scoop.it!

POWER-CURVE SOCIETY: The Future of Innovation, Opportunity and Social Equity in the Emerging Networked Economy | The Aspen Institute

POWER-CURVE SOCIETY: The Future of Innovation, Opportunity and Social Equity in the Emerging Networked Economy | The Aspen Institute | STEM Education models and innovations with Gaming | Scoop.it

Power-Curve Society, written by David Bollier, examines how technological innovation is restructuring productivity and the social and economic impact resulting from these changes. It addresses the growing concern about the technological displacement of jobs, stagnant middle class income, and wealth disparities in an emerging "winner-take-all" economy. It also examines cutting-edge innovations in personal data ecosystems that could potentially unlock a revolutionary wave of individual economic empowerment. Power-Curve Society is the Report of the Twenty-First Annual Roundtable on Information Technology, a dialogue convened by the Communications and Society Program.

more...
No comment yet.
STEM Education models and innovations with Gaming
STEM (Science Technology Education & Mathematics) K-20  education models and innovations
Your new post is loading...
Your new post is loading...
Scooped by Dr. Gordon Dahlby
Scoop.it!

Kano Ships Its First 18,000 Learn-To-Code Computer Kits, Fueled By $1.5M Kickstarter | TechCrunch

Kano Ships Its First 18,000 Learn-To-Code Computer Kits, Fueled By $1.5M Kickstarter  | TechCrunch | STEM Education models and innovations with Gaming | Scoop.it
Kano Computing, a startup that plays in the learn to code space by adding a step-by-step hand-holding layer atop the Raspberry Pi single-board..
more...
No comment yet.
Scooped by Dr. Gordon Dahlby
Scoop.it!

How To Be Creative

The image of the 'creative type' is a myth. Jonah Lehrer on why anyone can innovate—and why a hot shower, a cold beer or a trip to your colleague's desk might be the key to your next big idea. From "Imagine: How Creativity Works."

 

By JONAH LEHRERUpdated March 12, 2012 6:25 p.m. ET

Creativity can seem like magic. We look at people like Steve Jobs and Bob Dylan, and we conclude that they must possess supernatural powers denied to mere mortals like us, gifts that allow them to imagine what has never existed before. They're "creative types." We're not.

 

The myth of the "creative type" is just that--a myth, argues Jonah Lehrer. In an interview with WSJ's Gary Rosen he explains the evidence suggesting everyone has the potential to be the next Milton Glaser or Yo-Yo Ma.

But creativity is not magic, and there's no such thing as a creative type. Creativity is not a trait that we inherit in our genes or a blessing bestowed by the angels. It's a skill. Anyone can learn to be creative and to get better at it. New research is shedding light on what allows people to develop world-changing products and to solve the toughest problems. A surprisingly concrete set of lessons has emerged about what creativity is and how to spark it in ourselves and our work.

The science of creativity is relatively new. Until the Enlightenment, acts of imagination were always equated with higher powers. Being creative meant channeling the muses, giving voice to the gods. ("Inspiration" literally means "breathed upon.") Even in modern times, scientists have paid little attention to the sources of creativity.

But over the past decade, that has begun to change. Imagination was once thought to be a single thing, separate from other kinds of cognition. The latest research suggests that this assumption is false. It turns out that we use "creativity" as a catchall term for a variety of cognitive tools, each of which applies to particular sorts of problems and is coaxed to action in a particular way.It isn't a trait that we inherit in our genes or a blessing bestowed on us by the angels. It's a skill that anyone can learn and work to improve. Philip Montgomery for The Wall Street Journal; Illustrations by Serge Bloch

Does the challenge that we're facing require a moment of insight, a sudden leap in consciousness? Or can it be solved gradually, one piece at a time? The answer often determines whether we should drink a beer to relax or hop ourselves up on Red Bull, whether we take a long shower or stay late at the office.

The new research also suggests how best to approach the thorniest problems. We tend to assume that experts are the creative geniuses in their own fields. But big breakthroughs often depend on the naive daring of outsiders. For prompting creativity, few things are as important as time devoted to cross-pollination with fields outside our areas of expertise.

Let's start with the hardest problems, those challenges that at first blush seem impossible. Such problems are typically solved (if they are solved at all) in a moment of insight.

Consider the case of Arthur Fry, an engineer at 3M in the paper products division. In the winter of 1974, Mr. Fry attended a presentation by Sheldon Silver, an engineer working on adhesives. Mr. Silver had developed an extremely weak glue, a paste so feeble it could barely hold two pieces of paper together. Like everyone else in the room, Mr. Fry patiently listened to the presentation and then failed to come up with any practical applications for the compound. What good, after all, is a glue that doesn't stick?

