Regulation of the plant-microbe interactions
1.3K views | +0 today
Follow
Your new post is loading...
Your new post is loading...
Scooped by Oswaldo Valdes-Lopez
Scoop.it!

The pattern-recognition receptor CORE of Solanaceae detects bacterial cold-shock protein

The pattern-recognition receptor CORE of Solanaceae detects bacterial cold-shock protein | Regulation of the plant-microbe interactions | Scoop.it
Plants and animals recognize microbial invaders by detecting microbe-associated molecular patterns (MAMPs) by cell surface receptors. Many plant species of the Solanaceae family detect the highly conserved nucleic acid binding motif RNP-1 of bacterial cold-shock proteins (CSPs), represented by the peptide csp22, as a MAMP. Here, we exploited the natural variation in csp22 perception observed between cultivated tomato (Solanum lycopersicum) and Solanum pennellii to map and identify the leucine-rich repeat (LRR) receptor kinase CORE (cold shock protein receptor) of tomato as the specific, high-affinity receptor site for csp22. Corroborating its function as a genuine receptor, heterologous expression of CORE in Arabidopsis thaliana conferred full sensitivity to csp22 and, importantly, it also rendered these plants more resistant to infection by the bacterial pathogen Pseudomonas syringae pv. tomato DC3000. Our study also confirms the biotechnological potential of enhancing plant immunity by interspecies transfer of highly effective pattern-recognition receptors such as CORE to different plant families.
more...
No comment yet.
Scooped by Oswaldo Valdes-Lopez
Scoop.it!

Chitin receptor CERK1 links salt stress and chitin‐triggered innate immunity in Arabidopsis

In nature, plants need to respond to multiple environmental stresses that require involvement and fine-tuning of different stress signaling pathways. Cross-tolerance in which plants pre-treated with chitin (a fungal microbe-associated molecular pattern) have improved salt tolerance was observed in Arabidopsis but is not well understood. Here, we show a unique link between chitin and salt signaling mediated by the chitin receptor CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1). Transcriptome analysis revealed that salt stress-induced genes are highly correlated with chitin-induced genes, while this was not observed with other microbe-associated molecular patterns (MAMP) or with other abiotic stresses. The cerk1 mutant was more susceptible to NaCl than wild type. cerk1 plants had an irregular increase of cytosolic calcium ([Ca2+]cyt) after NaCl treatment. Bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation experiments indicated that CERK1 physically interacts with ANNEXIN 1 (ANN1), which was reported to form a calcium-permeable channel that contributes to the NaCl-induced [Ca2+]cyt signal. In turn, ann1 mutants showed elevated chitin-induced rapid responses. In short, molecular components previously shown to function in chitin or salt signaling physically interact and intimately link the downstream responses to fungal attack and salt stress.
more...
No comment yet.
Scooped by Oswaldo Valdes-Lopez
Scoop.it!

Quantitative modelling of legume root nodule primordium induction by a diffusive signal of epidermal origin that inhibits auxin efflux

Quantitative modelling of legume root nodule primordium induction by a diffusive signal of epidermal origin that inhibits auxin efflux | Regulation of the plant-microbe interactions | Scoop.it
Rhizobium nitrogen fixation in legumes takes place in specialized organs called root nodules. The initiation of these symbiotic organs has two important components. First, symbiotic rhizobium bacteria are recognized at the epidermis through specific bacterially secreted lipo-chitooligosaccharides (LCOs). Second, signaling processes culminate in the formation of a local auxin maximum marking the site of cell divisions. Both processes are spatially separated. This separation is most pronounced in legumes forming indeterminate nodules, such as model organism Medicago truncatula, in which the nodule primordium is formed from pericycle to most inner cortical cell layers.
more...
No comment yet.
Scooped by Oswaldo Valdes-Lopez
Scoop.it!

