Research
4.0K views | +0 today
Follow
Research
Your new post is loading...
Your new post is loading...
Scooped by Alin Velea
Scoop.it!

Discovery of Rare Form of Iron Oxide in Ancient Chinese Pottery

Discovery of Rare Form of Iron Oxide in Ancient Chinese Pottery | Research | Scoop.it

New analysis of ancient Jian wares reveals the distinctive pottery contains an unexpected and highly unusual form of iron oxide. This rare compound, called epsilon-phase iron oxide, was only recently discovered and characterized by scientists and so far has been extremely difficult to create with modern techniques.

“What is amazing is that the ‘perfect synthesis conditions’ for epsilon-phase iron oxide were encountered 1000 years ago by Chinese potters,” says Catherine Dejoie, scientist at Berkley Lab’s Advanced Light Source and ETH Zurich. The study, published May 13 in Scientific Reports, could lead to an easier, more reliable synthesis of epsilon-phase iron oxide, enabling better, cheaper magnetic materials including those used for data storage.

The study was performed by an international team of researchers from China, France, Switzerland, and the United States, using a variety of analysis techniques at Berkeley Lab’s Advanced Light Source, the Stanford Synchrotron Radiation Lightsource at SLAC National Accelerator Laboratory, and the Centre d’Elaboration de Matériaux et d’Etudes Structruales in France. In addition to Dejoie, Berkeley Lab scientists Kai Chen, Martin Kunz, Nobumichi Tamura and Zhi Liu were also authors on the paper.

 

 

more...
No comment yet.
Scooped by Alin Velea
Scoop.it!

Environmentally friendly solar cell pushes forward the 'next big thing in photovoltaics'

Environmentally friendly solar cell pushes forward the 'next big thing in photovoltaics' | Research | Scoop.it

Northwestern University researchers are the first to develop a new solar cell with good efficiency that uses tin instead of lead perovskite as the harvester of light. The low-cost, environmentally friendly solar cell can be made easily using "bench" chemistry—no fancy equipment or hazardous materials.

"This is a breakthrough in taking the lead out of a very promising type of solar cell, called a perovskite," said Mercouri G. Kanatzidis, an inorganic chemist with expertise in dealing with tin. "Tin is a very viable material, and we have shown the material does work as an efficient solar cell."

more...
No comment yet.
Scooped by Alin Velea
Scoop.it!

Edgy Look at 2D Molybdenum Disulfide

Edgy Look at 2D Molybdenum Disulfide | Research | Scoop.it

The drive to develop ultrasmall and ultrafast electronic devices using a single atomic layer of semiconductors, such as transition metal dichalcogenides, has received a significant boost. Researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) have recorded the first observations of a strong nonlinear optical resonance along the edges of a single layer of molybdenum disulfide. The existence of these edge states is key to the use of molybdenum disulfide in nanoelectronics, as well as a catalyst for the hydrogen evolution reaction in fuel cells, desulfurization and other chemical reactions.

“We observed strong nonlinear optical resonances at the edges of a two-dimensional crystal of molybdenum disulfide” says Xiang Zhang, a faculty scientist with Berkeley Lab’s Materials Sciences Division who led this study. “These one-dimensional edge states are the result of electronic structure changes and may enable novel nanoelectronics and photonic devices. These edges have also long been suspected to be the active sites for the electrocatalytic hydrogen evolution reaction in energy applications. We also discovered extraordinary second harmonic light generation properties that may be used for the in situ monitoring of electronic changes and chemical reactions that occur at the one-dimensional atomic edges.”

more...
No comment yet.
Scooped by Alin Velea
Scoop.it!

Nanoparticle based coating for aircraft engines may triple service life and reduce fuel consumption

Nanoparticle based coating for aircraft engines may triple service life and reduce fuel consumption | Research | Scoop.it

Researchers at University West in Sweden have started using nanoparticles in the heat-insulating surface layer that protects aircraft engines from heat. In tests, this increased the service life of the coating by 300%. This is something that interests the aircraft industry to a very great degree, and the hope is that motors with the new layers will be in production within two years. 

To increase the service life of aircraft engines, a heat-insulating surface layer is sprayed on top of the metal components. Thanks to this extra layer, the engine is shielded from heat. The temperature can also be raised, which leads to increased efficiency, reduced emissions, and decreased fuel consumption.

more...
No comment yet.
Scooped by Alin Velea
Scoop.it!

