refrigeratorboss
1 view | +0 today
Follow
Your new post is loading...
Your new post is loading...
Rescooped by Ronnie Calabri from Amazing Science
Scoop.it!

Quantum engineering pushes quantum absorption refrigerator beyond classical efficiency limits

Quantum engineering pushes quantum absorption refrigerator beyond classical efficiency limits | refrigeratorboss | Scoop.it

The laws of thermodynamics determine what is possible and impossible in classical systems. Lately, scientists have been working on establishing quantum analogues of these fundamental laws to determine the performance limits of quantum systems. Now in a new study, scientists have established the thermodynamic limits on quantum absorption refrigerators, and then somewhat counterintuitively show how quantum engineering techniques can push the refrigerators beyond these limits, resulting in superefficient cooling.


The findings show how quantum enhancements can allow quantum systems to exceed what is classically achievable, and marks a promising step toward the development of practical quantum cooling technologies. The researchers, Luis A. Correa, et al., from the University of La Laguna in Spain and the University of Nottingham in the UK, have published their paper on quantum-enhanced refrigeration in a recent issue of Nature Scientific Reports.


Whether classical or quantum in nature, refrigerators function by transporting energy from a cold reservoir (the object to be cooled) to a hot reservoir, usually with assistance from a power source or, in the case of an absorption refrigerator, an additional work reservoir.

"First patented by Einstein himself, absorption fridges are really 'cool,'" coauthor Gerardo Adesso at the University of Nottingham told Phys.org. "They refrigerate by absorbing heat from outside, without having to be plugged to a power socket. People use them, e.g., while camping, but these fridges have been traditionally hindered by quite a low cooling power." For any refrigerator, the efficiency of the refrigeration process cannot exceed the Carnot limit, or else it would violate the second law of thermodynamics.


In the new study, the scientists investigated the theoretical maximum efficiency of a quantum refrigerator operating at maximum power. Efficiency at maximum power is of greater practical interest than efficiency in general, since power vanishes at high efficiencies. Here, the scientists proved that the efficiency at maximum power of a quantum refrigerator of any kind is limited by a fraction of the Carnot limit.

 

"Discovering that all quantum absorption fridges admit a tight model-independent performance limit was indeed surprising," Adesso said. "Establishing these bounds on efficiency at maximum power for heat engines and refrigerators has been a long-standing problem in finite-time thermodynamics."

 

Although this limit holds for all models of quantum absorption refrigerators, it is not the final answer. In the second part of their paper, the researchers show that quantum refrigerators can boost their performance by exploiting the system's quantum features.


Via Dr. Stefan Gruenwald
more...
No comment yet.
Scooped by Ronnie Calabri
Scoop.it!

Industry Award But Not From Users?

Industry Award But Not From Users? | refrigeratorboss | Scoop.it
Ronnie Calabri's insight:

April fools day? ADEX Awards for Design Excellence announced April 1, 2014 Best in home appliances. Electrolux scored a Platinum award for its Counter Depth French Door Refrigerator EW23BC85KS in Stainless Steel. On the Electrolux site itself they have it rated 3/5; 3.5 at Amazon; 3.1 at HomeDepot — doesn't seem to be thrilling buyers at $4 grand

more...
No comment yet.
Scooped by Ronnie Calabri
Scoop.it!

LG French Door Refrigerator - Water Filter Replacement

Welcome to the LG Customer Support Channel. The Water Filter prevents and removes impurities from your refrigerator's water supply and keeps it tasting pure ...
Ronnie Calabri's insight:

Goes nicely with my LG reviews because some people struggle first time http://refrigeratorboss.com/

more...
No comment yet.