Publications
Follow
Find
13.4K views | +36 today
Publications
Updates from the group of Sophien Kamoun at The Sainsbury Lab
Your new post is loading...
Your new post is loading...
Scooped by Kamoun Lab @ TSL
Scoop.it!

New Phytologist: Standards for plant synthetic biology: a common syntax for exchange of DNA parts (2015)

New Phytologist: Standards for plant synthetic biology: a common syntax for exchange of DNA parts (2015) | Publications | Scoop.it

Inventors in the field of mechanical and electronic engineering can access multitudes of components and, thanks to standardization, parts from different manufacturers can be used in combination with each other. The introduction of BioBrick standards for the assembly of characterized DNA sequences was a landmark in microbial engineering, shaping the field of synthetic biology. Here, we describe a standard for Type IIS restriction endonuclease-mediated assembly, defining a common syntax of 12 fusion sites to enable the facile assembly of eukaryotic transcriptional units. This standard has been developed and agreed by representatives and leaders of the international plant science and synthetic biology communities, including inventors, developers and adopters of Type IIS cloning methods. Our vision is of an extensive catalogue of standardized, characterized DNA parts that will accelerate plant bioengineering.

more...
No comment yet.
Rescooped by Kamoun Lab @ TSL from Plants and Microbes
Scoop.it!

bioRxiv: Tomato I2 immune receptor can be engineered to confer partial resistance to the oomycete Phytophthora infestans in addition to the fungus Fusarium oxysporum (2015)

bioRxiv: Tomato I2 immune receptor can be engineered to confer partial resistance to the oomycete Phytophthora infestans in addition to the fungus Fusarium oxysporum (2015) | Publications | Scoop.it

Plants and animals rely on immune receptors, known as nucleotide-binding domain and leucine-rich repeat containing proteins (NB-LRR or NLR), to defend against invading pathogens and activate immune responses. How NLR receptors respond to pathogens is inadequately understood. We previously reported single-residue mutations that expand the response of the potato immune receptor R3a to AVR3aEM, a stealthy effector from the late blight oomycete pathogen Phytophthora infestans. I2, another NLR that mediates resistance to the wilt causing fungus Fusarium oxysporum f. sp. lycopersici, is the tomato ortholog of R3a. We transferred previously identified R3a mutations to I2 to assess the degree to which the resulting I2 mutants have an altered response. We discovered that wild-type I2 protein responds weakly to AVR3a. One mutant in the N-terminal coiled-coil domain, I2I141N, appeared sensitized and displayed markedly increased response to AVR3a. Remarkably, I2I141N conferred partial resistance to P. infestans. Further, I2I141N has an expanded response spectrum to F. oxysporum f. sp. lycopersici effectors compared to the wild-type I2 protein. Our results suggest that synthetic immune receptors can be engineered to confer resistance to phylogenetically divergent pathogens and indicate that knowledge gathered for one NLR could be exploited to improve NLRs from other plant species.

more...
No comment yet.
Rescooped by Kamoun Lab @ TSL from Plants and Microbes
Scoop.it!

Mycological Progress: Evolution of Hyaloperonospora effectors: ATR1 effector homologs from sister species of the downy mildew pathogen H. arabidopsidis are not recognised by RPP1WsB (2015)

Mycological Progress: Evolution of Hyaloperonospora effectors: ATR1 effector homologs from sister species of the downy mildew pathogen H. arabidopsidis are not recognised by RPP1WsB (2015) | Publications | Scoop.it

Like other plant-pathogenic oomycetes, downy mildew species of the genus Hyaloperonosporamanipulate their hosts by secreting effector proteins. Despite intense research efforts devoted to deciphering the virulence and avirulence activities of effectors in the H. arabidopsidis/Arabidopsis thaliana pathosystem, there is only a single study in this pathosystem on the variation of effectors and resistance genes in natural populations, and the evolution of these effectors in the context of pathogen evolution is studied even less. In this work, the identification of A rabidopsis t halianarecognised (ATR)1-homologs is reported in two sister species of H. arabidopsidisH. thlaspeos-perfoliati, and H. crispula, which are specialized on the host plants Microthlaspi perfoliatum and Reseda lutea, respectively. ATR1-diversity within these sister species of H. arabidopsidis was evaluated, and the ATR1-homologs from different isolates of H. thlaspeos-perfoliati and H. crispulawere tested to see if they would be recognised by the previously characterised RPP1-WsB protein from A. thaliana. None of the effectors from the sister species was recognised, suggesting that due to the adaptation to altered or new targets after a host jump, features of variable effectors might vary to a degree that recognition of orthologous Avr-causing effectors is no longer effective and probably does not contribute to non-host immunity.

more...
No comment yet.
Scooped by Kamoun Lab @ TSL
Scoop.it!

Slides: What are world class scientific outputs? (2015)

resenWhat are world class scientific outputs?


