STEM Education mo...
3.5K views | +0 today
Scooped by Dr. Gordon Dahlby
onto STEM Education models and innovations with Gaming!

NSF & NBC Learn Release New 'Science Behind The News' Videos

Press Release 13-032
National Science Foundation and NBC Learn Release New 'Science Behind The News' Videos

Five original videos explore science behind current events related to mathematical and physical sciences

A theoretical physicist explains the science behind quantum computing in new NSF-NBC Learn video.
Credit and Larger Version

February 27, 2013

The National Science Foundation and NBC Learn, the educational arm of NBC News, released today five new videos in the Science Behind The News series.

Science Behind The News is a relatively new, fast-paced video series supported by NSF that explores the science, technology, engineering and mathematics behind current events. Each video features at least one interview with an NSF-funded scientist or researcher.

The five new videos highlight work funded by NSF's Directorate for Mathematical and Physical Sciences. The scope of scientific and educational activity supported in the directorate is enormous, ranging from phenomena at cosmological distances, to environmental science on the human scale, through quantum mechanical processes in atomic and subatomic physics, to phenomena of the unimaginably small.

There are 12 Science Behind The News episodes available to teachers and students at Science360: The Knowledge Network and for free at

New videos released today include:

1. Predictive Policing

The LAPD is using a new tactic in their fight against crime called "predictive policing." It's a computer program that was originally developed by a team at UCLA, including mathematician Andrea Bertozzi and anthropologist Jeff Brantingham.

2. Impacts on Jupiter

The impacts of comets on the surface of Jupiter are a fairly common experience. At the University of Central Florida, astronomers Joseph Harrington and Csaba Palotai are leading a project that studies precisely how these impacts happen, and also provides valuable information about what might happen if such a comet struck Earth.

3. Drug-Resistant Bacteria

As disease-causing bacteria become increasingly resistant to antibiotics, scientists like Erin Carlson from Indiana University are turning to natural sources to find new medicines.

4. Bio-Inspired Materials

In the search for the next groundbreaking tough material, scientists like David Kisailus from the University of California, Riverside, are looking to nature for inspiration, including under the sea where one little crustacean packs a walloping punch--the peacock mantis shrimp.

5. Quantum Computers

Imagine if engineers could build a computer to be millions of times faster than anything that exists today, yet so small that it's microscopic. John Preskill, a theoretical physicist at the California Institute of Technology, explains the science behind quantum computing, the next great frontier in computer science.

No comment yet.

From around the web

STEM Education models and innovations with Gaming
STEM (Science Technology Education & Mathematics) K-20  education models and innovations
Your new post is loading...
Your new post is loading...
Scooped by Dr. Gordon Dahlby!

When Seattle Invented the Future: The 1962 World's Fair (2012)

When Seattle Invented the Future: The 1962 World's Fair (2012) | STEM Education models and innovations with Gaming |
Through historical photographs and motion pictures of the Seattle World’s Fair, "When Seattle Invented the Future" brings to life the textures and sounds of Seattle in the late 50s and early 60s. In interviews, Seattle’s business, civic and cultural leaders and longtime residents tell of the excitement and ambition the Fair ignited.
No comment yet.
Scooped by Dr. Gordon Dahlby!

8 Must Read Books on Game-based Learning ~ Educational Technology and Mobile Learning

8 Must Read Books on Game-based Learning ~ Educational Technology and Mobile Learning | STEM Education models and innovations with Gaming |

June 30, 2015
Game-based learning is a learning trend with an increasing attraction in today’s classrooms. At its core, game-based learning deploys learning principles incorporated in the gaming industry in educational settings. The purpose is to enhance students learning and create optimal learning experiences in and outside classrooms. This is usually done through the use of a variety of hands-on and highly competitive activities geared towards engaging students and motivating them to learn better.

For those of you interested in learning more about this learning trend, we have compiled for you this collection of wonderful books written by leading figures in this field. The books feature a myriad of academic studies, empirical researches and theoretical perspectives providing a holistic picture of what game based learning is all about.

No comment yet.
Scooped by Dr. Gordon Dahlby!

The Golden Age Of Quantum Computing Is Upon Us (Once We Solve These Tiny Problems)

The Golden Age Of Quantum Computing Is Upon Us (Once We Solve These Tiny Problems) | STEM Education models and innovations with Gaming |
Literally tiny. As IBM announces a big advance, many challenges remain in building a computer that takes advantage of quantum weirdness.
No comment yet.
Scooped by Dr. Gordon Dahlby!