A putative 3-hydroxyisobutyryl-CoA hydrolase is required for efficient symbiotic nitrogen fixation in Sinorhizobium meliloti and Sinorhizobium fredii NGR234 

We report that the smb20752 gene of the alfalfa symbiont Sinorhizobium meliloti is a novel symbiotic gene required for full N2-fixation. Deletion of smb20752 resulted in lower nitrogenase activity and smaller nodules without impacting overall nodule morphology. Orthologs of smb20752 were present in all alpha and beta rhizobia, including the ngr_b20860 gene of Sinorhizobium fredii NGR234. A ngr_b20860 mutant formed Fix- determinate nodules that developed normally to a late stage of the symbiosis on the host plants Macroptillium atropurpureum and Vigna unguiculata. However an early symbiotic defect was evident during symbiosis with Leucaena leucocephala, producing Fix- indeterminate nodules. The smb20752 and ngr_b20860 genes encode putative 3-hydroxyisobutyryl-CoA (HIB-CoA) hydrolases. HIB-CoA hydrolase are required for L-valine catabolism and appear to prevent the accumulation of toxic metabolic intermediates, particularly methacrylyl-CoA. Evidence presented here and elsewhere (Curson et al., 2014. PLoS ONE 9:e97660) demonstrated that Smb20752 and NGR_b20860 can also prevent metabolic toxicity, are required for L-valine metabolism, and play an undefined role in 3-hydroxybutyrate catabolism. We present evidence that the symbiotic defect of the HIB-CoA hydrolase mutants is independent of the inability to catabolize L-valine and suggest it relates to the toxicity resulting from metabolism of other compounds possibly related to 3-hydroxybutyric acid. This article is protected by copyright. All rights reserved.
more...
No comment yet.
Rescooped by Oswaldo Valdes-Lopez from Plants and Microbes
Scoop.it!

New Phytologist: Convergent evolution of filamentous microbes towards evasion of glycan-triggered immunity (2016)

New Phytologist: Convergent evolution of filamentous microbes towards evasion of glycan-triggered immunity (2016) | Regulation of the plant-microbe interactions | Scoop.it

All filamentous microbes produce and release a wide range of glycans, which are essential determinants of microbe–microbe and microbe–host interactions. Major cell wall constituents, such as chitin and β-glucans, are elicitors of host immune responses. The widespread capacity for glycan perception in plants has driven the evolution of various strategies that help filamentous microbes to evade detection. Common strategies include structural and chemical modifications of cell wall components as well as the secretion of effector proteins that suppress chitin- and β-glucan-triggered immune responses. Thus, the necessity to avoid glycan-triggered immunity represents a driving force in the convergent evolution of filamentous microbes towards its suppression.


Via Kamoun Lab @ TSL
more...
Scooped by Oswaldo Valdes-Lopez
Scoop.it!

Advances on plant-pathogen interactions from molecular toward systems biology perspectives

In the past two decades, progress in molecular analyses of the plant immune system has revealed key elements of a complex response network. Current paradigms depict the interaction of pathogen secreted molecules with host target molecules leading to the activation of multiple plant response pathways. Further research will be required to fully understand how these responses are integrated in space and time, and exploit this knowledge in agriculture. In this review, we highlight systems biology as a promising approach to reveal properties of molecular plant pathogen interactions and predict the outcome of such interactions. We first illustrate a few key concepts in plant immunity with a network and systems biology perspective. Next, we present some basic principles of systems biology and show how they allow integrating multi-omics data and predict cell phenotypes. We identify challenges for systems biology of plant-pathogen interactions, including the reconstruction of multiscale mechanistic models and the connection of host and pathogen models. Finally, we outline studies on resistance durability through the robustness of immune system networks, the identification of trade-offs between immunity and growth and in silico plant-pathogen co-evolution as exciting perspectives in the field. We conclude that the development of sophisticated models of plant diseases incorporating plant, pathogen and climate properties represent a major challenge for agriculture in the future.
more...
No comment yet.
Scooped by Oswaldo Valdes-Lopez
Scoop.it!