NRP Doctoral Training Programme Summer Conference 2015
The Assembly House, Norwich, Thursday 18th June


Summary


We’re in the business of generating and communicating knowledge.
We communicate knowledge through publications, which come in many different forms.
World class outputs stand the test of time and make a difference.
We evaluate publications on their own merit and using article-level metrics; we shouldn’t use journals as a proxy.
Are we heading towards a new reward culture? You can make it happen!


Notes @ http://kamounlab.tumblr.com/post/121748816600/what-is-world-class-science

more...
No comment yet.
Scooped by Kamoun Lab @ TSL
Scoop.it!

Cover: Molecular Plant Pathology, April 2015

Cover: Molecular Plant Pathology, April 2015 | Publications | Scoop.it

Cover caption: The sculpture by Rowan Gillespie is one of the many Great Famine memorials around the world. It depicts figures walking towards emigration ships on the Dublin Quayside. Photo courtesy of Michael Seidl.


The Top 10 oomycete pathogens in molecular plant pathology, Mol Plant Pathol http://onlinelibrary.wiley.com/doi/10.1111/mpp.12190/abstract

more...
No comment yet.
Scooped by Kamoun Lab @ TSL
Scoop.it!

YouTube: Sophien Kamoun at the 2015 DOE JGI Genomics of Energy & Environment Meeting

Sophien Kamoun, The Sainsbury Laboratory, at the 10th Annual Genomics of Energy & Environment Meeting held March 24-26, 2015 in Walnut Creek, Calif.

more...
No comment yet.
Rescooped by Kamoun Lab @ TSL from MutMap
Scoop.it!

Nature Biotechnology: MutMap accelerates breeding of a salt-tolerant rice cultivar (2015)

Nature Biotechnology: MutMap accelerates breeding of a salt-tolerant rice cultivar (2015) | Publications | Scoop.it

Following the 2011 earthquake and tsunami that affected Japan, >20,000 ha of rice paddy field was inundated with seawater, resulting in salt contamination of the land. As local rice landraces are not tolerant of high salt concentrations, we set out to develop a salt-tolerant rice cultivar. We screened 6,000 ethyl methanesulfonate (EMS) mutant lines of a local elite cultivar, 'Hitomebore', and identified a salt-tolerant mutant that we name hitomebore salt tolerant 1 (hst1). In this Correspondence, we report how we used our MutMap method to rapidly identify a loss-of-function mutation responsible for the salt tolerance of hst1 rice. The salt-tolerant hst1 mutant was used to breed a salt-tolerant variety named 'Kaijin', which differs from Hitomebore by only 201 single-nucleotide polymorphisms (SNPs). Field trials showed that it has the same growth and yield performance as the parental line under normal growth conditions. Notably, production of this salt-tolerant mutant line ready for delivery to farmers took only two years using our approach.

more...
No comment yet.
Rescooped by Kamoun Lab @ TSL from Plant Pathogenomics
Scoop.it!

Genome Biology: Field pathogenomics reveals the emergence of a diverse wheat yellow rust population (2015)

Genome Biology: Field pathogenomics reveals the emergence of a diverse wheat yellow rust population (2015) | Publications | Scoop.it

Background Emerging and re-emerging pathogens imperil public health and global food security. Responding to these threats requires improved surveillance and diagnostic systems. Despite their potential, genomic tools have not been readily applied to emerging or re-emerging plant pathogens such as the wheat yellow (stripe) rust pathogen Puccinia striiformis f. sp. tritici (PST). This is due largely to the obligate parasitic nature of PST, as culturing PST isolates for DNA extraction remains slow and tedious. Results To counteract the limitations associated with culturing PST, we developed and applied a field pathogenomics approach by transcriptome sequencing infected wheat leaves collected from the field in 2013. This enabled us to rapidly gain insights into this emerging pathogen population. We found that the PST population across the United Kingdom, UK, underwent a major shift in recent years. Population genetic structure analyses revealed four distinct lineages that correlated to the phenotypic groups determined through traditional pathology-based virulence assays. Furthermore, the genetic diversity between members of a single population cluster for all 2013 PST field samples was much higher than that displayed by historical UK isolates, revealing a more-diverse population of PST. Conclusions Our field pathogenomics approach uncovered a dramatic shift in the PST population in the UK, likely due to a recent introduction of a diverse set of exotic PST lineages. The methodology described herein accelerates genetic analysis of pathogen populations and circumvents the difficulties associated with obligate plant pathogens. In principle, this strategy can be widely applied to a variety of plant pathogens.

more...
No comment yet.
Rescooped by Kamoun Lab @ TSL from Plants and Microbes
Scoop.it!

bioRxiv: The NLR helper protein NRC3 but not NRC1 is required for Pto-mediated cell death in Nicotiana benthamiana (2015)

bioRxiv: The NLR helper protein NRC3 but not NRC1 is required for Pto-mediated cell death in Nicotiana benthamiana (2015) | Publications | Scoop.it