About Us | Explore MIT App Inventor

About Us | Explore MIT App Inventor | STEM Education models and innovations with Gaming |

MIT App Inventor is a blocks-based programming tool that allows everyone, even novices, to start programming and build fully functional apps for Android devices. Newcomers to App Inventor can have their first app up and running in an hour or less, and can program more complex apps in significantly less time than with more traditional, text-based languages. Initially developed by Professor Hal Abelson and a team from Google Education while Hal was on sabbatical at Google, App Inventor runs as a Web service administered by staff at MIT’s Center for Mobile Learning - a collaboration of MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and the MIT Media Lab. MIT App Inventor supports a worldwide community of nearly 3 million users representing 195 countries worldwide. The tool’s more than 100 thousand active weekly users have built more than 7 million android apps. An open-source tool that seeks to make both programming and app creation accessible to a wide range of audiences, MIT App Inventor has grabbed the attention of:

Formal and informal educators who have used MIT App Inventor to introduce programming to their Computer Science students, science club members, after-school programs attendees, and summer campers. Many educators have also started to use MIT App Inventor to develop apps in support of their own instructional objectives.Government and civic employees and volunteers who have harnessed the power of MIT App Inventor to develop custom, often hyper-local apps in response to natural disasters and community-based needs Designers and product managers who have seen the potential that MIT App Inventor has to support the iterative design process via rapid prototyping, testing and iteration.Researchers who use MIT App Inventor to create custom app in support to meet their data collection and analysis requirements in support of their research in a wide variety of fields from medical to social.Hobbyists and Entrepreneurs who have an idea they want to quickly turn into an app without the cost or learning curve that more traditional app creation entails.

Our Work

The work of the MIT App Inventor team is driven by five primary objectives:

Sustaining and enhancing the tool - we have made a long-term commitment to sustaining and enhancing MIT App Inventor as a cutting edge free service to end users. To this end, we are continuously improving the tool, adding new features, debugging and enhancing its performance.Building enterprise enhancements - Motorola and Ford we work with public agencies and private corporations to support unique applications of the tool by developing or enhancing custom features of MIT App Inventor in response to partner needs.Building capacity - we seek to expand the capacity of formal and informal computing education for adults and youth around the world. In doing so, we are actively engaged in developing and disseminating resources and training materials to support those interested in creating programs in their locale.Promoting computer science education - we are committed to calling attention to the state of computer science and computational thinking in education. From a policy perspective we actively engaged in local and national conversations about standards. From an awareness perspective, we are eager to participate and support large-scale campaigns that support reaching new audiences.Conducting and supporting community research - undergraduate and graduate students at MIT and collaborating institutions are actively engaged in conducting and publishing research while developing, testing and evaluating the use of MIT App Inventor around the world.
No comment yet.
Scooped by Dr. Gordon Dahlby!

Next Generation Broadband Networks: New Table Stakes for Cities? | Gig.U

Next Generation Broadband Networks:

New Table Stakes for Cities?

Blair Levin

Executive Director Gig.U

Senior Non-Resident Fellow, Metropolitan Policy Program

Brookings Institute

February 2, 2015

Syracuse, NY


Read blog

No comment yet.
Scooped by Dr. Gordon Dahlby!

4 Ways Technology is Changing How People Learn | Edudemic

4 Ways Technology is Changing How People Learn | Edudemic | STEM Education models and innovations with Gaming |


Katie Lepi

When we talk about what changes technology has brought to classrooms across the globe, the answers could basically be never ending. Teachers could talk about things like bringing ease toresearching all types of topics, bringing organization (and a lack of physical papers to lose) to the classroom, and making connections for professional development. There could be a lot of discussion about the millions of nuances of amelioration brought to classrooms – both physical and virtual. 

That said, the handy infographic below takes a look at 4 ways technology is changing how people learn. The things that I find striking – and important- about this particular graphic is how simple the concept is. These four general concepts can be applied across the board: to learners of all ages, in all subjects, in any area of the world or for any type of learner. Take a look and see what you think: are there any other very general principles of how technology is changing learning that can be widely applied? Weigh in by leaving a comment below, mentioning @Edudemic on Twitter or leaving your thoughts on our Facebook page.

4 Ways Technology is Changing How People LearnWe’re moving from individual learning towards more collaborative learningWe’re moving from more passive learning to active learningDifferentiated instruction and personalized learning are becoming more popularWe’re becoming multitaskers more than ever before
No comment yet.
Scooped by Dr. Gordon Dahlby!

Stanford releases Developing iOS 8 Apps with Swift course on iTunes U

Stanford releases Developing iOS 8 Apps with Swift course on iTunes U | STEM Education models and innovations with Gaming |
Stanford has released a new course for iTunes University that will be a godsend to aspiring developers.Developing iOS 8 Apps with Swift currently consists of two lectures and accompanying slide shows, each clocking in at a little over an hour. Here's the complete overview.

Updated for iOS 8 and Swift. Tools and APIs required to build applications for the iPhone and iPad platforms using the iOS SDK. User interface design for mobile devices and unique user interactions using multi-touch technologies. Object-oriented design using model-view-controller paradigm, memory management, Swift programming language. Other topics include: animation, mobile device power management, multi-threading, networking and performance considerations.

Prerequisites: C language and object-oriented programming experience exceeding Programming Abstractions level, and completion of Programming

Recommended: UNIX, graphics, databases.

No comment yet.
Scooped by Dr. Gordon Dahlby!

Visualize Sea-Level Rise with Time Goggles

Visualize Sea-Level Rise with Time Goggles | STEM Education models and innovations with Gaming |

A pilot project will engage federal and local resources to help locals visualize sea-level rise with OWL "potential reality" viewers in the Bay Area.


We humans are a visually-attuned species.  For most of us “seeing is believing,” in that we understand complex ideas, mathematical concepts or raw data best when we can visualize them.

This ability to conjure up the abstract or unseen unlocks our understanding of some of nature’s more closely-held secrets; it gives us a “potential reality” glimpse of the impact of our actions, before we stumble unwittingly into undesired consequences.  At the risk of invoking one too many clichés all at once: A picture is worth a thousand words.

Last year we introduced readers to the OWL, a device that its creator, San Francisco-based startup OWLized, calls “time goggles.” The OWL looks like the common “retro” viewfinder you’ve seen and probably used at scenic lookouts in national parks across the country. Drop a dime into the slot and get a close-up view of the world around you. The difference is that the OWL lets you see into the future, or even the past, and there’s no dime required to see it.

Based on the success and rapid advances in computer visualization and 3-D modeling technology, the OWL debuted in 2013 with a project in partnership with Autodesk for San Francisco’s Better Market Street initiative.

Using Autodesk’s Infraworks civil design modeling software, the OWL gave all stakeholders in the project, from city residents to merchants and policymakers, a 3-D, real-life glimpse into the proposed future of Market Street, the hub of downtown San Francisco.

The ability to transform conceptual engineering and architectural drawings into a lifelike representation — displayed through the familiar viewer — has helped guide the future of San Francisco.

What if we could turn that viewer out towards the bay, and look at what the future holds with climate changeand rising seas? For many residents along the Northern Bay shoreline, the OWL will soon do just that.

Visualizing sea-level rise

Projections indicate 11 to 19 inces of sea-level rise along the San Francisco Bay by mid-century and as much as 30 to 55 inches by 2100, or 2.5 to over 4.5 feet. Such rise in sea level will clearly have significant impact along the Marin waterfront (indeed, the entire Bay Area) in the coming decades.

Two OWL viewers will be installed at the Almonte entrance of the Sausalito-Mill Valley multi-purpose pathway for 12 weeks this spring. The viewers are part of a pilot project that will explore ways to engage community understanding and participation in developing policy to adapt to sea-level rise in the region.

The Federal Emergency Management Agency (FEMA) is responsible for mapping regional flood plain areas, a task it hopes to accomplish alongside the local community. The OWLs will give an opportunity for anyone using the pathway to get a real impression of what the surrounding area will look like as the sea rises.

Using Autodesk’s 3-D modeling software, the OWLs will project possible future scenarios in the actual 360-degree environment, as well as how the area looked in the past. It’s one thing to talk about 55 inches of sea-level rise; it’s another thing to actually see it.

A $150,000 FEMA grant is funding the effort, a public-private partnership between FEMA, the County of Marin, OWLized, Autodesk, the nonprofit Climate Access and research partner Dr. Susanne Moser of Stanford University.

“This is such an exciting way to learn about future sea-level rise,” said Supervisor Kate Sears, representing District 3 in Southern Marin county. “I’m very curious to see how the community interacts with it, especially kids. They represent the generation that will live with the effects of climate change. I hope that the OWLs will intrigue people and inspire action.”

Image credit: Franco Folini, courtesy flickr

No comment yet.
Scooped by Dr. Gordon Dahlby!

3 Steps for Building a Professional Learning Network

3 Steps for Building a Professional Learning Network | STEM Education models and innovations with Gaming |
English teacher and instructional technology coach Brianna Crowley offers practical advice on creating professional learning networks built on intersecting layers of relationships.
No comment yet.
Scooped by Dr. Gordon Dahlby!

Designing a More Connected World

It has become increasingly clear that youths' experiences in schools do not match the kinds of experiences they are likely to have once they have completed school. The push to support "21st century" skills stems from this mismatch, and many have advocated for ensuring that young people learn to think about the world not as a simple set of cause-and-effect experiences, but rather as a set of complex systems.

I and a team of colleagues decided to explore the possibilities of enhancing youths’ systems thinking through powerful learning principles found in design. What we came up with is a series of modular toolkits, designed to be used by classroom teachers or out-of-school educators, that leverage youths' interests in popular culture to inspire a greater level of engagement in systems thinking. These toolkits make up a new collection of curricula called “Interconnections: Understanding Systems through Digital Design.”

“Interconnections” is the culmination of an initiative that launched in 2010. With the financial support of the MacArthur Foundation and the help of additional partners like the National Writing Project, our group of educators from Indiana University's Creativity Labs, Vanderbilt University, Institute of Play, and the Digital Youth Network spent three years making this a reality — writing, testing, and iterating curricula until a robust suite of activities to promote engagement in design and systems thinking emerged.

The first book in the collection, “Gaming the System: Designing with Gamestar Mechanic,” orients readers to the nature of games as systems and how to involve systems concepts in the design of effective games. “Script Changers: Digital Storytelling with Scratch” focuses on how stories offer an important lens for seeing the world as a series of systems and provides opportunities for young people to program animated stories about the systems around them. The two final books, “Short Circuits: Crafting e-Puppets with DIY Electronics” and “Soft Circuits: Crafting e-Fashion with DIY Electronics” enable youth to design interactive fashion and puppets using crafting materials and everyday electronics.


read more


Dr. Gordon Dahlby's insight:


No comment yet.
Scooped by Dr. Gordon Dahlby!

Results from the CSTA-Oracle Academy 2014 U.S. High School CS Surve The State of Computer Science in U.S. High Schools: an Administrator's Perspective

Results from the CSTA-Oracle Academy 2014 U.S. High School CS Surve The State of Computer Science in U.S. High Schools: an Administrator's Perspective | STEM Education models and innovations with Gaming |

celebrate: interest in computer science education has reached an unprecedented high. Last month, an estimated 80 million students, teachers, administrators, parents, and community members across the globe participated in Computer Science Education Week (CSEdWeek), an annual event committed to ramping up engagement in programming, app development and design, robotics, networking, and other computational thinking skills and activities. Yet despite the recent frenzy of activity surrounding computer science (CS) and its relevance among the constellation of core disciplines, there remains a notable lack of accurate and generally available information about the state of CS education in United States high schools. Much of the existing research fails in multiple ways. It fails to clarify the relevance of computer science education today and the importance of aligning it to core curriculum, and it fails to illuminate issues of access and the true state of computer science education in US high schools. 

Interest in CS will continue to rise, and along with it a considerable need for data to help inform educators, policy makers and others about the efficacy of US computer science education. In this spirit, the Computer Science Teachers Association (CSTA), in collaboration with Oracle Academy, administered an online survey to over 20,000 Public and Private 9–12 secondary school Principals and Vice Principals in the United States between May and September of 2014. The purpose of the survey was to identify computer science education opportunities that are being provided at the high school level, determine how broadly CS is being offered in the US, and determine the different ways CS was being defined in the schools. Surveys were also sent to administrators across the United States using contact information provided by a market data company. A total of 503 people responded to the survey. Schools from 47 states participated (no responses were received from Hawaii, Vermont, or Wyoming). Administrators from California submitted the most responses (35), followed by Pennsylvania (34), and New York (31). Most of the responding schools support between 250 and 2,000 students, as below. 

Dr. Gordon Dahlby's insight:

Higher Ed needs to lead in the definition.

No comment yet.
Scooped by Dr. Gordon Dahlby!

Code to Standards and Quality: A Gigaom Research Report

Code to Standards and Quality: A Gigaom Research Report | STEM Education models and innovations with Gaming |

The monolithic codebase is dead. Modern applications are built of code from a variety of sources including employees, partners, and contractors from different geographies, with different skill levels, and working on a number of platforms. Application development is a supply chain, with dependencies supported by a network of systems ranging from greenfield development to legacy integrations, and utilizing a patchwork of code from custom, open-source, and commercial third-party sources. Ensuring consistency, security, and standards in such an environment can be challenging, but is essential for maintaining reputation, relationships, and customers.

No comment yet.
Scooped by Dr. Gordon Dahlby!

Carnegie Mellon To Experiment with Blended Learning in Computer Science Course |

Carnegie Mellon To Experiment with Blended Learning in Computer Science Course | | STEM Education models and innovations with Gaming |

Carnegie Mellon University will launch an experiment this year intended to discover if blended learning can help it meet the growing need for computer science courses without also increasing staff or classroom space.   - See more at:

No comment yet.
Rescooped by Dr. Gordon Dahlby from Invent To Learn: Making, Tinkering, and Engineering in the Classroom!

Makey Makey and littleBits launch module

Makey Makey and littleBits launch module | STEM Education models and innovations with Gaming |
Introducing the Makey Makey Bit: a small-but-perfectly-formed innovation enabling littleBits users to transform prosaic everyday objects (pretty much anything) into a touchpad - using nothing more than alligator clips, a computer, and some magnets. Visually, the new module is slightly...

Via sylvia martinez
No comment yet.
Scooped by Dr. Gordon Dahlby!

Start with STEM

Start with STEM | STEM Education models and innovations with Gaming |
Providing every student a good start in STEM proficiency is more relevant now than ever. While the number and type of available jobs in STEM fields continue to grow, student interest and knowledge has not kept pace. We see an opportunity to change the trajectory.Start with STEM is a nationwide effort to drive corporate dollars and volunteerism for the nation’s highest quality K-12 STEM programs and schools. The campaign is directly tied to our goal of reaching 1.5 million new students through credible and effective STEM education programs in 2015. 
No comment yet.
Scooped by Dr. Gordon Dahlby!

Making hard programming easier for novice makers | eSchool News | eSchool News

Making hard programming easier for novice makers | eSchool News | eSchool News | STEM Education models and innovations with Gaming |
Microcontroller programming is useful but complicated for makers. New tools can make it accessible to all.
No comment yet.
Scooped by Dr. Gordon Dahlby!

From prototypes to wearables: 10 tips for modern mobile success - SD Times

From prototypes to wearables: 10 tips for modern mobile success - SD Times | STEM Education models and innovations with Gaming |

The concept was similar to other anonymous social media messaging platforms, like Yik Yak, Secret and Whisper. But when Preetham Reddy, lead developer for RezTech LLC in Phoenix, and his team built the Sipper location-based bulletin app, he learned a few hard lessons—as most fledgling app developers do.

RezTech’s app experience, while not particularly unique, touches on the realities of mobile app development today. First, every developer must weigh multiple tradeoffs:

Enjoy full app life-cycle support and commercial IDEs, or piece together open-source solutions;Choose native, hybrid, Platform-as-a-Service or HTML5-based platforms and widgets;Access an ever wider array of device-specific functionality; andCreate delightful user experiences while managing customer expectations.

Second, the newfound popularity of the messaging layer is just one example of how there is still plenty of Web-based low-hanging fruit available for developers who know how to position apps well and build communities around them.

Third, mobile app development entails inevitable trial-and-error, along with the strategy and endurance to survive it.

Fourth, consumer-focused apps can’t emulate native user experience; they must bake it in.

Read on for 10 tips modern developers should take to heart when aiming for mobile success.

Follow us: @sdtimes on Twitter | sdtimes on Facebook
No comment yet.
Scooped by Dr. Gordon Dahlby!

Five open hardware projects |

Five open hardware projects | | STEM Education models and innovations with Gaming |
It has never been a better time to understand the components that fit together to make the hardware we use work. Here are 5 of my favorite open hardware projects.
No comment yet.
Scooped by Dr. Gordon Dahlby!

Microsoft HoloLens

Microsoft HoloLens | STEM Education models and innovations with Gaming |
Transform your world with holograms. Microsoft HoloLens brings high-definition holograms to life in your world.
Dr. Gordon Dahlby's insight:

With HoloSudio could be outstanding tool for STEM  in K12

No comment yet.
Scooped by Dr. Gordon Dahlby!

Study supports new explanation of gender gaps in academia | News Bureau | University of Illinois

Study supports new explanation of gender gaps in academia | News Bureau | University of Illinois | STEM Education models and innovations with Gaming |

It isn’t that women don’t want to work long hours or can’t compete in highly selective fields, and it isn’t that they are less analytical than men, researchers report in a study of gender gaps in academia. It appears instead that women are underrepresented in academic fields whose practitioners put a lot of emphasis on the importance of being brilliant – a quality many people assume women lack. 

The new findings are reported in the journal Science.

The research, led by University of Illinois psychology professor Andrei Cimpian and Princeton University philosophy professor Sarah-Jane Leslie, focused on a broad swath of academic disciplines, including those in the sciences, the humanities, social sciences and math. 

The researchers focused on the culture of different fields, reasoning that stereotypes of women’s inferior intellectual abilities might help explain why women are underrepresented in fields – such as physics or philosophy – that idolize geniuses. 

The team surveyed more than 1,800 graduate students, post-doctoral researchers and faculty members in 30 academic disciplines and, among other things, asked them what qualities were required for success in their fields. Across the board, in the sciences, technology, engineering and math (the so-called STEM fields), as well as in the humanities and social sciences, women were found to be underrepresented in those disciplines whose practitioners put a premium on brilliance. 

“We’re not saying brilliance – or valuing brilliance – is a bad thing,” Cimpian said. “And we’re not saying women are not brilliant or that being brilliant isn’t helpful to one’s academic career. Our data don’t address that. What they suggest is that conveying to your students a belief that brilliance is required for success may have a differential effect on males and females that are looking to pursue careers in your field.”

The team also tested three other hypotheses that might help explain women’s underrepresentation in some fields: one, that women avoid careers that require them to work long hours; two, that women are less able than men to get into highly selective fields; and three, that women are outnumbered by men in fields that require analytical, systematical reasoning.

“We found that none of these three alternative hypotheses was able to predict women’s representation across the academic spectrum,” Leslie said. “A strong emphasis on brilliance among practitioners of particular fields was the best predictor of women’s underrepresentation in those fields.”

The researchers are still investigating whether women are actively avoiding fields that focus on cultivating brilliant individuals, or if practitioners in those fields are discriminating against women based on their beliefs about women’s aptitudes. A combination of the two is certainly plausible, Cimpian said.

“There is no convincing evidence in the literature that men and women differ intellectually in ways that would be relevant to their success across the entire range of fields we surveyed,” Cimpian said. “So it is most likely that female underrepresentation is not the result of actual differences in intellectual ability – but rather the result of perceived or presumed differences between women and men.”

Editor's note: To reach Andrei Cimpian, call 217-333-0852; email 

The paper, “Expectations of brilliance underlie gender distributions across academic disciplines” is available online.  
No comment yet.
Scooped by Dr. Gordon Dahlby!

Which of these top 20 programming languages should your school teach? | eSchool News

Which of these top 20 programming languages should your school teach? | eSchool News | STEM Education models and innovations with Gaming |
One IT expert and educator discusses the how and why of choosing the right programming language

“Always code as if the guy who ends up maintaining your code will be a violent psychopath who knows where you live.” -John Woods

[1]Way back in the 1970s, working as a computer programmer was quite prestigious, and if you wanted to get into computer programming, your potential employer would more often than not put you through a batch of aptitude tests in order to determine your suitability: even if you had a degree.

Nowadays, programming is more widespread and you don’t need a degree to be a programmer; it’s no longer mainly for scientists and engineers: students studying the humanities, English as a foreign language students, people building websites, and a whole host of other folks are learning to program. This non-technical article will give you novices [non-expert instructors] out there some basic guidance in choosing a programming language that is appropriate not only for your students’ needs, but for faculty and staff interested in online basics.

The most important question on people’s minds will probably be, “What programming language(s) do I need to learn?”

In order to answer this question, a personal PAL (Purpose, Ability, and Level) should be able to help. A person’s PAL will guide him or her through the complex maze of programming languages so that he or she can find the most suitable one(s):

Purpose: What you need to do, will determine what programming language(s) you need to learn. It is of the utmost importance that your purpose is correctly served by the use of an appropriate programming language: choosing the wrong one may result in a program that is wholly unsuitable for your purposes–as well as wasted hours of code writing.

Ability: If you aren’t especially logically wired, avoid learning difficult programming languages. If you are faced with choosing from several almost equally appropriate programming languages–always go for the one(s) that are most appropriate for your ability–otherwise, you’ll soon discover that “Profanity is the one language all programmers know best.”

Level: Make sure that the chosen programming language is at a suitable level of complexity and appropriateness. You wouldn’t try to teach calculus to kids at grade school–so don’t select programming languages that are either excessively complex or inappropriate for your students’ level of maturity and education. Let’s now look at some specific situations…

(Next page: the top 20 languages and when to choose them)

According to the prestigious IEEE (Institute of Electrical and Electronics Engineers), the top twenty programming languages to learn right now are as follows:

JavaCC++PythonC# (pronounced C-sharp)PHPJavaScriptRubyRMATLAB (matrix laboratory)PerlSQLAssemblyHTMLVisual BasicObjective-CScalaShellArduinoGo
Dr. Gordon Dahlby's insight:


No comment yet.
Scooped by Dr. Gordon Dahlby!

Interconnections | The MIT Press

Interconnections | The MIT Press | STEM Education models and innovations with Gaming |

In an era of increasing interconnectedness, knowledge — and power — belongs to those who understand the nature of the interdependent systems that organize the world — and have the skills to change those systems. The books in the Interconnections collection offer K-12 educators a curriculum toolkit for supporting systems thinking with a design-based approach to learning that aligns with current Common Core and Next Generation Science Standards while still being relevant to youth interests in digital culture.

Each book teaches systems thinking concepts and skills in the context of a specific digital media platform and includes an average of six design challenges or learning projects. This innovative, design-based approach is useful for both in- and out-of-school settings, and was developed collaboratively by designers and educators from Indiana University’s Creativity Labs, Institute of Play, the Digital Youth Network, and the National Writing Project.

“Young people growing up today will surely be called upon to address thorny problems that cut across global, interconnected systems: the environment, the economy, the global infrastructure. Few skills will be more important than the capacity to see, understand, and innovate systems. The Interconnections collection, created through a collaboration among scholars, curriculum developers, and teachers across the National Writing Project, provides approaches to teaching systems thinking through activities that also build literacy and support Common Core Standards and career-readiness. This ‘both-and’ approach is a demonstration of what forward-looking curriculum must be in a digital age.”—Elyse Eidman-Aadahl, Executive Director, National Writing Project, University of California, Berkeley “The books in this collection offer wonderful activities for engaging young people in new ways of making, helping them learn to express themselves creatively with new technologies. But even more important, they engage young people in new ways of seeing, helping them develop new perspectives for understanding the world—and understanding themselves.”—Mitchel Resnick, LEGO Papert Professor of Learning Research, and Director, Lifelong Kindergarten group, MIT Media Lab 
No comment yet.
Scooped by Dr. Gordon Dahlby!

Chemists work up new formulas for greener plastic

Chemists work up new formulas for greener plastic | STEM Education models and innovations with Gaming |

he Center for Sustainable Polymers focuses on economical, bio-based sources for plastics

Plastics are a miracle of modern science and are now fundamental to our everyday lives. Of course, they are also a constant reminder of our throwaway society. With support from the National Science Foundation (NSF), chemist Marc Hillmyer of the University of Minnesota and a team at the Center for Sustainable Polymers (CSP) are dedicating their research to transforming the way plastics, or "polymers," are made and unmade.

The Center's vision is to design, demonstrate and develop economically competitive and environmentally friendly polymers that may even outperform their traditional counterparts. To accomplish the goal, these chemists are working on new strategies using renewable feedstock chemicals, such as sugars, plant oils and other naturally sourced starting materials.

The CSP is one of the NSF-funded Centers for Chemical Innovation (CCI), which are focused on major, long-term fundamental chemical research challenges. CCIs are producing transformative research that is leading to innovation and attracting broad scientific and public interest.

The research in this episode was supported by NSF award #413862, Center for Sustainable Polymers.

Miles O'Brien, Science Nation Correspondent
Kate Tobin, Science Nation Producer


Dr. Gordon Dahlby's insight:

video at site

No comment yet.