Root nodule symbiosis in Lotus japonicus drives the establishment of distinctive rhizosphere, root, and nodule bacterial communities

Lotus japonicus has been used for decades as a model legume to study the establishment of binary symbiotic relationships with nitrogen-fixing rhizobia that trigger root nodule organogenesis for bacterial accommodation. Using community profiling of 16S rRNA gene amplicons, we reveal that in Lotus, distinctive nodule- and root-inhabiting communities are established by parallel, rather than consecutive, selection of bacteria from the rhizosphere and root compartments. Comparative analyses of wild-type (WT) and symbiotic mutants in Nod factor receptor5 (nfr5), Nodule inception (nin) and Lotus histidine kinase1 (lhk1) genes identified a previously unsuspected role of the nodulation pathway in the establishment of different bacterial assemblages in the root and rhizosphere. We found that the loss of nitrogen-fixing symbiosis dramatically alters community structure in the latter two compartments, affecting at least 14 bacterial orders. The differential plant growth phenotypes seen between WT and the symbiotic mutants in nonsupplemented soil were retained under nitrogen-supplemented conditions that blocked the formation of functional nodules in WT, whereas the symbiosis-impaired mutants maintain an altered community structure in the nitrogen-supplemented soil. This finding provides strong evidence that the root-associated community shift in the symbiotic mutants is a direct consequence of the disabled symbiosis pathway rather than an indirect effect resulting from abolished symbiotic nitrogen fixation. Our findings imply a role of the legume host in selecting a broad taxonomic range of root-associated bacteria that, in addition to rhizobia, likely contribute to plant growth and ecological performance.
more...
No comment yet.
Scooped by Oswaldo Valdes-Lopez
Scoop.it!

The evolution of symbiont preference traits in the model legume Medicago truncatula 

Many hosts preferentially associate with or reward better symbionts, but how these symbiont preference traits evolve is an open question. Legumes often form more nodules with or provide more resources to rhizobia that fix more nitrogen (N), but they also acquire N from soil via root foraging. It is unclear whether root responses to abiotically and symbiotically derived N evolve independently.
Here, we measured root foraging and both preferential allocation of root resources to and preferential association with an effective vs an ineffective N-fixing Ensifer meliloti strain in 35 inbred lines of the model legume Medicago truncatula.
We found that M. truncatula is an efficient root forager and forms more nodules with the effective rhizobium; root biomass increases with the number of effective, but not ineffective, nodules, indicating preferential allocation to roots harbouring effective rhizobia; root foraging is not genetically correlated with either preferential allocation or association; and selection favours plant genotypes that form more effective nodules.
Root foraging and symbiont preference traits appear to be genetically uncoupled in M. truncatula. Rather than evolving to exclude ineffective partners, our results suggest that preference traits probably evolve to take better advantage of effective symbionts.
more...
No comment yet.
Scooped by Oswaldo Valdes-Lopez
Scoop.it!

Ectomycorrhizal ecology is imprinted in the genome of the dominant symbiotic fungus Cenococcum geophilum

Ectomycorrhizal ecology is imprinted in the genome of the dominant symbiotic fungus Cenococcum geophilum | Regulation of the plant-microbe interactions | Scoop.it
The most frequently encountered symbiont on tree roots is the ascomycete Cenococcum geophilum, the only mycorrhizal species within the largest fungal class Dothideomycetes, a class known for devastating plant pathogens. Here we show that the symbiotic genomic idiosyncrasies of ectomycorrhizal basidiomycetes are also present in C. geophilum with symbiosis-induced, taxon-specific genes of unknown function and reduced numbers of plant cell wall-degrading enzymes. C. geophilum still holds a significant set of genes in categories known to be involved in pathogenesis and shows an increased genome size due to transposable elements proliferation. Transcript profiling revealed a striking upregulation of membrane transporters, including aquaporin water channels and sugar transporters, and mycorrhiza-induced small secreted proteins (MiSSPs) in ectomycorrhiza compared with free-living mycelium. The frequency with which this symbiont is found on tree roots and its possible role in water and nutrient transport in symbiosis calls for further studies on mechanisms of host and environmental adaptation.
more...
No comment yet.
Scooped by Oswaldo Valdes-Lopez
Scoop.it!