Intracellular immune receptors of the nucleotide-binding leucine-rich repeat (NB-LRR or NLR) proteins often function in pairs, with "helper" proteins required for the activity of "sensors" that mediate pathogen recognition. The NLR helper NRC1 (NB-LRR protein required for HR-associated cell death 1) has been described as a signalling hub required for the cell death mediated by both cell surface and intracellular immune receptors in the model plant Nicotiana benthamiana. However, this work predates the availability of the N. benthamiana genome and whether NRC1 is indeed required for the reported phenotypes has not been confirmed. Here, we investigated the NRC family of solanaceous plants using a combination of genome annotation, phylogenetics, gene silencing and genetic complementation experiments. We discovered that a paralog of NRC1, we termed NRC3, is required for the hypersensitive cell death triggered by the disease resistance protein Pto but not Rx and Mi-1.2. NRC3 may also contribute to the hypersensitive cell death triggered by the receptor-like protein Cf-4. Our results highlight the importance of applying genetic complementation to validate gene function in RNA silencing experiments.

more...
Scooped by Kamoun Lab @ TSL
Scoop.it!

Blog post: Be positive! From witch hunts to the new reward culture (2015)

Blog post: Be positive! From witch hunts to the new reward culture (2015) | Publications | Scoop.it

I’m a proponent of open science. Science is continuously in flux. Our knowledge, theories and concepts are continuously evolving. The essence of science is to capture new information, integrate it into current models and regurgitate more elaborate concepts. Therefore science cannot thrive without a vibrant culture of discussion and debate. Open science widens the net. Anyone can access the data and comment on it. A tweet by someone you don’t know could lead you to think differently about your science and help you to develop new concepts. We move from elitist old boy clubs to an open door party. This is healthy for science.

more...
No comment yet.
Rescooped by Kamoun Lab @ TSL from Plants and Microbes
Scoop.it!

New Phytologist: Meetings - A snapshot of molecular plant–microbe interaction research (2014)

New Phytologist: Meetings - A snapshot of molecular plant–microbe interaction research (2014) | Publications | Scoop.it

Plants and microbes are in a continuous arms race to maintain their predominance within their particular niche. Understanding the complexity of these plant–microbe interactions is of utmost importance as it can provide new insights into the mechanisms mediating disease processes and in turn inspire new plant breeding strategies. The International Society for Molecular Plant–Microbe Interactions (IS-MPMI) invited scientists from around the world to share their findings during the XVI International Congress on Molecular Plant–Microbe Interactions, which was held on the beautiful island of Rhodes in Greece. The congress was organized by the Agricultural University of Athens, the Hellenic Phytopathology Society, and the Hellenic Society of Phytiatry and provided over 1100 participants from 55 countries with the opportunity to present and discuss their current and future research. A great number of talks and posters were presented, however our aim within this report is to provide a snapshot of the discipline by focusing on just some of the exciting research and discussions which took place. The key topics discussed were virulence factors, epigenetic regulation, hormones, symbiosis factors, toxins, signaling pathways, microbe recognition, immunity, and pathogen diagnostics. Effector biology was also a recurrent theme in many plenary and concurrent sessions, indicating the importance of a topic that was also highlighted recently by a Virtual Special Issue in New Phytologist (see Kuhn & Panstruga, 2014). In addition to this, throughout the meeting next generation sequencing (NGS) techniques were described and shown to be shedding new light on long-standing issues in microbial ecology.

more...
Bibhya Sharma's curator insight, January 22, 2:53 AM

Interesting read.

Rescooped by Kamoun Lab @ TSL from Plants and Microbes
Scoop.it!

Traffic: Rerouting of plant late endocytic trafficking towards a pathogen interface (2014)

Traffic: Rerouting of plant late endocytic trafficking towards a pathogen interface (2014) | Publications | Scoop.it

The biogenesis and functions of the extrahaustorial membrane (EHM), an intimate interface between plants and filamentous pathogens, are poorly understood. One long-standing puzzle is why several membrane proteins, such as some cell surface receptors, are missing from the EHM. We gained a significant insight into how the EHM is formed and made an important step in understanding why certain membrane proteins are missing from the EHM. We discovered that late endosomes targeted to the vacuoles are rerouted to the EHM. This process is dynamic because, upon activation, a cell surface immune receptor traffics to this compartment. We propose a model in which some cell surface receptors that undergo ligand induced endocytosis and traffic to late endosomes get sorted to the host pathogen interface, instead of taking the default route to the vacuole as in uninfected cells.


--- A number of plant pathogenic and symbiotic microbes produce specialized cellular structures that invade host cells where they remain enveloped by host-derived membranes. The mechanisms underlying the biogenesis and functions of host-microbe interfaces are poorly understood. Here, we show that plant late endocytic trafficking is diverted towards the extrahaustorial membrane; a host-pathogen interface that develops in plant cells invaded by Irish potato famine pathogen Phytophthora infestans. A late endosome and tonoplast marker protein Rab7 GTPase RabG3c, but not a tonoplast-localized sucrose transporter, is recruited to the extrahaustorial membrane suggesting specific rerouting of vacuole targeted late endosomes to a host pathogen interface. We revealed the dynamic nature of this process by showing that, upon activation, a cell surface immune receptor traffics towards the haustorial interface. Our work provides insight into the biogenesis of the extrahaustorial membrane and reveals dynamic processes that recruit membrane compartments and immune receptors to this host-pathogen interface.

more...
No comment yet.
Scooped by Kamoun Lab @ TSL
Scoop.it!