On a frigid Sunday morning, however, the paste would re-enter Mr. Fry's thoughts, albeit in a rather unlikely context. He sang in the church choir and liked to put little pieces of paper in the hymnal to mark the songs he was supposed to sing. Unfortunately, the little pieces of paper often fell out, forcing Mr. Fry to spend the service frantically thumbing through the book, looking for the right page. It seemed like an unfixable problem, one of those ordinary hassles that we're forced to live with.

But then, during a particularly tedious sermon, Mr. Fry had an epiphany. He suddenly realized how he might make use of that weak glue: It could be applied to paper to create a reusable bookmark! Because the adhesive was barely sticky, it would adhere to the page but wouldn't tear it when removed. That revelation in the church would eventually result in one of the most widely used office products in the world: the Post-it Note.

Mr. Fry's invention was a classic moment of insight. Though such events seem to spring from nowhere, as if the cortex is surprising us with a breakthrough, scientists have begun studying how they occur. They do this by giving people "insight" puzzles, like the one that follows, and watching what happens in the brain:

A man has married 20 women in a small town. All of the women are still alive, and none of them is divorced. The man has broken no laws. Who is the man?

If you solved the question, the solution probably came to you in an incandescent flash: The man is a priest. Research led by Mark Beeman and John Kounios has identified where that flash probably came from. In the seconds before the insight appears, a brain area called the superior anterior temporal gyrus (aSTG) exhibits a sharp spike in activity. This region, located on the surface of the right hemisphere, excels at drawing together distantly related information, which is precisely what's needed when working on a hard creative problem.

Interestingly, Mr. Beeman and his colleagues have found that certain factors make people much more likely to have an insight, better able to detect the answers generated by the aSTG. For instance, exposing subjects to a short, humorous video—the scientists use a clip of Robin Williams doing stand-up—boosts the average success rate by about 20%.

Alcohol also works. Earlier this year, researchers at the University of Illinois at Chicago compared performance on insight puzzles between sober and intoxicated students. The scientists gave the subjects a battery of word problems known as remote associates, in which people have to find one additional word that goes with a triad of words. Here's a sample problem:

Pine Crab Sauce

In this case, the answer is "apple." (The compound words are pineapple, crab apple and apple sauce.) Drunk students solved nearly 30% more of these word problems than their sober peers.

What explains the creative benefits of relaxation and booze? The answer involves the surprising advantage of not paying attention. Although we live in an age that worships focus—we are always forcing ourselves to concentrate, chugging caffeine—this approach can inhibit the imagination. We might be focused, but we're probably focused on the wrong answer.

And this is why relaxation helps: It isn't until we're soothed in the shower or distracted by the stand-up comic that we're able to turn the spotlight of attention inward, eavesdropping on all those random associations unfolding in the far reaches of the brain's right hemisphere. When we need an insight, those associations are often the source of the answer.

This research also explains why so many major breakthroughs happen in the unlikeliest of places, whether it's Archimedes in the bathtub or the physicist Richard Feynman scribbling equations in a strip club, as he was known to do. It reveals the wisdom of Google putting ping-pong tables in the lobby and confirms the practical benefits of daydreaming. As Einstein once declared, "Creativity is the residue of time wasted."

Of course, not every creative challenge requires an epiphany; a relaxing shower won't solve every problem. Sometimes, we just need to keep on working, resisting the temptation of a beer-fueled nap.

There is nothing fun about this kind of creativity, which consists mostly of sweat and failure. It's the red pen on the page and the discarded sketch, the trashed prototype and the failed first draft. Nietzsche referred to this as the "rejecting process," noting that while creators like to brag about their big epiphanies, their everyday reality was much less romantic. "All great artists and thinkers are great workers," he wrote.

This relentless form of creativity is nicely exemplified by the legendary graphic designer Milton Glaser, who engraved the slogan "Art is Work" above his office door. Mr. Glaser's most famous design is a tribute to this work ethic. In 1975, he accepted an intimidating assignment: to create a new ad campaign that would rehabilitate the image of New York City, which at the time was falling apart.

Mr. Glaser began by experimenting with fonts, laying out the tourist slogan in a variety of friendly typefaces. After a few weeks of work, he settled on a charming design, with "I Love New York" in cursive, set against a plain white background. His proposal was quickly approved. "Everybody liked it," Mr. Glaser says. "And if I were a normal person, I'd stop thinking about the project. But I can't. Something about it just doesn't feel right."

So Mr. Glaser continued to ruminate on the design, devoting hours to a project that was supposedly finished. And then, after another few days of work, he was sitting in a taxi, stuck in midtown traffic. "I often carry spare pieces of paper in my pocket, and so I get the paper out and I start to draw," he remembers. "And I'm thinking and drawing and then I get it. I see the whole design in my head. I see the typeface and the big round red heart smack dab in the middle. I know that this is how it should go."