The fungal-specific β-glucan-binding lectin FGB1 alters cell-wall composition and suppresses glucan-triggered immunity in plants

The fungal-specific β-glucan-binding lectin FGB1 alters cell-wall composition and suppresses glucan-triggered immunity in plants | Regulation of the plant-microbe interactions | Scoop.it
β-glucans are well-known modulators of the immune system in mammals but little is known about β-glucan triggered immunity in planta. Here we show by isothermal titration calorimetry, circular dichroism spectroscopy and nuclear magnetic resonance spectroscopy that the FGB1 gene from the root endophyte Piriformospora indica encodes for a secreted fungal-specific β-glucan-binding lectin with dual function. This lectin has the potential to both alter fungal cell wall composition and properties, and to efficiently suppress β-glucan-triggered immunity in different plant hosts, such as Arabidopsis, barley and Nicotiana benthamiana. Our results hint at the existence of fungal effectors that deregulate innate sensing of β-glucan in plants.
more...
No comment yet.
Scooped by Oswaldo Valdes-Lopez
Scoop.it!

The Arabidopsis CERK1‐associated kinase PBL27 connects chitin perception to MAPK activation

Perception of microbe‐associated molecular patterns by host cell surface pattern recognition receptors (PRRs) triggers the intracellular activation of mitogen‐activated protein kinase (MAPK) cascades. However, it is not known how PRRs transmit immune signals to MAPK cascades in plants. Here, we identify a complete phospho‐signaling transduction pathway from PRR‐mediated pathogen recognition to MAPK activation in plants. We found that the receptor‐like cytoplasmic kinase PBL27 connects the chitin receptor complex CERK1‐LYK5 and a MAPK cascade. PBL27 interacts with both CERK1 and the MAPK kinase kinase MAPKKK5 at the plasma membrane. Knockout mutants of MAPKKK5 compromise chitin‐induced MAPK activation and disease resistance to Alternaria brassicicola. PBL27 phosphorylates MAPKKK5 in vitro, which is enhanced by phosphorylation of PBL27 by CERK1. The chitin perception induces disassociation between PBL27 and MAPKKK5 in vivo. Furthermore, genetic evidence suggests that phosphorylation of MAPKKK5 by PBL27 is essential for chitin‐induced MAPK activation in plants. These data indicate that PBL27 is the MAPKKK kinase that provides the missing link between the cell surface chitin receptor and the intracellular MAPK cascade in plants.
more...
No comment yet.
Scooped by Oswaldo Valdes-Lopez
Scoop.it!

A Developmental and Molecular View of Formation of Auxin-Induced Nodule-Like Structures in Land Plants

Several studies have shown that plant hormones play important roles during legume–rhizobia symbiosis. For instance, auxins induce the formation of nodule-like structures (NLSs) on legume roots in the absence of rhizobia. Furthermore, these NLS can be colonized by nitrogen-fixing bacteria, which favor nitrogen fixation compared to regular roots and subsequently increase plant yield. Interestingly, auxin also induces similar NLS in cereal roots. While several genetic studies have identified plant genes controlling NLS formation in legumes, no studies have investigated the genes involved in NLS formation in cereals. In this study, first we established an efficient experimental system to induce NLS in rice roots, using auxin, 2,4-D, consistently at a high frequency (>90%). We were able to induce NLS at a high frequency in Medicago truncatula under similar conditions. NLS were characterized by a broad base, a diffuse meristem, and increased cell differentiation in the vasculature. Interestingly, NLS formation appeared very similar in both rice and Medicago, suggesting a similar developmental program. We show that NLS formation in both rice and Medicago occurs downstream of the common symbiotic pathway. Furthermore, NLS formation occurs downstream of cytokinin-induced step(s). We performed a comprehensive RNA sequencing experiment to identify genes differentially expressed during NLS formation in rice and identified several promising genes for control of NLS based on their biological and molecular functions. We validated the expression patterns of several genes using reverse transcription polymerase chain reaction and show varied expression patterns of these genes during different stages of NLS formation. Finally, we show that NLS induced on rice roots under these conditions can be colonized by nitrogen-fixing bacteria, Azorhizobium caulinodans.
more...
No comment yet.
Scooped by Oswaldo Valdes-Lopez
Scoop.it!