Plant Physiology: Efficient gene editing in tomato in the first generation using the CRISPR/Cas9 system (2014)

Plant Physiology: Efficient gene editing in tomato in the first generation using the CRISPR/Cas9 system (2014) | Publications | Scoop.it

To test the efficacy of CRISPR/Cas9 in tomato, we chose to target a gene that, when function was disrupted, would result in a distinctive, immediately recognizable phenotype early in the plant tissue culture phase of Agrobacterium-mediated transformation. A CRISPR/Cas9 construct was designed to target neighboring sequences in the second exon of the tomato homolog of Arabidopsis ARGONAUTE7 (SlAGO7), because loss-of-function mutations are recessive and result in plants whose typical compound flat leaves become needle-like, or “wiry” (Fig. 1) (Lesley, 1928; Yifhar et al., 2012). SlAGO7 is required for the biogenesis of a class of small RNAs known as trans-acting short interfering RNAs (ta-siRNAs), which regulate organ polarity through post-transcriptional silencing of AUXIN RESPONSE FACTOR (ARF) genes (Husbands et al., 2009). Strong alleles of slago7 thus produce lower levels of ta-siRNAs and reduced ARF mRNA degradation, resulting in the first leaves of mutant plants having leaflets without petioles, and later formed leaves lacking laminae (Fig. 1C). These distinctive phenotypes allowed us to immediately identify first generation transformed (T0) plants in which both alleles of SlAGO7 might be mutated.

more...
No comment yet.
Rescooped by Kamoun Lab @ TSL from Plants and Microbes
Scoop.it!

Plant Journal: Rice Exo70 interacts with a fungal effector, AVR-Pii and is required for AVR-Pii-triggered immunity (2015)

Plant Journal: Rice Exo70 interacts with a fungal effector, AVR-Pii and is required for AVR-Pii-triggered immunity (2015) | Publications | Scoop.it

Vesicle trafficking including exocytosis pathway is intimately associated with host immunity against pathogens. However, we have still insufficiently known about how they contribute to immunity, and how pathogen factors affect them. In this study, we explored host interactors of Magnaporthe oryzae effector AVR-Pii. Gel filtration chromatography and co-immunoprecipitation assays identified a 150 kDa complex of proteins in the soluble fraction comprising AVR-Pii and OsExo70-F2 and OsExo70–F3, the two rice Exo70 proteins presumably involved in exocytosis. Simultaneous knockdown of OsExo70-F2/F3 totally abrogated Pii immune receptor-dependent resistance, but had no effect on Pia-and Pik-dependent resistance. Knockdown levels of OsExo70-F3 but not OsExo70-F2 correlated with reduction of Pii function suggesting that OsExo70-F3 is specifically involved in Pii-dependent resistance. In our current experimental conditions, overexpression of AVR-Pii or knockdown of OsExo70-F2 and -F3 genes in rice did not affect the virulence of compatible isolates of M. oryzae. AVR-Pii interaction with OsExo70-F3 seems to play a crucial role in effector triggered immunity by Pii, suggesting the role of OsExo70 as decoy or helper in Pii/AVR-Pii interactions.

more...
No comment yet.
Rescooped by Kamoun Lab @ TSL from Plant Pathogenomics
Scoop.it!

bioRxiv: The two-speed genomes of filamentous pathogens: waltz with plants (2015)

bioRxiv: The two-speed genomes of filamentous pathogens: waltz with plants (2015) | Publications | Scoop.it

Fungi and oomycetes include deep and diverse lineages of eukaryotic plant pathogens. The last 10 years have seen the sequencing of the genomes of a multitude of species of these so-called filamentous plant pathogens. Already, fundamental concepts have emerged. Filamentous plant pathogen genomes tend to harbor large repertoires of genes encoding virulence effectors that modulate host plant processes. Effector genes are not randomly distributed across the genomes but tend to be associated with compartments enriched in repetitive sequences and transposable elements. These findings have led to the “two-speed genome” model in which filamentous pathogen genomes have a bipartite architecture with gene sparse, repeat rich compartments serving as a cradle for adaptive evolution. Here, we review this concept and discuss how plant pathogens are great model systems to study evolutionary adaptations at multiple time scales. We will also introduce the next phase of research on this topic.

more...
No comment yet.
Rescooped by Kamoun Lab @ TSL from Plants and Microbes
Scoop.it!

Slides: Plant pathology in the post-genomics era (2015)

Presented at BASF Science Symposium: sustainable food chain - from field to table, Jun 23-24, 2015, Chicago.