The logo that Mr. Glaser imagined in traffic has since become one of the most widely imitated works of graphic art in the world. And he only discovered the design because he refused to stop thinking about it.

But this raises an obvious question: If different kinds of creative problems benefit from different kinds of creative thinking, how can we ensure that we're thinking in the right way at the right time? When should we daydream and go for a relaxing stroll, and when should we keep on sketching and toying with possibilities?

The good news is that the human mind has a surprising natural ability to assess the kind of creativity we need. Researchers call these intuitions "feelings of knowing," and they occur when we suspect that we can find the answer, if only we keep on thinking. Numerous studies have demonstrated that, when it comes to problems that don't require insights, the mind is remarkably adept at assessing the likelihood that a problem can be solved—knowing whether we're getting "warmer" or not, without knowing the solution.

This ability to calculate progress is an important part of the creative process. When we don't feel that we're getting closer to the answer—we've hit the wall, so to speak—we probably need an insight. If there is no feeling of knowing, the most productive thing we can do is forget about work for a while. But when those feelings of knowing are telling us that we're getting close, we need to keep on struggling.

Of course, both moment-of-insight problems and nose-to-the-grindstone problems assume that we have the answers to the creative problems we're trying to solve somewhere in our heads. They're both just a matter of getting those answers out. Another kind of creative problem, though, is when you don't have the right kind of raw material kicking around in your head. If you're trying to be more creative, one of the most important things you can do is increase the volume and diversity of the information to which you are exposed.

Steve Jobs famously declared that "creativity is just connecting things." Although we think of inventors as dreaming up breakthroughs out of thin air, Mr. Jobs was pointing out that even the most far-fetched concepts are usually just new combinations of stuff that already exists. Under Mr. Jobs's leadership, for instance, Apple didn't invent MP3 players or tablet computers—the company just made them better, adding design features that were new to the product category.

And it isn't just Apple. The history of innovation bears out Mr. Jobs's theory. The Wright Brothers transferred their background as bicycle manufacturers to the invention of the airplane; their first flying craft was, in many respects, just a bicycle with wings. Johannes Gutenberg transformed his knowledge of wine presses into a printing machine capable of mass-producing words. Or look at Google: Larry Page and Sergey Brin came up with their famous search algorithm by applying the ranking method used for academic articles (more citations equals more influence) to the sprawl of the Internet.

How can people get better at making these kinds of connections? Mr. Jobs argued that the best inventors seek out "diverse experiences," collecting lots of dots that they later link together. Instead of developing a narrow specialization, they study, say, calligraphy (as Mr. Jobs famously did) or hang out with friends in different fields. Because they don't know where the answer will come from, they are willing to look for the answer everywhere.

Recent research confirms Mr. Jobs's wisdom. The sociologist Martin Ruef, for instance, analyzed the social and business relationships of 766 graduates of the Stanford Business School, all of whom had gone on to start their own companies. He found that those entrepreneurs with the most diverse friendships scored three times higher on a metric of innovation. Instead of getting stuck in the rut of conformity, they were able to translate their expansive social circle into profitable new concepts.

Many of the most innovative companies encourage their employees to develop these sorts of diverse networks, interacting with colleagues in totally unrelated fields. Google hosts an internal conference called Crazy Search Ideas—a sort of grown-up science fair with hundreds of posters from every conceivable field. At 3M, engineers are typically rotated to a new division every few years. Sometimes, these rotations bring big payoffs, such as when 3M realized that the problem of laptop battery life was really a problem of energy used up too quickly for illuminating the screen. 3M researchers applied their knowledge of see-through adhesives to create an optical film that focuses light outward, producing a screen that was 40% more efficient.

Such solutions are known as "mental restructurings," since the problem is only solved after someone asks a completely new kind of question. What's interesting is that expertise can inhibit such restructurings, making it harder to find the breakthrough. That's why it's important not just to bring new ideas back to your own field, but to actually try to solve problems in other fields—where your status as an outsider, and ability to ask naive questions, can be a tremendous advantage.

This principle is at work daily on InnoCentive, a crowdsourcing website for difficult scientific questions. The structure of the site is simple: Companies post their hardest R&D problems, attaching a monetary reward to each "challenge." The site features problems from hundreds of organization in eight different scientific categories, from agricultural science to mathematics. The challenges on the site are incredibly varied and include everything from a multinational food company looking for a "Reduced Fat Chocolate-Flavored Compound Coating" to an electronics firm trying to design a solar-powered computer.