Researchers Grow Carbon Nanofibers Using Ambient Air, Without Toxic Ammonia

Researchers Grow Carbon Nanofibers Using Ambient Air, Without Toxic Ammonia | Research | Scoop.it

Researchers from North Carolina State University have demonstrated that vertically aligned carbon nanofibers (VACNFs) can be manufactured using ambient air, making the manufacturing process safer and less expensive. VACNFs hold promise for use in gene-delivery tools, sensors, batteries and other technologies.

Researchers have shown they can grow vertically-aligned carbon nanofibers using ambient air, rather than ammonia gas. Click to enlarge image. (Image free for use. Credit: Anatoli Melechko.)

Conventional techniques for creating VACNFs rely on the use of ammonia gas, which is toxic. And while ammonia gas is not expensive, it’s not free.

“This discovery makes VACNF manufacture safer and cheaper, because you don’t need to account for the risks and costs associated with ammonia gas,” says Dr. Anatoli Melechko, an adjunct associate professor of materials science and engineering at NC State and senior author of a paper on the work. “This also raises the possibility of growing VACNFs on a much larger scale.”

In the most common method for VACNF manufacture, a substrate coated with nickel nanoparticles is placed in a vacuum chamber and heated to 700 degrees Celsius. The chamber is then filled with ammonia gas and either acetylene or acetone gas, which contain carbon. When a voltage is applied to the substrate and a corresponding anode in the chamber, the gas is ionized. This creates plasma that directs the nanofiber growth. The nickel nanoparticles free carbon atoms, which begin forming VACNFs beneath the nickel catalyst nanoparticles. However, if too much carbon forms on the nanoparticles it can pile up and clog the passage of carbon atoms to the growing nanofibers.

more...
No comment yet.
Scooped by Alin Velea
Scoop.it!

Making synthetic diamond crystals in a plasma reactor

Making synthetic diamond crystals in a plasma reactor | Research | Scoop.it

Synthetic diamond crystals are of interest to many industrial sectors. Their unique properties make them a suitable material for numerous applications including lenses for high-energy laser optics, X-ray radiation detectors and ophthalmological scalpels. Fraunhofer scientists produce artificial diamonds in all shapes and sizes ranging from discs to three-dimensional shapes and even hollow spheres. They will be presenting their diamond products at the Hannover Messe from April 7-11 at the joint Fraunhofer booth in Hall 2, at Booth D18.

Diamonds are highly sought after as jewelry and as a form of capital investment. They are also prized by the research community, but not because of their brilliance or symbolic significance – it is their physical properties that make these gems precious to scientists. Diamonds are extremely hard, have unrivaled thermal conductivity and have a broadband spectral transparency that stretches from ultraviolet to far infrared, making them the ideal material for a host of different applications. Consequently, there is a large market for synthetic diamonds: they can cut through steel as if it were paper, dig their way through the earth on the tips of drilling heads, are used as scalpels in operations and can act as bio-electrochemical sensors for detecting 

more...
Scooped by Alin Velea
Scoop.it!

Degradation mechanisms uncovered in li-ion battery electrolytes

Degradation mechanisms uncovered in li-ion battery electrolytes | Research | Scoop.it

A team led by Pacific Northwest National Laboratory has uncovered information about high-demand batteries that could improve an essential component impacting their performance and longevity. The scientists characterized the stability and interconnected degradation mechanisms in electrolytes commonly used for lithium-ion, or Li-ion, batteries. They obtained detailed chemical imaging data using an environmental liquid stage in a scanning transmission electron microscope (STEM).

To develop new battery technologies, novel electrolytes with increased electrochemical stability are needed, preferably solid electrolytes such as inorganic or salt complexes. Finding these electrolytes requires non-invasive tools that can be used in situ at the active particle size level-the nanoscale-to observe the processes that occur during battery operation. In this study, the researchers used STEM.

more...
No comment yet.
Scooped by Alin Velea
Scoop.it!