Biology and evolution of arbuscular mycorrhizal symbiosis in the light of genomics

Arbuscular mycorrhizal (AM) fungi associate with the vast majority of land plants, providing mutual nutritional benefits and protecting hosts against biotic and abiotic stresses. Significant progress was made recently in our understanding of the genomic organization, the obligate requirements, and the sexual nature of these fungi through the release and subsequent mining of genome sequences. Genomic and genetic approaches also improved our understanding of the signal repertoire used by AM fungi and their plant hosts to recognize each other for the initiation and maintenance of this association. Evolutionary and bioinformatic analyses of host and nonhost plant genomes represent novel ways with which to decipher host mechanisms controlling these associations and shed light on the stepwise acquisition of this genetic toolkit during plant evolution. Mining fungal and plant genomes along with evolutionary and genetic approaches will improve understanding of these symbiotic associations and, in the long term, their usefulness in agricultural settings.
more...
No comment yet.
Scooped by Oswaldo Valdes-Lopez
Scoop.it!

Intracellular innate immune surveillance devices in plants and animals

athogens cause agricultural devastation and huge economic losses. Up to 30% of our crops are lost before or after harvest to pathogens and pests, wasting water and human effort. Diseases and pests are major problems for sustainable agriculture in the face of population growth. Similarly, microbial infection remains a major cause of human mortality and morbidity, responsible for ~25% of deaths worldwide in 2012. We lack vaccines for several major infectious diseases, and antibiotic resistance is an ever- growing concern.

Plant and animal innate immune systems respond to pathogen infection and regulate beneficial interactions with commensal and symbiotic microbes. Plants and animals use intracellular proteins of the nucleotide binding domain (NBD), leucine-rich repeat (NLR) superfamily to detect many kinds of pathogens. Plant and animal NLRs evolved from distinct derivatives of a common ancestral prokaryotic adenosine triphosphatase (ATPase): the NBD shared by APAF-1, plant NLR proteins, and CED-4 (NB-ARC) domain class and that shared by apoptosis inhibitory protein (NAIP), CIITA, HET-E, TP1 (NACHT) domain class, respectively. Animals and fungi can carry both NB-ARC and NACHT domain proteins, but NACHT domain proteins are absent from plants and several animal taxa, such as Drosophila and nematodes. Despite the vast evolutionary distance between plants and animals, we describe trans-kingdom principles of NLR activation. We propose that NLRs evolved for pathogen-sensing in diverse organisms because the flexible protein domain architecture surrounding the NB-ARC and NACHT domains facilitates evolution of “hair trigger” switches, into which a virtually limitless number of microbial detection platforms can be integrated.
more...
No comment yet.
Scooped by Oswaldo Valdes-Lopez
Scoop.it!

Chasing unicorns: Nodulation origins and the paradox of novelty

A radio series on the history of music called “Composers Datebook” ends each vignette by reminding listeners that “All music was once new.” Well, in evolutionary terms, every tissue and every organ was once an innovation, assembled de novo or from bits and pieces of pre-existing parts. How novelty arises is a fundamental question in the field of developmental evolution. In plants, the legume nodule is a fascinating system for studying the process by which a novel structure evolves and is modified in diverse lineages.
more...
No comment yet.
Scooped by Oswaldo Valdes-Lopez
Scoop.it!

Regulation of sugar transporter activity for antibacterial defense in Arabidopsis

Microbial pathogens strategically acquire metabolites from their hosts during infection. Here we show that the host can intervene to prevent such metabolite loss to pathogens. Phosphorylation-dependent regulation of sugar transporter 13 (STP13) is required for antibacterial defense in the plant Arabidopsis thaliana. STP13 physically associates with the flagellin receptor flagellin-sensitive 2 (FLS2) and its co-receptor BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1 (BAK1). BAK1 phosphorylates STP13 at threonine 485, which enhances its monosaccharide uptake activity to compete with bacteria for extracellular sugars. Limiting the availability of extracellular sugar deprives bacteria of an energy source and restricts virulence factor delivery. Our results reveal that control of sugar uptake, managed by regulation of a host sugar transporter, is a defense strategy deployed against microbial infection. Competition for sugar thus shapes host-pathogen interactions.
more...
No comment yet.
Scooped by Oswaldo Valdes-Lopez
Scoop.it!