The most impressive thing about InnoCentive, however, is its effectiveness. In 2007, Karim Lakhani, a professor at the Harvard Business School, began analyzing hundreds of challenges posted on the site. According to Mr. Lakhani's data, nearly 30% of the difficult problems posted on InnoCentive were solved within six months. Sometimes, the problems were solved within days of being posted online. The secret was outsider thinking: The problem solvers on InnoCentive were most effective at the margins of their own fields. Chemists didn't solve chemistry problems; they solved molecular biology problems. And vice versa. While these people were close enough to understand the challenge, they weren't so close that their knowledge held them back, causing them to run into the same stumbling blocks that held back their more expert peers.

It's this ability to attack problems as a beginner, to let go of all preconceptions and fear of failure, that's the key to creativity.

The composer Bruce Adolphe first met Yo-Yo Ma at the Juilliard School in New York City in 1970. Mr. Ma was just 15 years old at the time (though he'd already played for J.F.K. at the White House). Mr. Adolphe had just written his first cello piece. "Unfortunately, I had no idea what I was doing," Mr. Adolphe remembers. "I'd never written for the instrument before."

Mr. Adolphe had shown a draft of his composition to a Juilliard instructor, who informed him that the piece featured a chord that was impossible to play. Before Mr. Adolphe could correct the music, however, Mr. Ma decided to rehearse the composition in his dorm room. "Yo-Yo played through my piece, sight-reading the whole thing," Mr. Adolphe says. "And when that impossible chord came, he somehow found a way to play it."

Mr. Adolphe told Mr. Ma what the professor had said and asked how he had managed to play the impossible chord. They went through the piece again, and when Mr. Ma came to the impossible chord, Mr. Adolphe yelled "Stop!" They looked at Mr. Ma's left hand—it was contorted on the fingerboard, in a position that was nearly impossible to hold. "You're right," said Mr. Ma, "you really can't play that!" Yet, somehow, he did.

When Mr. Ma plays today, he still strives for that state of the beginner. "One needs to constantly remind oneself to play with the abandon of the child who is just learning the cello," Mr. Ma says. "Because why is that kid playing? He is playing for pleasure."

Creativity is a spark. It can be excruciating when we're rubbing two rocks together and getting nothing. And it can be intensely satisfying when the flame catches and a new idea sweeps around the world.

For the first time in human history, it's becoming possible to see how to throw off more sparks and how to make sure that more of them catch fire. And yet, we must also be honest: The creative process will never be easy, no matter how much we learn about it. Our inventions will always be shadowed by uncertainty, by the serendipity of brain cells making a new connection.

Every creative story is different. And yet every creative story is the same: There was nothing, now there is something. It's almost like magic.

—Adapted from "Imagine: How Creativity Works" by Jonah Lehrer, to be published by Houghton Mifflin Harcourt on March 19. Copyright © 2012 by Jonah Lehrer.

 10 Quick Creativity Hacks1. Color Me Blue

A 2009 study found that subjects solved twice as many insight puzzles when surrounded by the color blue, since it leads to more relaxed and associative thinking. Red, on other hand, makes people more alert and aware, so it is a better backdrop for solving analytic problems.

2. Get Groggy

According to a study published last month, people at their least alert time of day—think of a night person early in the morning—performed far better on various creative puzzles, sometimes improving their success rate by 50%. Grogginess has creative perks.

Enlarge Image

#3 Don't Be Afraid to Daydream Serge Bloch

3. Daydream Away

Research led by Jonathan Schooler at the University of California, Santa Barbara, has found that people who daydream more score higher on various tests of creativity.

4. Think Like A Child

When subjects are told to imagine themselves as 7-year-olds, they score significantly higher on tests of divergent thinking, such as trying to invent alternative uses for an old car tire.

5. Laugh It UpEnlarge Image

When people are exposed to a short video of stand-up comedy, they solve about 20% more insight puzzles. Serge Bloch

When people are exposed to a short video of stand-up comedy, they solve about 20% more insight puzzles.

6. Imagine That You Are Far Away

Research conducted at Indiana University found that people were much better at solving insight puzzles when they were told that the puzzles came from Greece or California, and not from a local lab.

7. Keep It Generic

One way to increase problem-solving ability is to change the verbs used to describe the problem. When the verbs are extremely specific, people think in narrow terms. In contrast, the use of more generic verbs—say, "moving" instead of "driving"—can lead to dramatic increases in the number of problems solved.

Enlarge Image

According to a new study, volunteers performed significantly better on a standard test of creativity when they were seated outside a 5-footsquare workspace, perhaps because they internalized the metaphor of thinking outside the box. The lesson? Your cubicle is holding you back. Serge Bloch

8. Work Outside the Box

According to new study, volunteers performed significantly better on a standard test of creativity when they were seated outside a 5-foot-square workspace, perhaps because they internalized the metaphor of thinking outside the box. The lesson? Your cubicle is holding you back.

9. See the World

According to research led by Adam Galinsky, students who have lived abroad were much more likely to solve a classic insight puzzle. Their experience of another culture endowed them with a valuable open-mindedness. This effect also applies to professionals: Fashion-house directors who have lived in many countries produce clothing that their peers rate as far more creative.