Graphene-Copper Wires for Cooler Computing

Graphene-Copper Wires for Cooler Computing | Research | Scoop.it

When people in the chip industry talk about the thermal problems in computer processors, they get dramatic. In 2001, Pat Gelsinger, then vice president of Intel, noted that if the temperatures produced by the latest chips kept rising on their current path, they would exceed the heat of a nuclear reactor by 2005, and the surface of the sun by 2015. Fortunately, such thermal disaster was averted by slowing down the switching speeds in microprocessors, and by adopting multicore chip designs in which several processors run in parallel.

Now the semiconductor industry has another thermal problem to sort out. As chip components shrink, the copper wiring that connects them must shrink, too. And as these wires get thinner, they heat up tremendously.

A potential solution to this interconnect fever has been found in the form of graphene, an exotic material made from single-atom-thick sheets of carbon that is a superlative conductor of both electrons and heat.

more...
No comment yet.
Scooped by Alin Velea
Scoop.it!

Oxide nanosheets trump current state-of-the art capacitor materials

Oxide nanosheets trump current state-of-the art capacitor materials | Research | Scoop.it

Electronics are getting smaller all the time, but there's a limit to how tiny they can get with today's materials. Takayoshi Sasaki and co-workers at the International Center for Materials Nanoarchitectonics, National Institute for Materials Science and Shinshu University in Japan have now developed a way to shrink capacitors, key components that store energy, even further, which could accelerate the development of more compact, high-performance next-generation devices.

Many recent improvements have already downsized capacitors significantly. But current technology has almost reached its limit in terms of materials and processing, which in turn limits the performance that manufacturers can achieve. In response, the researchers have gone to the nanoscale, but "nanocapacitors" are not easy to make.

Sasaki's team developed a LEGO-like approach, and they applied it to make high-performance ultrathin capacitors. They used conductive Ru0.95O20.2- and dielectric Ca2Nb3O10- nanosheets as core device components. By using solution-based assembly, they created a sandwich consisting of layers of two different types of oxide nanosheets to produce an ultrathin capacitor. The new capacitor has a stable capacitance density (~27.5μF cm-2), which is 2,000 times higher than that of currently available commercial products.

more...
No comment yet.
Scooped by Alin Velea
Scoop.it!

Researchers change coercivity of material by patterning surface

Researchers change coercivity of material by patterning surface | Research | Scoop.it

Researchers from North Carolina State University have found a way to reduce the coercivity of nickel ferrite (NFO) thin films by as much as 80 percent by patterning the surface of the material, opening the door to more energy efficient high-frequency electronics, such as sensors, microwave devices and antennas. 

"This technique reduces coercivity, which will allow devices to operate more efficiently, reducing energy use and improving device performance," says Goran Rasic, a Ph.D. student at NC State and lead author of a paper describing the work. "We did this work on NFO but, because the reduced coercivity is a direct result of the surface patterning, we think our technique would work for other magnetic materials as well."

Coercivity is a property of magnetized materials and is the amount of magnetic field needed to bring a material's magnetization to zero. Basically, it's how much a material likes being magnetic. For devices that rely on switching current back and forth repeatedly – such as most consumer electronics – you want materials that have low coercivity, which improve device performance and use less energy.

more...
No comment yet.
Scooped by Alin Velea
Scoop.it!

Graphene Gives You Infrared Vision in a Contact Lens

Graphene Gives You Infrared Vision in a Contact Lens | Research | Scoop.it

It sounds like something from a spy thriller movie: putting on a contact lens that gives you infrared vision without the need for a bulky contraption that covers your face. But now, thanks to research at the University of Michigan, such a contact lens is a real possibility.

The Michigan researchers turned to the optical capabilities of graphene tocreate their infrared contact lens. IBM last year demonstrated some of the photoconductivity mechanisms of graphene that make it an attractive infrared detector.

Graphene is capable of detecting the entire infrared spectrum, with visible and ultraviolet light thrown in. But where graphene giveth, it also taketh away. Because graphene is only one-atom thick, it can absorb only 2.3 percent of the light that hits it. This is not enough to generate an electrical signal, and without a signal it can’t operate as a infrared sensor.

more...
No comment yet.
Scooped by Alin Velea
Scoop.it!

Memory closes in on single photons

Memory closes in on single photons | Research | Scoop.it

In a world-first, an optical memory – a key component for quantum computers – has been created within a hollow-core optical fibre and shown to operate at the level of a single particle of light (a photon).