Notes and acknowledgements at http://kamounlab.tumblr.com/post/122151022390/plant-pathology-in-the-post-genomics-era

more...
No comment yet.
Rescooped by Kamoun Lab @ TSL from Plants and Microbes
Scoop.it!

bioRxiv: Rust fungal effectors mimic host transit peptides to translocate into chloroplasts (2015)

bioRxiv: Rust fungal effectors mimic host transit peptides to translocate into chloroplasts (2015) | Publications | Scoop.it

Parasite effector proteins target various host cell compartments to alter host processes and promote infection. How effectors cross membrane-rich interfaces to reach these compartments is a major question in effector biology. Growing evidence suggests that effectors use molecular mimicry to subvert host cell machinery for protein sorting. We recently identified CTP1 (chloroplast-targeted protein 1), a candidate effector from the poplar leaf rust fungus Melampsora larici-populina that carries a predicted transit peptide and accumulates in chloroplasts. Here, we show that the CTP1 transit peptide is necessary and sufficient for accumulation in the stroma of chloroplasts, and is cleaved after translocation. CTP1 is part of a Melampsora-specific family of polymorphic secreted proteins whose members translocate and are processed in chloroplasts in a N-terminal signal-dependent manner. Our findings reveal that fungi have evolved effector proteins that mimic plant-specific sorting signals to traffic within plant cells.

more...
No comment yet.
Rescooped by Kamoun Lab @ TSL from Plants and Microbes
Scoop.it!

MPMI: A recent expansion of the RXLR effector gene Avrblb2 is maintained in global populations of Phytophthora infestans indicating different contributions to virulence (2015)

MPMI: A recent expansion of the RXLR effector gene Avrblb2 is maintained in global populations of Phytophthora infestans indicating different contributions to virulence (2015) | Publications | Scoop.it

The introgression of disease resistance (R) genes encoding immunoreceptors with broad-spectrum recognition into cultivated potato appears to be the most promising approach to achieve sustainable management of late blight caused by the oomycete pathogen Phytophthora infestans. Rpi-blb2 from Solanum bulbocastanum, shows great potential for use in agriculture based on preliminary potato disease trials. Rpi-blb2 confers immunity by recognizing the P. infestans avirulence effector protein AVRblb2 after it is translocated inside the plant cell. This effector belongs to the RXLR class of effectors and is under strong positive selection. Structure-function analyses revealed a key polymorphic amino acid (position 69) in AVRblb2 effector that is critical for activation of Rpi-blb2. In this study, we reconstructed the evolutionary history of the Avrblb2 gene family and further characterized its genetic structure in worldwide populations. Our data indicates that Avrblb2 evolved as a single copy gene in a putative ancestral species of P. infestans and has recently expanded in the Phytophthora species that infect solanaceous hosts. As a consequence, at least four variants of AVRblb2 arose in P. infestans. One of these variants, with a Phe residue at position 69, evades recognition by the cognate resistance gene. Surprisingly, all Avrblb2 variants are maintained in pathogen populations. This suggests a potential benefit for the pathogen in preserving duplicated versions of AVRblb2 possibly because the variants may have different contributions to pathogen fitness in a diversified solanaceous host environment.

more...
No comment yet.
Rescooped by Kamoun Lab @ TSL from Plants and Microbes
Scoop.it!

Nature Plants: Elicitin recognition confers enhanced resistance to Phytophthora infestans in potato (2015)

Nature Plants: Elicitin recognition confers enhanced resistance to Phytophthora infestans in potato (2015) | Publications | Scoop.it

Potato late blight, caused by the destructive Irish famine pathogen Phytophthora infestans, is a major threat to global food security1,2. All late blight resistance genes identified to date belong to the coiled-coil, nucleotide-binding, leucine-rich repeat class of intracellular immune receptors3. However, virulent races of the pathogen quickly evolved to evade recognition by these cytoplasmic immune receptors4. Here we demonstrate that the receptor-like protein ELR (elicitin response) from the wild potato Solanum microdontum mediates extracellular recognition of the elicitin domain, a molecular pattern that is conserved in Phytophthora species. ELR associates with the immune co-receptor BAK1/SERK3 and mediates broad-spectrum recognition of elicitin proteins from several Phytophthora species, including four diverse elicitins from P. infestans. Transfer of ELR into cultivated potato resulted in enhanced resistance to P. infestans. Pyramiding cell surface pattern recognition receptors with intracellular immune receptors could maximize the potential of generating a broader and potentially more durable resistance to this devastating plant pathogen.

more...
No comment yet.
Rescooped by Kamoun Lab @ TSL from Plants and Microbes
Scoop.it!

New Phytologist: Plants, fungi and oomycetes: a 400-million year affair that shapes the biosphere (2015)

New Phytologist: Plants, fungi and oomycetes: a 400-million year affair that shapes the biosphere (2015) | Publications | Scoop.it