NIN Is Involved in the Regulation of Arbuscular Mycorrhizal Symbiosis

Arbuscular mycorrhizal (AM) symbiosis is an intimate and ancient symbiosis found between most of terrestrial plants and fungi from the Glomeromycota family. Later during evolution, the establishment of the nodulation between legume plants and soil bacteria known as rhizobia, involved several genes of the signaling pathway previously implicated for AM symbiosis. For the past years, the identification of the genes belonging to this Common Symbiotic Signaling Pathway have been mostly done on nodulation. Among the different genes already well identified as required for nodulation, we focused our attention on the involvement of Nodule Inception (NIN) in AM symbiosis. We show here that NIN expression is induced during AM symbiosis, and that the Medicago truncatula nin mutant is less colonized than the wild-type M. truncatula strain. Moreover, nin mutant displays a defect in the ability to be infected by the fungus Rhizophagus irregularis. This work brings a new evidence of the common genes involved in overlapping signaling pathways of both nodulation and in AM symbiosis.
more...
No comment yet.
Scooped by Oswaldo Valdes-Lopez
Scoop.it!

Sinorhizobium fredii HH103 invades Lotus burttii by crack entry in a Nod-factor and surface polysaccharides dependent manner

Sinorhizobium fredii HH103-Rifr, a broad host-range rhizobial strain, induces nitrogen-fixing nodules in Lotus burttii but ineffective nodules in L. japonicus. Confocal microscopy studies showed that Mesorhizobium loti MAFF303099 and S. fredii HH103-Rifr invade L. burttii roots through infection threads or epidermal cracks, respectively. Infection threads in root hairs were not observed in L. burttii plants inoculated with S. fredii HH103-Rifr. A S. fredii HH103-Rifr nodA mutant failed to nodulate L. burttii, demonstrating that Nod-factors are strictly necessary for this crack-entry mode and a noeL mutant was also severely impaired in L. burttii nodulation, indicating that the presence of fucosyl residues in the Nod-factor is symbiotically relevant. However, significant symbiotic impacts due to the absence of methylation or to acetylation of the fucosyl residue were not detected. In contrast S. fredii HH103-Rifr mutants showing lipopolysaccharide alterations had reduced symbiotic capacity while mutants affected in production of exopolysaccharides and/or capsular polysaccharides were not impaired in nodulation. Mutants unable to produce cyclic glucans and purine or pyrimidine auxotrophic mutants formed ineffective nodules with L. burttii. Flagellin-dependent bacterial mobility was not required for crack infection, since HH103-Rifr fla mutants nodulated L. burttii. None of the S. fredii HH103-Rifr surface-polysaccharide mutants gained effective nodulation with L. japonicus.
more...
No comment yet.
Scooped by Oswaldo Valdes-Lopez
Scoop.it!

A nonnative and a native fungal plant pathogen similarly stimulate ectomycorrhizal development but are perceived differently by a fungal symbiont 

The effects of plant symbionts on host defence responses against pathogens have been extensively documented, but little is known about the impact of pathogens on the symbiosis and if such an impact may differ for nonnative and native pathogens. Here, this issue was addressed in a study of the model system comprising Pinus pinea, its ectomycorrhizal symbiont Tuber borchii, and the nonnative and native pathogens Heterobasidion irregulare and Heterobasidion annosum, respectively.
In a 6-month inoculation experiment and using both in planta and gene expression analyses, we tested the hypothesis that H. irregulare has greater effects on the symbiosis than H. annosum.
Although the two pathogens induced the same morphological reaction in the plant−symbiont complex, with mycorrhizal density increasing exponentially with pathogen colonization of the host, the number of target genes regulated in T. borchii in plants inoculated with the native pathogen (i.e. 67% of tested genes) was more than twice that in plants inoculated with the nonnative pathogen (i.e. 27% of genes).
Although the two fungal pathogens did not differentially affect the amount of ectomycorrhizas, the fungal symbiont perceived their presence differently. The results may suggest that the symbiont has the ability to recognize a self/native and a nonself/nonnative pathogen, probably through host plant-mediated signal transduction.
more...
No comment yet.
Scooped by Oswaldo Valdes-Lopez
Scoop.it!