Single photons of light are the basic building blocks for quantum-enhanced computers and sensors. Unfortunately, creating exactly one photon is exceptionally challenging; most sources of single photons succeed in working only rarely and at random intervals. As a result, creating many single photons at the same instant becomes extremely unlikely, which is a major drawback for anyone hoping to use single photons to perform calculations. In theory, an optical memory could store single photons generated by individual sources, in effect briefly 'caching' them, so that many synchronised single photons could be produced at once. Such synchronised photons could be used to perform calculations many times faster than conventional computers.

more...
No comment yet.
Scooped by Alin Velea
Scoop.it!

Atomically thick metal membranes

Atomically thick metal membranes | Research | Scoop.it

For the first time researchers have shown that freestanding metal membranes consisting of a single layer of atoms can be stable under ambient conditions. This result of an international research team from Germany, Poland and Korea is published in Science on March 14, 2014.

The success and promise of atomically thin carbon, in which carbon atoms are arranged in a honeycomb lattice, also known as graphene has triggered enormous enthusiasm for other two dimensional materials, for example, hexagonal boron nitride and molybdenum sulphide. These materials share a common structural aspect, namely, they are layered materials that one can think of as individual atomic planes that can be pulled away from their bulk 3D structure. This is because the layers are held together through so called van der Waals interactions which are relatively weak forces as compared to other bonding configurations such as covalent bonds. Once isolated these atomically thin layers maintain mechanical integrity (i.e. they are stable) under ambient conditions.

more...
No comment yet.
Scooped by Alin Velea
Scoop.it!

Bottom-Up Manufacturing of Nanowires on Silicon Expands Its Capabilities

Bottom-Up Manufacturing of Nanowires on Silicon Expands Its Capabilities | Research | Scoop.it
Researchers develop a way to grow nanowires on silicon that is adaptable to today's manufacturing processes
more...
No comment yet.
Scooped by Alin Velea
Scoop.it!

Atomic mechanism for historic materials transformation

Atomic mechanism for historic materials transformation | Research | Scoop.it

SLAC-led researchers have made the first direct measurements of a small and extremely rapid atomic rearrangement, associated with a class called martensitic transformations, that dramatically changes the properties of many important materials, such as doubling the hardness of steel and causing shape-memory alloys to revert to a previous shape.

Using high-pressure shock waves and ultrashort X-ray pulses at the Linac Coherent Light Source (LCLS), the researchers observed the details of how this transformation changed the internal atomic structure of a model system, perfect nanocrystals of cadmium sulfide. In the process, they saw for the first time that the nanocrystals pass through a theoretically-predicted intermediate state when undergoing this change.

more...
No comment yet.
Scooped by Alin Velea
Scoop.it!

Semiconductor Manipulates IR Light

Semiconductor Manipulates IR Light | Research | Scoop.it

Developed by a team from the University of California, Santa Barbara, the technology uses erbium, a rare-earth metal that has the ability to absorb light in the visible as well as infrared wavelengths. 
Pairing it with antimony (Sb), the researchers embedded the resulting compound — erbium antimonide (ErSb) — as semimetallic nanostructures within the semiconducting matrix of gallium antimonide (GaSb). “The nanostructures are coherently embedded, without introducing noticeable defects, through the growth process by molecular beam epitaxy,” said Dr. Hong Lu, a researcher in UCSB’s materials and electrical and computer engineering departments, and a lead author of the study. “Secondly, we can control the size, the shape and the orientation of the nanostructures.” 

more...
No comment yet.
Scooped by Alin Velea
Scoop.it!

Researchers improve performance of III-V nanowire solar cells on graphene

Researchers improve performance of III-V nanowire solar cells on graphene | Research | Scoop.it

Imagine a field of small wires—standing at attention like a tiny field of wheat—gathering the Sun's rays as the first step in solar energy conversion.

Researchers at the University of Illinois at Urbana-Champaign have achieved new levels of performance for seed-free and substrate-free arrays of nanowires from class of materials called III-V (three-five) directly on graphene. These compound semiconductors hold particular promise for applications involving light, such as solar cells or lasers.