In a rare gathering, genomics met palaeontology at the 10th New Phytologist Workshop on the ‘Origin and evolution of plants and their interactions with fungi’. An eclectic group of 17 experts met at The Natural History Museum (London, UK) on 9–10 September 2014 to discuss the latest findings on plant interactions with fungi (Eumycota) and oomycetes (Oomycota = Peronosporomycota), with topics ranging from the fossil record and comparative genomics to symbiosis and phytopathology. The discussions were largely disseminated via social media (Box 1). Highly diverse plant–fungal interactions have formed the backbone of land ecosystems and biogeochemical cycles since the Palaeozoic (see Fig. 1 for geological timeframe). As summarized by Christine Strullu-Derrien and Paul Kenrick (The Natural History Museum, London, UK) the first land plants arose c. 470 million years (Myr) ago (Kenrick et al., 2012; Edwards et al., 2014), at which time fungi and oomycetes had already colonized terrestrial ecosystems. Following their terrestrialization, these microbes began to abound within plant fossils (Taylor et al., 2014, and references therein). Ultimately, biological interactions sculpted the genomes of plants, fungi and oomycetes (e.g. Schmidt & Panstruga, 2011; Kohler et al., 2015). Here we illustrate the picture that has emerged from the discussions at the 10th New Phytologist Workshop, and point to some pending questions.


Via Francis Martin, Kamoun Lab @ TSL
more...
Pierre-Marc Delaux's curator insight, March 23, 5:54 AM

It was a great workshop indeed!

Peter Buckland's curator insight, March 23, 9:01 AM

The importance of plant-fungal interactions

Rescooped by Kamoun Lab @ TSL from Plants and Microbes
Scoop.it!

Frontiers in Plant Science: The “sensor domains” of plant NLR proteins: more than decoys? (2015)

Frontiers in Plant Science: The “sensor domains” of plant NLR proteins: more than decoys? (2015) | Publications | Scoop.it

Our conceptual and mechanistic understanding of how plant nucleotide-binding leucine-rich repeat (NLR or NB-LRR) proteins perceive pathogens continues to advance. NLRs are intracellular multidomain proteins that recognize pathogen-derived effectors either directly or indirectly (Jones and Dangl, 2006; van der Hoorn and Kamoun, 2008; Dodds and Rathjen, 2010; Cesari et al., 2014). In the direct model, the NLR protein binds a pathogen effector or serves as a substrate for the effector’s enzymatic activity. In the indirect model, the NLR recognizes modifications of additional host protein(s) targeted by the effector. Such intermediate host protein(s) are often called effector targets (ETs). However, given that effectors can act on multiple host targets, the specific protein that mediates recognition by the NLR may not be the effector’s operative target and may have evolved to function as a decoy dedicated to pathogen detection. This “decoy” model contrasts with the “guard” model in which the NLR perceives the effector via its action on its operative target (van der Hoorn and Kamoun, 2008). 

In a recent article, Cesari et al. (2014) elegantly synthesized the literature to propose a novel model of how NLRs recognise effectors termed the “integrated decoy” hypothesis. Based on new data from several pathosystems, it appears that some NLRs recognize pathogen effectors through extraneous domains that have evolved by duplication of an ET followed by fusion into the NLR. This NLR-integrated domain mimics the effector binding/substrate property of the original ET to enable pathogen detection. In addition, these “receptor” or “sensor” NLRs typically partner with NLR proteins with a classic architecture that function as signalling partners required for the resistance response (Eitas and Dangl, 2010; Cesari et al., 2013; Cesari et al., 2014; Williams et al., 2014).

Here, we expand on the Cesari et al. (2014) model and introduce the possibility that NLR-integrated domains do not have to be decoys (as in defective mimics) of the effector’s operative target. Indeed, in addition to binding effectors or serving as their substrates, operative targets carry a biochemical activity that is modulated by the effector. The perturbation of this activity by the effector leads to effector-triggered susceptibility, an activity often related to immunity (Boller and He, 2009; Dodds and Rathjen, 2010; Win et al., 2012). Clearly NLR-integrated domains must retain the “sensor” activity of the ancestral ET, but they could also retain their biochemical activity, continuing to function in the effector-targeted pathway even as an extraneous domain within a classic NLR architecture. At present, this possibility cannot be discounted given that the biochemical activities of the ancestral ETs and their NLR-integrated counterparts are generally unknown. Additionally, when NLR-fusions occurred recently, there may not have been enough time for the integrated ET to lose its original function and evolve into a decoy. We therefore propose to refer to the extraneous domains of classic NLR proteins described by Cesari et al. (2014) as sensor domains (SD), a term that is agnostic to any potential biochemical activities of the integrated module.

How to test whether or not SDs are decoys? We propose a straightforward genetic test that can reject the decoy hypothesis. Isogenic plants either carrying or lacking the NLR-SD can be challenged with a pathogen strain that lacks the matching avirulence effector (Figure 1). There are several possible outcomes. If the NLR-SD isogenic lines do not differ in their response to the pathogen without the matching effector, the result is inconclusive and the null decoy hypothesis cannot be rejected. If the presence of NLR-SD without the known matching effector shows higher levels of resistance, and there are no signs of typical effector-triggered immunity, then the SD is likely to have retained the ET biochemical activity and contributes to basal immunity in a manner analogous to the ancestral ET. An even more interesting result would be if in the absence of the matching effector, the NLR-SD line is more susceptible as has been shown for several ETs (van Schie and Takken, 2014). In this scenario, another (unrecognized) effector might still be targeting the original biochemical activity of the SD domain. It would be conceptually fascinating if an NLR that functions as a resistance (R) gene against certain strains of a pathogen becomes a susceptibility (S) gene when exposed to other strains. Once again, this concept emphasizes how the outcome of plant-pathogen interactions is so critically dependent on the genotypes of the interacting organisms – a gene that has a certain impact in a particular genetic combination can have the exact opposite effect in another (Jones and Dangl, 2006; van der Hoorn and Kamoun, 2008; Dodds and Rathjen, 2010; Win et al., 2012).

Our goal is not to engage in an exercise in semantics. However, we wish to avoid conceptually restrictive terminology and urge the plant-microbe interactions community to test a rich spectrum of models and hypotheses. The proposed sensor domain terminology would accommodate this breadth of ideas. Ultimately, it may very well turn out that the majority, if not all, of the NLR integrated domains have lost their biochemical activities and have evolved into decoys. Also, it is possible that the sensor domain has already evolved into a decoy prior to recombination into a NLR. Nonetheless, further genetic and biochemical experiments are required to determine whether sensor domains of NLR-SDs are decoys or biochemically functional duplicates of their ancestral ETs.

more...
No comment yet.
Rescooped by Kamoun Lab @ TSL from Plant Pathogenomics
Scoop.it!

MPMI: Candidate Effector Proteins of the Rust Pathogen Melampsora Larici-Populina Target Diverse Plant Cell Compartments (2015)

MPMI: Candidate Effector Proteins of the Rust Pathogen Melampsora Larici-Populina Target Diverse Plant Cell Compartments (2015) | Publications | Scoop.it

Rust fungi are devastating crop pathogens that deliver effector proteins into infected tissues to modulate plant functions and promote parasitic growth. The genome of the poplar leaf rust fungus Melampsora larici-populina revealed a large catalogue of secreted proteins, some of which have been considered candidate effectors. Unravelling how these proteins function in host cells is key to understanding pathogenicity mechanisms and developing resistant plants. In this study, we used an effectoromics pipeline to select, clone, and express 20 candidate effectors in Nicotiana benthamiana leaf cells to determine their subcellular localisation and identify the plant proteins they interact with. Confocal microscopy revealed that six candidate effectors target the nucleus, nucleoli, chloroplasts, mitochondria and discrete cellular bodies. We also used coimmunoprecipitation and mass spectrometry to identify 606 N. benthamiana proteins that associate with the candidate effectors. Five candidate effectors specifically associated with a small set of plant proteins that may represent biologically relevant interactors. We confirmed the interaction between the candidate effector MLP124017 and the TOPLESS-Related Protein 4 from poplar by in planta coimmunoprecipitation. Altogether, our data enable us to validate effector proteins from M. larici-populina and reveal that these proteins may target multiple compartments and processes in plant cells. It also shows that N. benthamiana can be a powerful heterologous system to study effectors of obligate biotrophic pathogens.


Via The Sainsbury Lab, Kamoun Lab @ TSL
more...
The Sainsbury Lab's curator insight, February 5, 7:23 AM

Rust fungi are devastating crop pathogens that deliver effector proteins into infected tissues to modulate plant functions and promote parasitic growth. The genome of the poplar leaf rust fungus Melampsora larici-populina revealed a large catalogue of secreted proteins, some of which have been considered candidate effectors. Unravelling how these proteins function in host cells is key to understanding pathogenicity mechanisms and developing resistant plants. In this study, we used an effectoromics pipeline to select, clone, and express 20 candidate effectors in Nicotiana benthamiana leaf cells to determine their subcellular localisation and identify the plant proteins they interact with. Confocal microscopy revealed that six candidate effectors target the nucleus, nucleoli, chloroplasts, mitochondria and discrete cellular bodies. We also used coimmunoprecipitation and mass spectrometry to identify 606 N. benthamiana proteins that associate with the candidate effectors. Five candidate effectors specifically associated with a small set of plant proteins that may represent biologically relevant interactors. We confirmed the interaction between the candidate effector MLP124017 and the TOPLESS-Related Protein 4 from poplar by in planta coimmunoprecipitation. Altogether, our data enable us to validate effector proteins from M. larici-populina and reveal that these proteins may target multiple compartments and processes in plant cells. It also shows that N. benthamiana can be a powerful heterologous system to study effectors of obligate biotrophic pathogens.

Rescooped by Kamoun Lab @ TSL from Plants and Microbes
Scoop.it!

bioRxiv: Phytophthora infestans RXLR-WY effector AVR3a associates with a Dynamin-Related Protein involved in endocytosis of a plant pattern recognition receptor (2014)

bioRxiv: Phytophthora infestans RXLR-WY effector AVR3a associates with a Dynamin-Related Protein involved in endocytosis of a plant pattern recognition receptor (2014) | Publications | Scoop.it

Perception of pathogen associated molecular patterns (PAMPs) by cell surface localized pattern recognition receptors (PPRs), activates plant basal defense responses in a process known as PAMP/PRR–triggered immunity (PTI). In turn, pathogens deploy effector proteins that interfere with different steps in PTI signaling. However, our knowledge of PTI suppression by filamentous plant pathogens, i.e. fungi and oomycetes, remains fragmentary. Previous work revealed that BAK1/SERK3, a regulatory receptor of several PRRs, contributes to basal immunity against the Irish potato famine pathogen Phytophthora infestans. Moreover BAK1/SERK3 is required for the cell death induced by P. infestans elicitin INF1, a protein with characteristics of PAMPs. The P. infestans host-translocated RXLR-WY effector AVR3a is known to supress INF1-mediated defense by binding the E3 ligase CMPG1. In contrast, AVR3aKI-Y147del, a deletion mutant of the C-terminal tyrosine of AVR3a, fails to bind CMPG1 and suppress INF1 cell death. Here we studied the extent to which AVR3a and its variants perturb additional BAK1/SERK3 dependent PTI responses using the plant PRR FLAGELLIN SENSING 2 (FLS2). We found that all tested variants of AVR3a, including AVR3aKI-Y147del, suppress early defense responses triggered by the bacterial flagellin-derived peptide flg22 and reduce internalization of activated FLS2 from the plasma membrane without disturbing its nonactivated localization. Consistent with this effect of AVR3a on FLS2 endocytosis, we discovered that AVR3a associates with the Dynamin-Related Protein DRP2, a plant GTPase implicated in receptor-mediated endocytosis. Interestingly, DRP2 is required for ligand-induced FLS2 internalization but does not affect internalization of the growth receptor BRASSINOSTEROID INSENSITIVE 1 (BRI1). Furthermore, overexpression of DRP2 suppressed accumulation of reactive oxygen species triggered by PAMP treatment. We conclude that AVR3a associates with a key cellular trafficking and membrane-remodeling complex involved in immune receptor-mediated endocytosis and signaling. AVR3a is a multifunctional effector that can suppress BAK1/SERK3 mediated immunity through at least two different pathways.

more...
fundoshi's curator insight, December 22, 2014 3:10 AM
Arabidopsis dynamin-related proteins, DRP2A and DRP2B, function coordinately in post-Golgi trafficking.

http://www.sciencedirect.com/science/article/pii/S0006291X14020956

Rescooped by Kamoun Lab @ TSL from Plants and Microbes
Scoop.it!

Video: Fifi The Oomycete (2014)

Happy holidays from the @KamounLab!


FiFi (Phytophthora) The Oomycete


(adapted from Frosty The Snowman)


Fifi the oomycete is a scary parasite,
With flagellated spores and hyphal threads
She kills crops and triggers blight.


Fifi the oomycete is a heterokont, they say,
She’s fungus-like but the scientists
Know how she had plastids one day.


There must have been some magic in those
Transposons they found.
For when they mapped ‘em on the genome
They began to jump around.


Fifi the oomycete has a big genome, they say,
Full of repeats but don’t call it junk
‘cause can be handy one day.


O, Fifi the oomycete
Was as virulent as she’s been;
and scientists say she secretes her way
Inside potatoes and bean.


Fifi the oomycete found
A resistant plant that day,
So she said, "Let's run and
There’ll be no fun
Until I mutate away."


There must have been some magic in those
Transposons they found.
For when they mapped ‘em on the genome
They began to jump around.


For Fifi the oomycete
Keeps evolving in her way,
But don’t wave her goodbye,
Don't you even try,
She’ll be back again some day.


more...
Mary Williams's curator insight, December 10, 2014 12:46 PM

She's adorable (or maybe not...). Nice song though!

Easwaramurthy Rgr's curator insight, December 19, 2014 2:37 PM

Happy holidays from the @KamounLab!

 

FiFi (Phytophthora) The Oomycete


(adapted from Frosty The Snowman),scopped by Jean Michel

Scooped by Kamoun Lab @ TSL
Scoop.it!

Current Opinion in Biotechnology: Editing plant genomes with CRISPR/Cas9 (2015)

Current Opinion in Biotechnology: Editing plant genomes with CRISPR/Cas9 (2015) | Publications | Scoop.it

• Cas9 is an RNA-guided DNA endonuclease innate to prokaryotic immune systems.
• CRISPR/Cas9 has recently emerged as a powerful genome editing tool.
• CRISPR/Cas9 has been successfully applied in many organisms, including model and crop plants.
• CRISPR/Cas9 is a cheap, robust and easy to implement technology.


CRISPR/Cas9 is a rapidly developing genome editing technology that has been successfully applied in many organisms, including model and crop plants. Cas9, an RNA-guided DNA endonuclease, can be targeted to specific genomic sequences by engineering a separately encoded guide RNA with which it forms a complex. As only a short RNA sequence must be synthesized to confer recognition of a new target, CRISPR/Cas9 is a relatively cheap and easy to implement technology that has proven to be extremely versatile. Remarkably, in some plant species, homozygous knockout mutants can be produced in a single generation. Together with other sequence-specific nucleases, CRISPR/Cas9 is a game-changing technology that is poised to revolutionise basic research and plant breeding.

more...
No comment yet.