10. Move to a Metropolis

Physicists at the Santa Fe Institute have found that moving from a small city to one that is twice as large leads inventors to produce, on average, about 15% more patents.

—Jonah Lehrer

 

Corrections & Amplifications: A part of the brain involved in insight is the anterior superior temporal gyrus. A Review cover article on March 10 incorrectly referred to it as the superior anterior temporal gyrus. The same article incorrectly said the cellist Yo-Yo Ma as a student practiced a composition by Bruce Adolphe in a dorm room at New York's Juilliard School; it should have said he was using a practice room.

more...
No comment yet.
Scooped by Dr. Gordon Dahlby
Scoop.it!

On The Make: Moving to Active Learning through Design and Creation

On The Make: Moving to Active Learning through Design and Creation | STEM Education models and innovations with Gaming | Scoop.it
Active learning is hard to leave in the classroom… if compelling, learners recount and rethink what they learned long after the lesson ends. The Maker movement embraces a ?hands on, minds on? approach that links the tactile nature of learning with building and knowledge. This episode of Ed Table Talk explores the structure of the maker movement and asks the pivotal question: What is the importance of providing realistic context for students to apply their knowledge and become better learners? The Maker movement has a long history in how we teach and students learn. The movement helps to change the perception about how best to teach students and how we prepare educators to manage a rich learning environment. Anybody who used pipe cleaners and Popsicle sticks was a member of the Maker movement, so why is it that we often forego this teaching strategy as students get older? Research shows that kids who apply what they learn create more extensive knowledge that they can then apply in a variety of contexts outside of the classroom. This especially rings true for students who tend to be more visual learners. We will discuss ways that this strategy can be applied in your offerings and how it makes students better learners in their other academic pursuits — writing, math, science, social science, and the arts. Join host Michael Jay and guests as they discuss the popular Maker movement and its implications for preK-12 teaching and learning. To keep up to date, subscribe to the show at edtabletalk.org. Ideas for future show topics? Tweet us @edtabletalk.
more...
No comment yet.
Scooped by Dr. Gordon Dahlby
Scoop.it!

eCYBERMISSION- Call for Volunteers

eCYBERMISSION- Call for Volunteers | STEM Education models and innovations with Gaming | Scoop.it

Volunteer roles include:

Ambassadors serve as the face of eCYBERMISSION by promoting the competition and recruiting other volunteers in the community. Those who wish to interact with students as a part of their outreach must submit and pass a criminal background check or have an active Department of Defense security clearance.CyberGuides provide online assistance to eCYBERMISSION teams by answering questions and give guidance through the use of discussion forums, instant messaging, and live chat sessions. All CyberGuides must submit and pass a criminal background check or have an active Department of Defense security clearance.Virtual Judges 
more...
No comment yet.
Scooped by Dr. Gordon Dahlby
Scoop.it!

Innovations Designed for Deeper Learning in Higher Education | EDUCAUSE.edu

Innovations Designed for Deeper Learning in Higher Education | EDUCAUSE.edu | STEM Education models and innovations with Gaming | Scoop.it
INNOVATIONS DESIGNED FOR DEEPER LEARNING IN HIGHER EDUCATIONThursday, August 21, 2014Source(s) NGLC Insights, Next Generation Learning Challenges (NGLC)Type Articles, Briefs, Papers, and ReportsAbstract

Seven insitutions received $1.7 million from Next Generation Learning Challenges (NGLC) Building Blocks for College Completion grant program to scale innovations designed to promote deeper learning and student engagement in higher education to other institutions. The group reached nearly 10,000 students at 135 institutions during the grant term. The grant recipients adopted different technology-enabled educational innovations to help students achieve deeper learning, including supplementing existing courses, supporting the adoption of blended learning, and completely redesigning a course (the most successful approach). This report analyzes the projects through the lens of the Hewlett Foundation's definition of deeper learning.  

Results suggest that students need support to transition to the more active role that deeper learning demands and that faculty need support, training, and time to create, implement, and sustain reforms that change student learning.Furthermore, fundamental, comprehensive redesign occurring over more than one academic term appears to promise the best outcomes for deeper learning.

Author: Andrea Venezia, Associate Director, Institute for Higher Education Leadership & Policy, California State University, Sacramento

more...
No comment yet.
Scooped by Dr. Gordon Dahlby
Scoop.it!

Conference | NAAEE

Conference | NAAEE | STEM Education models and innovations with Gaming | Scoop.it

working in partnership with

The Basics

The 2014 NAAEE conference will be held in Ottawa, Canada's vibrant capital city, with the Gold LEED Ottawa Convention Center as the center of activity. Join more than 1,000 of your environmental education colleagues for this outstanding professional development opportunity


 

more...
No comment yet.
Scooped by Dr. Gordon Dahlby
Scoop.it!