"Over the past two decades, research in the field of semiconductor nanowires has helped to reshape our understanding of atomic-scale crystal assembly and uncover novel physical phenomena at the nanometer scale," explained Xiuling Li, a professor of electrical and computer engineering at Illinois. In the March 20th issue of Advanced Materials, the researchers present the first report of a novel solar cell architecture based on dense arrays of coaxial p-n junction InGaAs nanowires on InAs stems grown directly on graphene without any metal catalysts or lithographic patterning.

more...
No comment yet.
Scooped by Alin Velea
Scoop.it!

Nanostructures enhance light trapping for solar fuel generation

Nanostructures enhance light trapping for solar fuel generation | Research | Scoop.it

As the world's dependence on fossil fuels causes ever-increasing problems, researchers are investigating solar fuels as an alternative energy source. To make solar fuels, sunlight is converted into hydrogen or another type of chemical energy. Compared to energy produced by solar cells, which convert sunlight directly to electricity, solar fuels such as hydrogen have the advantage of being easier to store for later use. 

Because of the enormous amount of sunlight that reaches Earth, solar fuel generation has the potential to serve as a clean, terawatt-scale global energy source. But in order for this to happen, the photocatalysts that enhance light absorption and light trapping must be improved, both in terms of higher performance and lower cost.

In a new study, researchers Soo Jin Kim, et al., at the Geballe Laboratory for Advanced Materials in Stanford, California, have demonstrated that photocatalysts made from iron oxide exhibit substantial performance improvements when they are patterned with nanostructures. Their paper is published in a recent issue of Nano Letters.

more...
No comment yet.
Scooped by Alin Velea
Scoop.it!

New Technique Makes LEDs Brighter, More Resilient

New Technique Makes LEDs Brighter, More Resilient | Research | Scoop.it

Researchers from North Carolina State University have developed a new processing technique that makes light emitting diodes (LEDs) brighter and more resilient by coating the semiconductor material gallium nitride (GaN) with a layer of phosphorus-derived acid.

By coating polar gallium nitride with phosphonic groups, the researchers increased luminescence without increasing energy input. (Image: Stewart Wilkins. Click to enlarge.)

“By coating polar GaN with a self-assembling layer of phosphonic groups, we were able to increase luminescence without increasing energy input,” says Stewart Wilkins, a Ph.D. student at NC State and lead author of a paper describing the work. “The phosphonic groups also improve stability, making the GaN less likely to degrade in solution.

“Making the GaN more stable is important,” Wilkins adds, “because that makes it more viable for use in biomedical applications, such as implantable sensors.”

The researchers started with polar GaN, composed of alternating layers of gallium and nitrogen. To increase luminescence, they etched the surface of the material with phosphoric acid. At the same time, they added phosphonic groups – organic molecules containing phosphorus – that self-assembled into a monolayer on the surface of the material. This layer further increased luminescence and improved the stability of the GaN by making it less likely to react chemically with its environment.

more...
No comment yet.
Scooped by Alin Velea
Scoop.it!

Synthesized hierarchical structures in solid-state chemistry

Synthesized hierarchical structures in solid-state chemistry | Research | Scoop.it

Traditional solid-state compounds are made up of individual atoms arranged in crystalline arrays in three dimensions. But technological progress and creativity led researchers to try a new way of making solid-state materials.

Their new materials mimic atomic structures, but instead of making solids from atoms, they made them with molecules that stand in for the atoms. These molecular clusters are larger than atoms and they produce collective properties, such as electrically conducting networks and magnetic ordering.

"In the solid-chemistry business, you're limited to the naturally occurring atom if you want to make solids," said research scientist Michael Steigerwald of Columbia University. "And you can't make new atoms. But if you think about it this way, we can make new atoms by making new clusters. And the hope or expectation is that we'll be able to make new types of materials with new and useful properties if we build them up with molecules that we can make and assemble."

more...
No comment yet.
Scooped by Alin Velea
Scoop.it!

Discovery of New Semiconductor Holds Promise for 2D Physics and Electronics

Discovery of New Semiconductor Holds Promise for 2D Physics and Electronics | Research | Scoop.it

From super-lubricants, to solar cells, to the fledgling technology of valleytronics, there is much to be excited about with the discovery of a unique new two-dimensional semiconductor, rhenium disulfide, by researchers at Berkeley Lab’s Molecular Foundry. Rhenium disulfide, unlike molybdenum disulfide and other dichalcogenides, behaves electronically as if it were a 2D monolayer even as a 3D bulk material. This not only opens the door to 2D electronic applications with a 3D material, it also makes it possible to study 2D physics with easy-to-make 3D crystals.