Improving phosphorus use efficiency - a complex trait with emerging opportunities 

Phosphorus (P) is one of the essential nutrients for plants and indispensable for plant growth and development. P deficiency severely limits crop yield and regular fertilizer applications are required to obtain high yields and prevent soil degradation. To access P from the soil, plants have evolved high and low affinity Pi transporters and the ability to induce root architectural changes to forage P. Also, adjustments of numerous cellular processes are triggered by the P starvation response, a tightly regulated process in plants. With the increasing demand for food due to the growing population, demand for P fertilizer is steadily increasing. Given the high costs of fertilizers and in light of the fact that phosphate rock, the source of P fertilizer, is a finite natural resource, there is a need to enhance P fertilizer use efficiency in agricultural systems and develop plants with enhanced Pi uptake and internal P-use efficiency (PUE).

In this review we will provide an overview of ongoing relevant research and highlight different approaches towards developing crops with enhanced PUE. In this context, we will summarize our current understanding of root responses to low phosphorus conditions and emphasize the importance of combining PUE with tolerance of other stresses, such as aluminum toxicity. Of the many genes associated with Pi deficiency, this review will focus on those that hold promise or are already at an advanced stage of testing (OsPSTOL1, AVP1, PHO1, OsPHT1;6). Finally, an update is provided on the progress made exploring alternative technologies, such as phosphite fertilizer.
more...
No comment yet.
Scooped by Oswaldo Valdes-Lopez
Scoop.it!

Stomatal Function Requires Pectin De-methyl-esterification of the Guard Cell Wall

Stomatal Function Requires Pectin De-methyl-esterification of the Guard Cell Wall | Regulation of the plant-microbe interactions | Scoop.it
Stomatal opening and closure depends on changes in turgor pressure acting within guard cells to alter cell shape [1]. The extent of these shape changes is limited by the mechanical properties of the cells, which will be largely dependent on the structure of the cell walls. Although it has long been observed that guard cells are anisotropic due to differential thickening and the orientation of cellulose microfibrils [2], our understanding of the composition of the cell wall that allows them to undergo repeated swelling and deflation remains surprisingly poor. Here, we show that the walls of guard cells are rich in un-esterified pectins. We identify a pectin methylesterase gene, PME6, which is highly expressed in guard cells and required for stomatal function. pme6-1 mutant guard cells have walls enriched in methyl-esterified pectin and show a decreased dynamic range in response to triggers of stomatal opening/closure, including elevated osmoticum, suggesting that abrogation of stomatal function reflects a mechanical change in the guard cell wall. Altered stomatal function leads to increased conductance and evaporative cooling, as well as decreased plant growth. The growth defect of the pme6-1 mutant is rescued by maintaining the plants in elevated CO2, substantiating gas exchange analyses, indicating that the mutant stomata can bestow an improved assimilation rate. Restoration of PME6 rescues guard cell wall pectin methyl-esterification status, stomatal function, and plant growth. Our results establish a link between gene expression in guard cells and their cell wall properties, with a corresponding effect on stomatal function and plant physiology.
more...
No comment yet.
Scooped by Oswaldo Valdes-Lopez
Scoop.it!

NIN-like protein 8 is a master regulator of nitrate-promoted seed germination in Arabidopsis

NIN-like protein 8 is a master regulator of nitrate-promoted seed germination in Arabidopsis | Regulation of the plant-microbe interactions | Scoop.it
Seeds respond to multiple different environmental stimuli that regulate germination. Nitrate stimulates germination in many plants but how it does so remains unclear. Here we show that the Arabidopsis NIN-like protein 8 (NLP8) is essential for nitrate-promoted seed germination. Seed germination in nlp8 loss-of-function mutants does not respond to nitrate. NLP8 functions even in a nitrate reductase-deficient mutant background, and the requirement for NLP8 is conserved among Arabidopsis accessions. NLP8 reduces abscisic acid levels in a nitrate-dependent manner and directly binds to the promoter of CYP707A2, encoding an abscisic acid catabolic enzyme. Genetic analysis shows that NLP8-mediated promotion of seed germination by nitrate requires CYP707A2. Finally, we show that NLP8 localizes to nuclei and unlike NLP7, does not appear to be activated by nitrate-dependent nuclear retention of NLP7, suggesting that seeds have a unique mechanism for nitrate signalling.
more...
No comment yet.
Scooped by Oswaldo Valdes-Lopez
Scoop.it!

The symbionts made me do it: legumes are not hardwired for high nitrogen concentrations but incorporate more nitrogen when inoculated 

High tissue nitrogen (N) concentrations in N-fixing legumes may be driven by an evolutionary commitment to a high N strategy, by higher N availability from fixation, or by some other cause. To disentangle these hypotheses, we asked two questions: are legumes hardwired to have high N concentrations? Aside from delivering fixed N, how does inoculation affect legume N concentrations?
In order to understand drivers of plant stoichiometry, we subjected four herbaceous legume species to nine levels of N fertilization in a glasshouse. Half of the individuals were inoculated with crushed nodules, whereas the other half remained uninoculated and could not fix N.
Across four legume species, we found that tissue stoichiometry and nutrient content were more plastic than has been described for any other plant species. In addition, inoculated plants had higher tissue N concentrations than N fixation activity alone can explain.
Rather than being hardwired for high N or phosphorus (P) demand, the legumes we examined were highly flexible in their nutrient allocation. Understanding the drivers of legume N concentrations is essential to understanding the role of N fixers in community- and ecosystem-level processes.
more...
No comment yet.
Scooped by Oswaldo Valdes-Lopez
Scoop.it!

Recent Developments in Systems Biology and Metabolic Engineering of Plant–Microbe Interactions

Microorganisms play a crucial role in the sustainability of the various ecosystems. The characterization of various interactions between microorganisms and other biotic factors is a necessary footstep to understand the association and functions of microbial communities. Among the different microbial interactions in an ecosystem, plant–microbe interaction plays an important role to balance the ecosystem. The present review explores plant–microbe interactions using gene editing and system biology tools toward the comprehension in improvement of plant traits. Further, system biology tools like FBA (flux balance analysis), OptKnock, and constraint-based modeling helps in understanding such interactions as a whole. In addition, various gene editing tools have been summarized and a strategy has been hypothesized for the development of disease free plants. Furthermore, we have tried to summarize the predictions through data retrieved from various types of sources such as high throughput sequencing data (e.g., single nucleotide polymorphism detection, RNA-seq, proteomics) and metabolic models have been reconstructed from such sequences for species communities. It is well known fact that systems biology approaches and modeling of biological networks will enable us to learn the insight of such network and will also help further in understanding these interactions.
more...
No comment yet.
Scooped by Oswaldo Valdes-Lopez
Scoop.it!

Reprogramming of DNA methylation is critical for nodule development in Medicago truncatula

Reprogramming of DNA methylation is critical for nodule development in Medicago truncatula | Regulation of the plant-microbe interactions | Scoop.it
The legume–Rhizobium symbiosis leads to the formation of a new organ, the root nodule, involving coordinated and massive induction of specific genes. Several genes controlling DNA methylation are spatially regulated within the Medicago truncatula nodule, notably the demethylase gene, DEMETER (DME), which is mostly expressed in the differentiation zone. Here, we show that MtDME is essential for nodule development and regulates the expression of 1,425 genes, some of which are critical for plant and bacterial cell differentiation. Bisulphite sequencing coupled to genomic capture enabled the identification of 474 regions that are differentially methylated during nodule development, including nodule-specific cysteine-rich peptide genes. Decreasing DME expression by RNA interference led to hypermethylation and concomitant downregulation of 400 genes, most of them associated with nodule differentiation. Massive reprogramming of gene expression through DNA demethylation is a new epigenetic mechanism controlling a key stage of indeterminate nodule organogenesis during symbiotic interactions.
more...
No comment yet.