Transferability of Postsecondary Credit Following Student Transfer or Coenrollment

Find information about and locate all publications and data products on education information from the National Center for Education Statistics--NCES--. In most cases you may also browse the content of publications or download data files.

 

http://nces.ed.gov/pubs2014/2014163.pdf full report

Dr. Gordon Dahlby's insight:

Does not appear to account for dual enrollment credits posted, with no choice, to a 2 year institution and has to be then transferred and accepted by a four year institution.  May skew 2yr to 4yr numbers higher.

 

more...
No comment yet.
Scooped by Dr. Gordon Dahlby
Scoop.it!

4 ways games make it ‘OK to play’ | eSchool News | eSchool News

4 ways games make it ‘OK to play’ | eSchool News | eSchool News | STEM Education models and innovations with Gaming | Scoop.it
How can games make it OK to play in today's classrooms? Here are four ways games impact classroom learning.
Dr. Gordon Dahlby's insight:

Would be concerned at characterizing game oriented learning strategies are self-directed. They can be but teaming is important also.

more...
No comment yet.
Scooped by Dr. Gordon Dahlby
Scoop.it!

Solar Power to go

Solar Power to go | STEM Education models and innovations with Gaming | Scoop.it
Solar power to go! Concentrated solar energy converts CO2 and H2O into solar-powered fuel More energy from our sun hits the Earth in one hour than is consumed on the planet in a whole year! But, the burning question is--how can we put all that sunshine to work making usable fuel? With support from the National Science Foundation's (NSF) Office of Emerging Frontiers in Research and Innovation, California Institute of Technology (Caltech) chemical engineer Sossina Haile and University of Minnesota mechanical engineer Jane Davidson are working to expand the nation's renewable energy storage capacity. Their mission is to put the heat of the sun to work creating renewable fuels from sources that don't need to be drilled out of the ground. The researchers are collecting sunlight to drive chemical reactions that break apart water and carbon dioxide molecules in order to make alternative fuels, such as hydrogen fuel. Solar-powered fuels, or "sun gas," would power the vehicles we drive today, as well as airplanes. In this case, the sky really is the limit! The research in this episode was supported by NSF award #1038307, EFRI-RESTOR: Thermochemical Routes to Efficient and Rapid Production of Solar Fuels. Miles O'Brien, Science Nation Correspondent Marsha Walton, Science Nation Producer
more...
No comment yet.
Scooped by Dr. Gordon Dahlby
Scoop.it!

Meet Microsoft's Sharks Cove: A Raspberry Pi-style mini-PC running Windows 8.1

Meet Microsoft's Sharks Cove: A Raspberry Pi-style mini-PC running Windows 8.1 | STEM Education models and innovations with Gaming | Scoop.it
Microsoft has announced its own Raspberry Pi look-alike, but don't expect a cheap price for this Windows flavored tiny PC.
more...
No comment yet.
Scooped by Dr. Gordon Dahlby
Scoop.it!

Kids coding app Tynker expands to Android and adds game-making mode

Kids coding app Tynker expands to Android and adds game-making mode | STEM Education models and innovations with Gaming | Scoop.it
Startup says it wants to work with schools and parents alike to help children learn programming skills. By Stuart Dredge
more...
No comment yet.
Scooped by Dr. Gordon Dahlby
Scoop.it!

Before the Robots

Before the Robots | STEM Education models and innovations with Gaming | Scoop.it
Five things to consider before implementing robots in your classrooms. GUEST COLUMN | by Andrew Grefig Providing students access to quality technology is often at the heart of many decisions distri...
Dr. Gordon Dahlby's insight:

Thoughtful.  Importance of setting goals with planning and supports are so important.

more...
No comment yet.
Scooped by Dr. Gordon Dahlby
Scoop.it!

Robots invade classrooms: S$2.8m initiative rolled out to excite students about coding - Channel NewsAsia

Robots invade classrooms: S$2.8m initiative rolled out to excite students about coding - Channel NewsAsia | STEM Education models and innovations with Gaming | Scoop.it
Robotics & Maker Academy collaboration between the Infocomm Development Authority (IDA) of Singapore and Singapore Polytechnic (SP) will be rolled out to 30 schools over three years.
more...
No comment yet.
Scooped by Dr. Gordon Dahlby
Scoop.it!

Building the framework for the future of biofuels - NSF

Building the framework for the future of biofuels - NSF | STEM Education models and innovations with Gaming | Scoop.it

September 24, 2014

Biofuels--fuels made from plants--are seen by many as one of the better options for brightening the national energy outlook.