“Rhenium disulfide remains a direct-bandgap semiconductor, its photoluminescence intensity increases while its Raman spectrum remains unchanged, even with the addition of increasing numbers of layers,” says Junqiao Wu, a physicist with Berkeley Lab’s Materials Sciences Division who led this discovery. “This makes bulk crystals of rhenium disulfide an ideal platform for probing 2D excitonic and lattice physics, circumventing the challenge of preparing large-area, single-crystal monolayers.”

more...
No comment yet.
Scooped by Alin Velea
Scoop.it!

Flexible carbon nanotube circuits made more reliable, power efficient

Flexible carbon nanotube circuits made more reliable, power efficient | Research | Scoop.it

Engineers would love to create flexible electronic devices, such as e-readers that could be folded to fit into a pocket. One approach they are trying involves designing circuits based on electronic fibers, known as carbon nanotubes (CNTs), instead of rigid silicon chips.

But reliability is essential. Most silicon chips are based on a type of circuit design that allows them to function flawlessly even when the device experiences power fluctuations. However, it is much more challenging to do so with CNT circuits.

Now a team at Stanford has developed a process to create flexible chips that can tolerate power fluctuations in much the same way as silicon circuitry.

"This is the first time anyone has designed a flexible CNT circuits that have both high immunity to electrical noise and low power consumption, " said Zhenan Bao, a professor of chemical engineering at Stanford with a courtesy appointment in Chemistry and Materials Science and Engineering.

more...
No comment yet.
Scooped by Alin Velea
Scoop.it!

High-strengh materials created under pressure

High-strengh materials created under pressure | Research | Scoop.it

At Vienna University of Technology, materials for lightweight construction, protective clothing or sports equipment can be produced at high temperatures and high pressures. This process is faster, better and more eco-friendly than other techniques.

The earth's crust works like a pressure cooker. Minerals typically do not form under standard conditions, but at high temperatures and pressures. However, an environment of extreme heat and pressure has been considered to be absolutely unsuitable for organic molecules. Scientists at Vienna University of Technology found out that under such seemingly hostile conditions, organic materials with remarkable material properties can be synthesized – for instance Kevlar, an extremely versatile high-performance material.

more...
No comment yet.
Scooped by Alin Velea
Scoop.it!

Researchers produce uniform antimony nanocrystals for energy storage

Researchers produce uniform antimony nanocrystals for energy storage | Research | Scoop.it

In a world-first, an optical memory – a key component for quantum computers – has been created within a hollow-core optical fibre and shown to operate at the level of a single particle of light (a photon).

Single photons of light are the basic building blocks for quantum-enhanced computers and sensors. Unfortunately, creating exactly one photon is exceptionally challenging; most sources of single photons succeed in working only rarely and at random intervals. As a result, creating many single photons at the same instant becomes extremely unlikely, which is a major drawback for anyone hoping to use single photons to perform calculations. In theory, an optical memory could store single photons generated by individual sources, in effect briefly 'caching' them, so that many synchronised single photons could be produced at once. Such synchronised photons could be used to perform calculations many times faster than conventional computers.

more...
No comment yet.
Scooped by Alin Velea
Scoop.it!

Researchers turn a nickel-rich nanoparticle into a platinum-rich "nanoframe"

Researchers turn a nickel-rich nanoparticle into a platinum-rich "nanoframe" | Research | Scoop.it

For hundreds of years, alchemists have tried to turn base metals into precious ones. Though they may never turn lead into gold, scientists have discovered a way to turn a nickel-rich nanoparticle into a platinum-rich "nanoframe" that could shape the development of fuel cells and other electrochemical technologies.

 

Researchers at the U.S. Department of Energy's Argonne National Laboratory and Lawrence Berkeley National Laboratory teamed up to convert platinum-nickel polyhedra into bare frames that had a much richer platinum content. Argonne physical chemist Vojislav Stamenkovic, and Lawrence Berkeley researcher and UC Berkeley professor Peidong Yang led the research team that has given scientists a new approach to catalysis.

"Polyhedra have been the usual nanostructures used for decades for catalysis research," Stamenkovic said. "Our research shows that there may be other options available."

more...
No comment yet.