Science Communication from mdashf
1.9K views | +0 today
Your new post is loading...
Your new post is loading...
Rescooped by mdashf from Amazing Science
Scoop.it!

Entrepreneur receives funding for 'tornado' power generator

Entrepreneur receives funding for 'tornado' power generator | Science Communication from mdashf | Scoop.it

Electrical engineer and entrepreneur Louis Michaud's AVEtec company has received funding from PayPal cofounder Peter Thiel's Breakout Labs program to build an experimental Atmosphere Vortex Engine (AVE). The $300,000 in startup funds is to go towards building a working engine to dispel or prove the viability of using such technology to produce electricity with virtually no carbon footprint.

 

Michaud's idea is to use a fan to blow some of the excess heat produced by conventional power plants, into a cylindrical hollow tower, at an angle. Doing so should create a circular air current, which he says will grow stronger as it moves higher. The higher it goes the more energy it draws due to differences in temperature. The result would be a controlled man-made tornado. To put it to good user, turbines would be installed at the base of the vortex to create electricity. The original test will be conducted at Lambton College in Ontario – the tower will be 131 feet tall with a 26 foot diameter. That should be enough to create a vortex about a foot in diameter – enough to power a small turbine. It's just a proof of concept, Michaud notes on his site, a real-world tower would be about 25 meters in diameter, and would be capable of producing up to 200 megawatts of power using only the excess heat generated by a conventional 500 megawatt plant. Power goes up geometrically, he says, as the size of tower grows. He adds that the cost of producing electricity this way would be about 3 cents per kilowatt hour, well below the typical 4 or 5 cents for coal plants.

 

Michaud has been investigating the idea of harnessing the power of tornado's to provide electricity for several decades but until now has had problems being taken seriously by venture capitalists. He adds that his company built and successfully tested an AVE prototype in 2009, hinting that he has no doubts that the new tower and turbines will work as advertised.


Via Dr. Stefan Gruenwald
more...
No comment yet.
Rescooped by mdashf from Amazing Science
Scoop.it!

Genetically engineered bacteria make fuel from sunlight

Genetically engineered bacteria make fuel from sunlight | Science Communication from mdashf | Scoop.it

Chemists at the University of California, Davis, have engineered blue-green algae to grow chemical precursors for fuels and plastics — the first step in replacing fossil fuels as raw materials for the chemical industry.

 

Biological reactions are good at forming carbon-carbon bonds, using carbon dioxide as a raw material for reactions powered by sunlight. It’s called photosynthesis, and cyanobacteria, also known as “blue-green algae,” have been doing it for more than 3 billion years.

 

Using cyanobacteria to grow chemicals has other advantages: they do not compete with food needs, like corn’s role in the creation of ethanol.

The challenge is to get the cyanobacteria to make significant amounts of chemicals that can be readily converted to chemical feedstocks. With support from Japanese chemical manufacturer Asahi Kasei Corp., Atsumi’s lab at UC Davis has been working on introducing new chemical pathways into the cyanobacteria.

 

The researchers identified enzymes from online databases that carried out the reactions they were looking for, and then introduced the DNA for these enzymes into the cells. Working a step at a time, they built up a three-step pathway that allows the cyanobacteria to convert carbon dioxide into 2,3 butanediol, a chemical that can be used to make paint, solvents, plastics and fuels.

 

Because enzymes may work differently in different organisms, it is nearly impossible to predict how well the pathway will work before testing it in an experiment, Atsumi said. After three weeks growth, the cyanobacteria yielded 2.4 grams of 2,3 butanediol per liter of growth medium — the highest productivity yet achieved for chemicals grown by cyanobacteria and with potential for commercial development, Atsumi said.

 

Atsumi hopes to tune the system to increase productivity further and experiment with other products, while corporate partners explore scaling up the technology.


Via Dr. Stefan Gruenwald
more...
No comment yet.