They offer a promising renewable resource as a replacement for nonrenewable fossil fuels, and a way to reduce the amount of greenhouse gas emissions being pumped into the atmosphere as a result of our use of conventional petroleum-derived fuels.

They could help the United States take major steps to reduce the country's dependence on oil from other parts of the world.

For more than five years Amy Landis has led research that is revealing the potential rewards of developing large-scale biofuels production, as well as the potential drawbacks we would face in the effort.

"We are documenting that there would be environmental benefits, but also trade-offs in growing biofuels that would have to be dealt with," said Landis, an associate professor in theSchool of Sustainable Engineering and the Built Environment, one of the Ira A. Fulton Schools of Engineering at Arizona State University (ASU).

Two National Science Foundation (NSF) grants combined to provide about $650,000 for projects directed by Landis, enabling her to paint a clearer picture of the impacts of developing a major biofuels industry. Both grants were through the NSF's Chemical, Bioengineering, Environmental and Transport Systems Division.

One project looked at the feasibility of growing bioenergy crops on marginal lands where soil nutrients first have to be restored to enable agricultural use. A second project involved forecasting the environmental impacts of next-generation biofuels.

 

...

more...
No comment yet.
Scooped by Dr. Gordon Dahlby
Scoop.it!

10 Science-Backed Ways to Spark Creativity

10 Science-Backed Ways to Spark Creativity | STEM Education models and innovations with Gaming | Scoop.it

Research over the last decade has shown that there are proven methods for sparking creative insights. If you want to be more creative, author and researcher Jonah Lehrer explains at The Wall Street Journal, you’ll simply need to coax your brain into it. Lehrer gives us 10 tips on how to do just that, here are some of our favorites:

Get Groggy: According to a study published last month, people at their least alert time of day—think of a night person early in the morning—performed far better on various creative puzzles, sometimes improving their success rate by 50%.

Daydream Away: Research led by Jonathan Schooler at the University of California, Santa Barbara, has found that people who daydream more score higher on various tests of creativity.

Think Like A Child: When subjects are told to imagine themselves as 7-year-olds, they score significantly higher on tests of divergent thinking, such as trying to invent alternative uses for an old car tire.

Laugh It Up: When people are exposed to a short video of stand-up comedy, they solve about 20% more insight puzzles.

While creativity has been viewed as magical concept for centuries, research like that Lehrer points to shows that it’s little more than a series of cognitive tools our brains use to solve problems. Learning how to hone those skills (as Lehrer explains) means we can spark it in ourselves and our work whenever we need it most.

 

more at wsj.com link at bottom of article.

more...
No comment yet.
Scooped by Dr. Gordon Dahlby
Scoop.it!

AT&T Aspire | Connected Nation $100M

Welcome to the Connected Nation School Application Portal
for the AT&T Aspire Mobile Connectivity Program

 

A Connected Nation Project in Support of the ConnectED Initiative

 NOTICE:  Applications are now being accepted for Phase II awards.Thank you for your interest in applying to receive free off-campus mobile connectivity and related services for your students as part of AT&T's $100 million ConnectED Initiative pledge. For more information on AT&T’s commitment, please click here. Connected Nation is an independent third party that will administer the application process and select schools to participate in the program.

 

Applicant Qualifications and Restrictions:

Applications may be submitted for Middle Schools and High Schools onlyThe target size for each award under this program should serve between 2,000 and 4,000 students per district(or administrative equivalent). Applications should not be submitted for significantly larger or smaller contributionsContributions may be split among multiple schools within a single district (or administrative equivalent) as long as:
1) the upper threshold for the total number of students to be served is not exceeded
2) all students within each applicant school are eligible to receive service (i.e., partial school deployments serving a single grade level or group within a school will not be considered)Consortium applications (i.e., multiple school districts represented on a single application) will not be accepted. However, smaller school districts that are located in roughly the same geographic area that wish to collaborate with one another to reach the target award size may do so by submitting their own individual applications and indicating a desire to collaborate in their responses to the first narrative question on the applicationAn applicant school must either be eligible to receive Title I funding or be one in which more than 50% of enrolled students are eligible to participate in the National School Lunch ProgramAll applicant schools must have the equivalent of at least 1 dedicated IT support professional on staff to support the needs of the projectAll applicant schools must be physically located within AT&T's 4G or 4G LTE coverage areas. Click here to view a map of AT&T's network footprint and search using the school's ZIP codeApplicant schools must be willing to verify that all teachers have completed any training that may be required

 

TO APPLY: Eligible schools and school districts must complete and submit an application via this web site. Applications will be reviewed and considered by Connected Nation, entirely independent of any current, past, or future E-rate or school technology procurement processes. For prepartion purposes only, a full list of application questions can be downloaded in PDF format by clicking here.

Applicants will be given an option to save their progress and return to the application at a later date and time by entering their e-mail address in the designated field at the top of each application page. A unique application link will then be generated by the system and e-mailed to the address provided.

