PlantBioInnovation
Follow
Find
2.8K views | +0 today
Rescooped by Biswapriya Biswavas Misra from Plant Gene Seeker -PGS
onto PlantBioInnovation
Scoop.it!

Novel long non-protein coding RNAs involved in Arabidopsis differentiation and stress responses

Novel long non-protein coding RNAs involved in Arabidopsis differentiation and stress responses | PlantBioInnovation | Scoop.it

Abstract

Long non-protein coding RNAs (npcRNA) represent an emerging class of riboregulators, which either act directly in this long form or are processed to shorter miRNA and siRNA. Genome-wide bioinformatic analysis of full-length cDNA databases identified 76 Arabidopsis npcRNAs. Fourteen npcRNAs were antisense to protein-coding mRNAs, suggesting cis-regulatory roles. Numerous 24-nt siRNA matched to five different npcRNAs, suggesting that these npcRNAs are precursors of this type of siRNA. Expression analyses of the 76 npcRNAs identified a novel npcRNA that accumulates in a dcl1 mutant but does not appear to produce trans-acting siRNA or miRNA. Additionally, another npcRNA was the precursor of miR869 and shown to be up-regulated in dcl4 but not in dcl1 mutants, indicative of a young miRNA gene. Abiotic stress altered the accumulation of 22 npcRNAs among the 76, a fraction significantly higher than that observed for the RNA binding protein-coding fraction of the transcriptome. Overexpression analyses in Arabidopsis identified two npcRNAs as regulators of root growth during salt stress and leaf morphology, respectively. Hence, together with small RNAs, long npcRNAs encompass a sensitive component of the transcriptome that have diverse roles during growth and differentiation.


Via Andres Zurita
more...
No comment yet.
PlantBioInnovation
Discovery and Invention Aspects of Plant Biology That Are Interesting, Innovative and Novel !
Your new post is loading...
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Tobacco rattle virus–based virus-induced gene silencing in Nicotiana benthamiana

Tobacco rattle virus–based virus-induced gene silencing in Nicotiana benthamiana | PlantBioInnovation | Scoop.it
This Protocol describes how to downregulate specific plant genes using tobacco rattle virus virus-induced gene silencing (TRV-VIGS). The method can be used in a range of plants, but N. benthamiana is used here as an example.
Biswapriya Biswavas Misra's insight:

Tobacco rattle virus (TRV)-based virus-induced gene silencing (VIGS) is widely used in various plant species to downregulate the expression of a target plant gene. TRV is a bipartite, positive-strand RNA virus with the TRV1 and TRV2 genomes. To induce post-transcriptional gene silencing (PTGS), the TRV2 genome is genetically modified to carry a fragment of the target gene and delivered into the plant (along with the TRV1 genome) by agroinoculation. TRV1- and TRV2-carrying Agrobacterium strains are then co-inoculated into 3-week-old plant leaves by one of three methods: a needleless syringe, the agrodrench method or by pricking with a toothpick. Target gene silencing occurs in the newly developed noninoculated leaves within 2–3 weeks of TRV inoculation. The TRV-VIGS protocol described here takes only 4 weeks to implement, and it is faster and easier to perform than other gene silencing techniques that are currently available. Although we use Nicotiana benthamiana as an example, the protocol is adaptable to other plant species.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl

Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl | PlantBioInnovation | Scoop.it
eLife - Open access to the most promising advances in science
Biswapriya Biswavas Misra's insight:

As the major mechanism of plant growth and morphogenesis, cell elongation is controlled by many hormonal and environmental signals. How these signals are coordinated at the molecular level to ensure coherent cellular responses remains unclear. In this study, we illustrate a molecular circuit that integrates all major growth-regulating signals, including auxin, brassinosteroid, gibberellin, light, and temperature. Analyses of genome-wide targets, genetic and biochemical interactions demonstrate that the auxin-response factor ARF6, the light/temperature-regulated transcription factor PIF4, and the brassinosteroid-signaling transcription factor BZR1, interact with each other and cooperatively regulate large numbers of common target genes, but their DNA-binding activities are blocked by the gibberellin-inactivated repressor RGA. In addition, a tripartite HLH/bHLH module feedback regulates PIFs and additional bHLH factors that interact with ARF6, and thereby modulates auxin sensitivity according to developmental and environmental cues. Our results demonstrate a central growth-regulation circuit that integrates hormonal, environmental, and developmental controls of cell elongation in Arabidopsis hypocotyl.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Deep Evolutionary Comparison of Gene Expression Identifies Parallel Recruitment of Trans-Factors in Two Independent Origins of C4 Photosynthesis

Deep Evolutionary Comparison of Gene Expression Identifies Parallel Recruitment of Trans-Factors in Two Independent Origins of C4 Photosynthesis | PlantBioInnovation | Scoop.it
PLOS Genetics is an open-access
Biswapriya Biswavas Misra's insight:

With at least 60 independent origins spanning monocotyledons and dicotyledons, the C4 photosynthetic pathway represents one of the most remarkable examples of convergent evolution. The recurrent evolution of this highly complex trait involving alterations to leaf anatomy, cell biology and biochemistry allows an increase in productivity by ~50% in tropical and subtropical areas. The extent to which separate lineages of C4 plants use the same genetic networks to maintain C4 photosynthesis is unknown. We developed a new informatics framework to enable deep evolutionary comparison of gene expression in species lacking reference genomes. We exploited this to compare gene expression in species representing two independent C4 lineages (Cleome gynandra and Zea mays) whose last common ancestor diverged ~140 million years ago. We define a cohort of 3,335 genes that represent conserved components of leaf and photosynthetic development in these species. Furthermore, we show that genes encoding proteins of the C4 cycle are recruited into networks defined by photosynthesis-related genes. Despite the wide evolutionary separation and independent origins of the C4 phenotype, we report that these species use homologous transcription factors to both induce C4 photosynthesis and to maintain the cell specific gene expression required for the pathway to operate. We define a core molecular signature associated with leaf and photosynthetic maturation that is likely shared by angiosperm species derived from the last common ancestor of the monocotyledons and dicotyledons. We show that deep evolutionary comparisons of gene expression can reveal novel insight into the molecular convergence of highly complex phenotypes and that parallel evolution of trans-factors underpins the repeated appearance of C4 photosynthesis. Thus, exploitation of extant natural variation associated with complex traits can be used to identify regulators. Moreover, the transcription factors that are shared by independent C4 lineages are key targets for engineering the C4 pathway into C3 crops such as rice.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

An efficient method for stable protein targeting in grasses (Poaceae): a case study in Puccinellia tenuiflora

An efficient transformation method is lacking for most non-model plant species to test gene function. Therefore, subcellular localization of proteins of interest from non-model plants is mainly carried out through transient transformation in homologous cells or in heterologous cells from model species such as Arabidopsis. Although analysis of expression patterns in model organisms like yeast and Arabidopsis can provide important clues about protein localization, these heterologous systems may not always faithfully reflect the native subcellular distribution in other species. On the other hand, transient expression in protoplasts from species of interest has limited ability for detailed sub-cellular localization analysis (e.g., those involving subcellular fractionation or sectioning and immunodetection), as it results in heterogeneous populations comprised of both transformed and untransformed cells.
Biswapriya Biswavas Misra's insight:

An efficient transformation method is lacking for most non-model plant species to test gene function. Therefore, subcellular localization of proteins of interest from non-model plants is mainly carried out through transient transformation in homologous cells or in heterologous cells from model species such as Arabidopsis. Although analysis of expression patterns in model organisms like yeast and Arabidopsis can provide important clues about protein localization, these heterologous systems may not always faithfully reflect the native subcellular distribution in other species. On the other hand, transient expression in protoplasts from species of interest has limited ability for detailed sub-cellular localization analysis (e.g., those involving subcellular fractionation or sectioning and immunodetection), as it results in heterogeneous populations comprised of both transformed and untransformed cells.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Altered growth and improved resistance of Arabidopsis against Pseudomonas syringae by overexpression of the basic amino acid transporter AtCAT1.

PubMed comprises more than 23 million citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.
Biswapriya Biswavas Misra's insight:

Amino acid transporters in plants are crucial for distributing amino acids between plant organs and cellular compartments. The H(+)-coupled plasma membrane transporter CAT1 (cationic amino acid transporter 1) facilitates the high-affinity uptake of basic amino acids. The uptake of lysine (Lys) via the roots was not altered in loss-of-function mutants, in accordance with the minor expression of CAT1 in roots, but plants ectopically overexpressing CAT1 incorporated Lys at higher rates. Exogenous Lys inhibited the primary root of Arabidopsis, whereas lateral roots were stimulated. These effects were augmented by the presence or absence of CAT1. Furthermore, the total biomass of soil-grown plants ectopically overexpressing CAT1 was reduced and the time to flowering was accelerated. These effects were accompanied by only minor changes in the overall amino acid profile. Interestingly, CAT1 belongs to a specific small cluster of nitrogen-containing metabolite transporter genes that are rapidly up-regulated upon infection with Pseudomonas syringae and that may participate in the systemic response of plants to pathogen attack. The overexpression of CAT1 indeed enhanced the resistance to the hemibiotrophic bacterial pathogen P. syringae via a constitutively activated salicylic acid (SA) pathway, which is consistent with the developmental defects and the resistance phenotype.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Low antioxidant concentrations impact on multiple signalling pathways in Arabidopsis thaliana partly through NPR1.

PubMed comprises more than 23 million citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.
Biswapriya Biswavas Misra's insight:

Production of reactive oxygen species (ROS) is linked to signalling in both developmental and stress responses. The level of ROS is controlled by both production and removal through various scavengers including ascorbic acid and glutathione. Here, the role of low ascorbic acid or glutathione concentrations was investigated on ozone-induced cell death, defence signalling, and developmental responses. Low ascorbic acid concentrations in vtc1 activated expression of salicylic acid (SA)-regulated genes, a response found to be dependent on the redox-regulated transcriptional co-regulator NPR1. In contrast, low glutathione concentrations in cad2 or pad2 reduced expression of SA-regulated genes. