Social Simulation
Follow
Find
2.4K views | +0 today
Rescooped by Frédéric Amblard from CxAnnouncements
onto Social Simulation
Scoop.it!

EPJ Data Science - a SpringerOpen journal

EPJ Data Science  - a SpringerOpen journal | Social Simulation | Scoop.it

The 21st century is currently witnessing the establishment of data-driven science as a complementary approach to the traditional hypothesis-driven method. This (r)evolution accompanying the paradigm shift from reductionism to complex systems sciences has already largely transformed the natural sciences and is about to bring the same changes to the techno-socio-economic sciences, viewed broadly.

 

Editors-in-Chief
Frank Schweitzer, ETH Zürich
Alessandro Vespignani, Northeastern University


Via Complexity Digest
more...
No comment yet.
Social Simulation
News about social simulation, social networks dynamics and complex systems
Your new post is loading...
Rescooped by Frédéric Amblard from Social Foraging
Scoop.it!

Origin of Peer Influence in Social Networks

Social networks pervade our everyday lives: we interact, influence, and are influenced by our friends and acquaintances. With the advent of the World Wide Web, large amounts of data on social networks have become available, allowing the quantitative analysis of the distribution of information on them, including behavioral traits and fads. Recent studies of correlations among members of a social network, who exhibit the same trait, have shown that individuals influence not only their direct contacts but also friends’ friends, up to a network distance extending beyond their closest peers. Here, we show how such patterns of correlations between peers emerge in networked populations. We use standard models (yet reflecting intrinsically different mechanisms) of information spreading to argue that empirically observed patterns of correlation among peers emerge naturally from a wide range of dynamics, being essentially independent of the type of information, on how it spreads, and even on the class of underlying network that interconnects individuals. Finally, we show that the sparser and clustered the network, the more far reaching the influence of each individual will be.
DOI: http://dx.doi.org/10.1103/PhysRevLett.112.098702

Origin of Peer Influence in Social Networks
Phys. Rev. Lett. 112, 098702 – Published 6 March 2014
Flávio L. Pinheiro, Marta D. Santos, Francisco C. Santos, and Jorge M. Pacheco


Via Complexity Digest, Ashish Umre
more...
Eli Levine's curator insight, March 10, 2:16 PM

Indeed, we are all interconnected in very profound and subtle ways, whether we accept it or not.


This one's for the Libertarians and conservatives out there, who don't seem to think that their actions effect the other, or that the other can effect them, or that the actions done onto the other will effect the actions that are done onto them by the other.

 

Kind of like how they blame the poor for being angry at the rich, after the poor produced the wealth that engorges the rich.

 

Silly people....

 

Think about it.

Scooped by Frédéric Amblard
Scoop.it!

The Relative Ineffectiveness of Criminal Network Disruption : Scientific Reports : Nature Publishing Group

The Relative Ineffectiveness of Criminal Network Disruption : Scientific Reports : Nature Publishing Group | Social Simulation | Scoop.it
Researchers, policymakers and law enforcement agencies across the globe struggle to find effective strategies to control criminal networks. The effectiveness of disruption strategies is known to depend on both network topology and network resilience. However, as these criminal networks operate in secrecy, data-driven knowledge concerning the effectiveness of different criminal network disruption strategies is very limited. By combining computational modeling and social network analysis with unique criminal network intelligence data from the Dutch Police, we discovered, in contrast to common belief, that criminal networks might even become ‘stronger’, after targeted attacks. On the other hand increased efficiency within criminal networks decreases its internal security, thus offering opportunities for law enforcement agencies to target these networks more deliberately. Our results emphasize the importance of criminal network interventions at an early stage, before the network gets a chance to (re-)organize to maximum resilience. In the end disruption strategies force criminal networks to become more exposed, which causes successful network disruption to become a long-term effort.
more...
No comment yet.
Rescooped by Frédéric Amblard from CxConferences
Scoop.it!

ECCS'14 European Conference on Complex Systems

ECCS'14 European Conference on Complex Systems | Social Simulation | Scoop.it

ECCS’14 will be a major international conference and event in the area of complex systems and interdisciplinary science in general. It will offer unique opportunities to study novel scientific approaches in a multitude of application areas. Two days of the conference, 24 and 25 of September, are reserved for satellite meetings, which will cover a broad range of subjects on all aspects of Complex Systems, as reflected by the conference tracks.

 

ECCS'14 European Conference on Complex Systems

Lucca, Italy

2014-09-22:26

http://www.eccs14.eu


Via Complexity Digest
more...
António F Fonseca's curator insight, January 16, 9:02 AM

The major conference in Complex Systems this year will be held in Lucca.

Rescooped by Frédéric Amblard from Papers
Scoop.it!

Epidemics on social networks

Since its first formulations almost a century ago, mathematical models for disease spreading contributed to understand, evaluate and control the epidemic processes.They promoted a dramatic change in how epidemiologists thought of the propagation of infectious diseases.In the last decade, when the traditional epidemiological models seemed to be exhausted, new types of models were developed.These new models incorporated concepts from graph theory to describe and model the underlying social structure.Many of these works merely produced a more detailed extension of the previous results, but some others triggered a completely new paradigm in the mathematical study of epidemic processes. In this review, we will introduce the basic concepts of epidemiology, epidemic modeling and networks, to finally provide a brief description of the most relevant results in the field.

 

Epidemics on social networks
Marcelo N. Kuperman

http://arxiv.org/abs/1312.3838


Via Complexity Digest
more...
António F Fonseca's curator insight, January 9, 2:10 AM

A good review about epidemic models in social networks, SIS, SIR, etc ...

Marco Valli's curator insight, January 9, 6:08 AM

Basics of SIS/SIR models of spreading epidemics, and their relations to social networks.

Rescooped by Frédéric Amblard from Global Brain
Scoop.it!

US Military Scientists Solve the Fundamental Problem of Viral Marketing | MIT Technology Review

US Military Scientists Solve the Fundamental Problem of Viral Marketing  | MIT Technology Review | Social Simulation | Scoop.it
Network theorists working for the US military have worked out how to identify the small “seed” group of people who can spread a message across an entire network

Via Spaceweaver
more...
António F Fonseca's curator insight, January 6, 12:08 AM

It was already seaked by other groups, they only got sub-modularity properties defining the scope of greedy algorithm's search, these guys seem to be on the right track.

Rescooped by Frédéric Amblard from CxConferences
Scoop.it!

Artificial Economics 2014 - AE 2014

The main aim of the Symposium is to facilitate the meeting of people working on different topics in different fields (mainly Economics, Finance and Computer Science) in order to encourage a structured multi-disciplinary approach to social sciences. Presentations and keynote sessions center around multi-agent modelling, from the viewpoint of both applications and computer-based tools. The event is also open to methodological surveys.

The event will be hosted by Social Simulation 2014, the 10th Conference of the European Social Simulation Association at the Universitat Autonoma de Barcelona, Barcelona, Spain.
September 1-5th, 2014.

http://essa2014.org


Via Complexity Digest
more...
ComplexInsight's curator insight, December 11, 2013 3:50 AM

bookmarking so can come back and read later.

ComplexInsight's curator insight, January 2, 12:43 AM

Understanding how to simulate economic and social systems will be critical in future planning and analysis tools- The Social Simulation 2014 conference will be a key event. 

Rescooped by Frédéric Amblard from Papers
Scoop.it!

Early-warning signals of topological collapse in interbank networks

The financial crisis clearly illustrated the importance of characterizing the level of ‘systemic’ risk associated with an entire credit network, rather than with single institutions. However, the interplay between financial distress and topological changes is still poorly understood. Here we analyze the quarterly interbank exposures among Dutch banks over the period 1998–2008, ending with the crisis. After controlling for the link density, many topological properties display an abrupt change in 2008, providing a clear – but unpredictable – signature of the crisis. By contrast, if the heterogeneity of banks' connectivity is controlled for, the same properties show a gradual transition to the crisis, starting in 2005 and preceded by an even earlier period during which anomalous debt loops could have led to the underestimation of counter-party risk. These early-warning signals are undetectable if the network is reconstructed from partial bank-specific data, as routinely done. We discuss important implications for bank regulatory policies.


Via Claudia Mihai, Complexity Digest
more...
No comment yet.
Rescooped by Frédéric Amblard from Global Brain
Scoop.it!

Big Data needs Big Theory

Big Data needs Big Theory | Social Simulation | Scoop.it
In this guest cross-post, Geoffrey West, former President of the Santa Fe Institute, argues that just as the industrial age produced the laws of thermodynamics, we need universal laws of complexity...

Via Spaceweaver
more...
Jacek Bugajski's curator insight, November 25, 2013 1:26 AM

Big Data needs Big Theory

Ricardo Pimenta's curator insight, December 4, 2013 5:32 AM

Big theory is needed to Big Data issues...

Rescooped by Frédéric Amblard from Social Foraging
Scoop.it!

The Math of Segregation

The Math of Segregation | Social Simulation | Scoop.it

In the 1960s Schelling devised a simple model in which a mixed group of people spontaneously segregates by race even though no one in the population desires that outcome. Initially, black and white families are randomly distributed. At each step in the modeling process the families examine their immediate neighborhood and either stay put or move elsewhere depending on whether the local racial composition suits their preferences. The procedure is repeated until everyone finds a satisfactory home (or until the simulator’s patience is exhausted).


Via Bernard Ryefield, Complexity Digest, Ashish Umre
more...
No comment yet.
Scooped by Frédéric Amblard
Scoop.it!

An Introduction to Community Detection in Multi-layered Social Network

Piotr Bródka, Tomasz Filipowski, Przemysław Kazienko
(Submitted on 26 Sep 2012)
Social communities extraction and their dynamics are one of the most important problems in today's social network analysis. During last few years, many researchers have proposed their own methods for group discovery in social networks. However, almost none of them have noticed that modern social networks are much more complex than few years ago. Due to vast amount of different data about various user activities available in IT systems, it is possible to distinguish the new class of social networks called multi-layered social network. For that reason, the new approach to community detection in the multi-layered social network, which utilizes multi-layered edge clustering coefficient is proposed in the paper.

more...
No comment yet.
Rescooped by Frédéric Amblard from Papers
Scoop.it!

How People Interact in Evolving Online Affiliation Networks

How People Interact in Evolving Online Affiliation Networks | Social Simulation | Scoop.it

The concept of social networks, in the age of Twitter and Facebook, seems like a really banal one. Social networks, however, have turned out to be a fertile ground for scientific studies of human interactions by not only social scientists, but also by physicists, from which we gain illuminating insights about ourselves and our societies. For example, why, and how, do we make new friends or establish fresh social ties? In this paper, we show that meaningful answers to these questions can be learned, by bringing concepts and methods from statistical physics to bear in a new analysis of the detailed growth dynamics of two networks associated with two online social-networking sites.

 

How People Interact in Evolving Online Affiliation Networks

Lazaros K. Gallos, Diego Rybski, Fredrik Liljeros, Shlomo Havlin, and Hernán A. Makse


Via Complexity Digest
more...
No comment yet.
Rescooped by Frédéric Amblard from Papers
Scoop.it!

Urban world: Cities and the rise of the consuming class

Urban world: Cities and the rise of the consuming class | Social Simulation | Scoop.it

Cities have long been the world’s economic dynamos, but today the speed and scale of their expansion are unprecedented. Through a combination of consumption and investment in physical capital, growing cities could inject up to $30 trillion a year into the world economy by 2025. Understanding cities and their shifting demographics is critical to reaching urban consumers and to preparing for the challenges that will arise from increasing demand for natural resources (such as water and energy) and for capital to invest in new housing, office buildings, and port capacity.

 

Report|McKinsey Global Institute
Urban world: Cities and the rise of the consuming class
June 2012 | by Richard Dobbs, Jaana Remes, James Manyika, Charles Roxburgh, Sven Smit and Fabian Schaer


Via Complexity Digest
more...
No comment yet.
Scooped by Frédéric Amblard
Scoop.it!

Dynamic Network Centrality Summarizes Learning in the Human Brain

Alexander V. Mantzaris, Danielle S. Bassett, Nicholas F. Wymbs, Ernesto Estrada, Mason A. Porter, Peter J. Mucha, Scott T. Grafton, Desmond J. Higham
(Submitted on 20 Jul 2012)
We study functional activity in the human brain using functional Magnetic Resonance Imaging and recently developed tools from network science. The data arise from the performance of a simple behavioural motor learning task. Unsupervised clustering of subjects with respect to similarity of network activity measured over three days of practice produces significant evidence of 'learning', in the sense that subjects typically move between clusters (of subjects whose dynamics are similar) as time progresses. However, the high dimensionality and time-dependent nature of the data makes it difficult to explain which brain regions are driving this distinction. Using network centrality measures that respect the arrow of time, we express the data in an extremely compact form that characterizes the aggregate activity of each brain region in each experiment using a single coefficient, while reproducing information about learning that was discovered using the full data set. This compact summary allows key brain regions contributing to centrality to be visualized and interpreted. We thereby provide a proof of principle for the use of recently proposed dynamic centrality measures on temporal network data in neuroscience.

more...
No comment yet.
Rescooped by Frédéric Amblard from Papers
Scoop.it!

Spatially Distributed Social Complex Networks

We propose a bare-bones stochastic model that takes into account both the geographical distribution of people within a country and their complex network of connections. The model, which is designed to give rise to a scale-free network of social connections and to visually resemble the geographical spread seen in satellite pictures of the Earth at night, gives rise to a power-law distribution for the ranking of cities by population size (but for the largest cities) and reflects the notion that highly connected individuals tend to live in highly populated areas. It also yields some interesting insights regarding Gibrat’s law for the rates of city growth (by population size), in partial support of the findings in a recent analysis of real data [Rozenfeld et al., Proc. Natl. Acad. Sci. U.S.A. 105 18702 (2008)]. The model produces a nontrivial relation between city population and city population density and a superlinear relationship between social connectivity and city population, both of which seem quite in line with real data.
DOI: http://dx.doi.org/10.1103/PhysRevX.4.011008

Spatially Distributed Social Complex Networks
Phys. Rev. X 4, 011008 – Published 28 January 2014
Gerald F. Frasco, Jie Sun, Hernán D. Rozenfeld, and Daniel ben-Avraham


Via Complexity Digest
more...
No comment yet.
Rescooped by Frédéric Amblard from Papers
Scoop.it!

Twitter Trends Help Researchers Forecast Viral Memes

Twitter Trends Help Researchers Forecast Viral Memes | Social Simulation | Scoop.it

What makes a meme— an idea, a phrase, an image—go viral? For starters, the meme must have broad appeal, so it can spread not just within communities of like-minded individuals but can leap from one community to the next. Researchers, by mining public Twitter data, have found that a meme's “virality” is often evident from the start. After only a few dozen tweets, a typical viral meme (as defined by tweets using a given hashtag) will already have caught on in numerous communities of Twitter users. In contrast, a meme destined to peter out will resonate in fewer groups.

 


Via Claudia Mihai, Complexity Digest
more...
june holley's curator insight, January 23, 5:31 AM

Some important ideas here for people interested in change.

Premsankar Chakkingal's curator insight, January 30, 5:58 AM

Forecasting the Future Twitter Trends in hashtags

Christian Verstraete's curator insight, February 3, 1:48 AM

Twitter, what happens when things go viral?

Rescooped by Frédéric Amblard from CxAnnouncements
Scoop.it!

Complicity: An International Journal of Complexity and Education

Complicity: An International Journal of Complexity and Education | Social Simulation | Scoop.it

Complicity is an open access (free to all readers), peer-reviewed journal that publishes original articles on all aspects of education that are informed by the idea of complexity (in its technical, applied, philosophical, theoretical, or narrative manifestations). The journal strives to serve as a forum for both theoretical and practical contributions and to facilitate the exchange of diverse ideas and points of view related to complexity in education.


Via Complex Systems Digital Campus, Complexity Digest
more...
No comment yet.
Rescooped by Frédéric Amblard from Social Foraging
Scoop.it!

Towards Passive Political Opinion Polling using Twitter

Social media platforms, such as Twitter, provide a forum for political communication where politicians broadcast messages and where the general public engages in the discussion of pertinent political issues. The open nature of Twitter, together with its large volume of traffic, makes it a useful resource for new forms of ‘passive’ opinion polling , i.e. automatically monitoring and detecting which key issues the general public is concerned about and inferring their voting intentions. In this paper, we present a number of case studies for the automatic analysis of UK political tweets. We investigate the automated sentiment analysis of tweets from UK Members of Parliament (MPs) towards the main political parties. We then investigate using the volume and sentiment of the tweets from other users as a proxy for their voting intention and compare the results against existing poll data. Finally we conduct automatic identification of the key topics discussed by both the MPs and users on Twitter and compare them with the main political issues identified in traditional opinion polls. We describe our data collection methods, analysis tools and evaluation framework and discuss our results and the factors affecting their accuracy.


Via Ashish Umre
more...
M. Edward (Ed) Borasky's curator insight, January 6, 4:15 PM

For a variety of statistical reasons I'm skeptical, but this is an important research area so I'm posting this.

Rescooped by Frédéric Amblard from Papers
Scoop.it!

Efficient discovery of overlapping communities in massive networks

Efficient discovery of overlapping communities in massive networks | Social Simulation | Scoop.it

Detecting overlapping communities is essential to analyzing and exploring natural networks such as social networks, biological networks, and citation networks. However, most existing approaches do not scale to the size of networks that we regularly observe in the real world. In this paper, we develop a scalable approach to community detection that discovers overlapping communities in massive real-world networks. Our approach is based on a Bayesian model of networks that allows nodes to participate in multiple communities, and a corresponding algorithm that naturally interleaves subsampling from the network and updating an estimate of its communities. We demonstrate how we can discover the hidden community structure of several real-world networks, including 3.7 million US patents, 575,000 physics articles from the arXiv preprint server, and 875,000 connected Web pages from the Internet. Furthermore, we demonstrate on large simulated networks that our algorithm accurately discovers the true community structure. This paper opens the door to using sophisticated statistical models to analyze massive networks.


Via Claudia Mihai, Complexity Digest
more...
ComplexInsight's curator insight, December 31, 2013 1:02 AM

Network visualization tools like Gephi and analysis tools like SNAP are becoming essential components in understanding, mapping and comprehending inter-relating networks and network processes. This is a good paper that gives insight into appliying networking analysis tools to identify otherwise hidden community structures in apparhently disconnected or partially connected sets which will be hugely important in large scale network analysis.

Rescooped by Frédéric Amblard from Papers
Scoop.it!

Subliminal Influence or Plagiarism by Negligence? The Slodderwetenschap of Ignoring the Internet

Does the availability of instant reference checking and “find more like this” research on the Internet change the standards by which academics should feel “obligated” to cite the work of others? Is the deliberate refusal to look for the existence of parallel work by others an ethical lapse or merely negligence? At a minimum, the Dutch standard of Slodderwetenschap (sloppy science) is clearly at work. At a maximum so is plagiarism. In between sits the process to be labeled as ‘plagiarism by negligence’. This article seeks to expose the intellectual folly of allowing such a plagiarism to be tolerated by the academy through a discussion of the cases of Terrence Deacon and Stephen Wolfram.

 

Subliminal Influence or Plagiarism by Negligence? The Slodderwetenschap of Ignoring the Internet

Michael Lissack

http://isce.edu/Subliminal.pdf


Via Complexity Digest
more...
Arjen ten Have's comment, December 4, 2013 11:01 AM
The Dutch standard of Slodderwetenschap? Bit sloppy, it is a recent Dutch word, hope not ths standard.
Ellie Kesselman Wells's comment, December 5, 2013 1:43 PM
Excellent subject matter! Thank you!
Rescooped by Frédéric Amblard from Papers
Scoop.it!

Complex Systems Science as a New Transdisciplinary Science, by Paul Bourgine

The new science of complex systems will be at the heart of the future of the Worldwide Knowledge Society. It is providing radical new ways of understanding the physical, biological, ecological, and techno-social universe. Complex Systems are open, value-laden, multi-level, multi-component, reconfigurable systems of systems, situated in turbulent, unstable, and changing environments. They evolve, adapt and transform through internal and external dynamic interactions. They are the source of very difficult scientific challenges for observing, understanding, reconstructing and predicting their multi-scale dynamics. The challenges posed by the multi-scale modelling of both natural and artificial adaptive complex systems can only be met with radically new collective strategies for research and teaching (...)


Via NESS, Complexity Digest
more...
june holley's curator insight, December 2, 2013 7:39 AM

The study of complex systems adds a lot of depth to understanding networks.

Complexity Institute's curator insight, December 6, 2013 12:56 AM

Are we ready to recognize a Science as a "Transdisciplinary Science?
Complex systems science is not a science in itself, but it may be considered as a 'Science of Sciences'.
I think this is the most challenging issue to face for a Worldwide Knowledge Society, as Paul Bourgine states.
What are your opinions about this?

Edgar Francisco Pelayo Valencia's curator insight, December 20, 2013 2:26 PM

Future is here!!!

Rescooped by Frédéric Amblard from CoCo: Collective Dynamics of Complex Systems Research Group
Scoop.it!

[1311.3674] Evolutionary perspectives on collective decision making: Studying the implications of diversity and social network structure with agent-based simulations


Via Hiroki Sayama
more...
No comment yet.
Rescooped by Frédéric Amblard from CxAnnouncements
Scoop.it!

Innovation Accelerator

http://inn.ac


Via Complexity Digest
more...
No comment yet.
Rescooped by Frédéric Amblard from Papers
Scoop.it!

Social Network Size Linked to Brain Size

Social Network Size Linked to Brain Size | Social Simulation | Scoop.it
How and why the volume of the orbital prefrontal cortex is related to the size of social networks...

Via Spaceweaver, Complexity Digest
more...
Viktoras Veitas's comment, September 1, 2012 9:47 AM
The idea came across my mind wile reading this. Global Brain can be compared to a global social network (= giant global graph). Humans are not able to form a meaningfull social network with more than 150 members. Global Brain should encompass the whole humanity, i.e. in the order of billions. So, in order for the Global Brain to emerge, we need (1) to either enhance humans to be able to form "theories of mind" of this magnitude, or, alternatively, (2) to create artificial agents, capable of doing this and connecting humans. Oh, and there is a third way - doing both in parallel...
Scooped by Frédéric Amblard
Scoop.it!

Tracking Down an Epidemic’s Source

Tracking Down an Epidemic’s Source | Social Simulation | Scoop.it
Researchers find the source of an epidemic using relatively little information. Their technique could also help authorities track down contamination in water systems or locate problems in electrical grids.
more...
No comment yet.
Scooped by Frédéric Amblard
Scoop.it!

Opinions, Conflicts and Consensus: Modeling Social Dynamics in a Collaborative Environment

János Török, Gerardo Iñiguez, Taha Yasseri, Maxi San Miguel, Kimmo Kaski, János Kertész
(Submitted on 20 Jul 2012)
Information-communication technology promotes collaborative environments like Wikipedia where, however, controversiality and conflicts can appear. To describe the rise, persistence, and resolution of such conflicts we devise an extended opinion dynamics model where agents with different opinions perform a single task to make a consensual product. As a function of the convergence parameter describing the influence of the product on the agents, the model shows spontaneous symmetry breaking of the final consensus opinion represented by the medium. For the case when agents are replaced with new ones at a certain rate, a transition from mainly consensus to a perpetual conflict occurs, which is in qualitative agreement with the scenarios observed in Wikipedia.

more...
No comment yet.