Awardees will be selected during three phases:

Phase I:  Summer 2014 (NOW CLOSED)Phase II:  Fall 2014 (Applications must be submitted by 11:59pm PST on November 5, 2014)Phase III:  Spring 2015 (Deadline TBD)

 

Please check this site frequently for future program updates, including future submission deadlines.

If you have any questions or experience difficulties in the submission of your application, please contact us atconnectEDinitiative@connectednation.org.

more...
No comment yet.
Scooped by Dr. Gordon Dahlby
Scoop.it!

School Computing Resources-BBC

School Computing Resources-BBC | STEM Education models and innovations with Gaming | Scoop.it

Computing Resources from BBC and Computing around the Web

more...
No comment yet.
Scooped by Dr. Gordon Dahlby
Scoop.it!

Reel Grrls

Reel Grrls | STEM Education models and innovations with Gaming | Scoop.it

WHAT IS REEL GRRLS?
Reel Grrls is an award-winning non-profit media arts and leadership training program for girls ages 9 – 19. Reel Grrls envisions a world in which women and girls have leadership roles in creating media and are represented behind and in front of the camera. Learn more >

more...
No comment yet.
Scooped by Dr. Gordon Dahlby
Scoop.it!

Re-Programming Mobility: Trends & Signals Report

Dr. Gordon Dahlby's insight:

The kind of problems our students should be tackling. 

 

Age of >1:1 autos to drivers is about to wane as ownership is questioned by these next generations. Combine autonomous with on-demand.. and ultra high speed rail.

 

Adoption would increase if human steered transport stayed in the 'slow' lanes. :>)

more...
No comment yet.
Scooped by Dr. Gordon Dahlby
Scoop.it!

Critical Thinking Pathways

Critical Thinking Pathways | STEM Education models and innovations with Gaming | Scoop.it
To teach critical thinking, consider applying six definitions of that discipline to the practices of authentic inquiry, PBL, and integrated studies.
more...
No comment yet.
Scooped by Dr. Gordon Dahlby
Scoop.it!

Crowd-Funding, Student Petitions Bring Computer Science Classes to California Districts

Crowd-Funding, Student Petitions Bring Computer Science Classes to California Districts | STEM Education models and innovations with Gaming | Scoop.it
Next school year, four high schools in California will debut Advanced Placement Computer Science classes, thanks to student petitions and crowd-funding campaigns supportive of those efforts.
more...
No comment yet.
Scooped by Dr. Gordon Dahlby
Scoop.it!

What light can teach us about the universe - Pete Edwards - YouTube

View full lesson: http://ed.ted.com/lessons/what-light-can-teach-us-about-the-universe-pete-edwards Humanity has long been looking at the universe and asking...
more...
No comment yet.
Scooped by Dr. Gordon Dahlby
Scoop.it!

Problem Solving Skills of 15-year-olds: Results from PISA 2012

Find information about and locate all publications and data products on education information from the National Center for Education Statistics--NCES--. In most cases you may also browse the content of publications or download data files.
more...
No comment yet.
Scooped by Dr. Gordon Dahlby
Scoop.it!

Mapping the Spread of Drought Across the U.S.

Mapping the Spread of Drought Across the U.S. | STEM Education models and innovations with Gaming | Scoop.it
Maps and charts updated weekly show the latest extent of the drought in the United States.
Dr. Gordon Dahlby's insight:
Communicating is important skill
more...
No comment yet.
Scooped by Dr. Gordon Dahlby
Scoop.it!

France to offer programming in elementary school

France to offer programming in elementary school | STEM Education models and innovations with Gaming | Scoop.it
Beginning this fall, French primary school students will have the option of learning computer science

 

The French are known for lots of things, such as their love of good food, fine wine and great art. It appears now that, if the government has its way, the French will soon also be known for something else: their computer programming prowess.

 

France’s Minister of National Education, Benoît Hamon, said in a recent interview with Le Journal du Dimanche that programming courses will be offered to primary school students starting this fall. The courses, which will be optional and offered during extracurricular time, will teach students programming basics and how to create simple applications. Hamon also expressed a desire that programming be offered at the secondary school level. The goal, he said, is to give French students the keys to thrive in a connected world and to encourage them go into technical vocations.

Some questions as to how this will work remain to be answered. For example, who will teach the courses? Hamon suggested that some, like math teachers, will be more naturally inclined than others. He also said that 9,000 French schools that currently do not have broadband access will have it by September. Also, Hamon gave no specifics about the actual curriculum, like what languages would be taught.

France is just the latest in a line of countries that are encouraging or even requiring that students as young as those in elementary school learn programming. Here are some examples of other countries that have already implemented or will soon implement such programs.

more...
No comment yet.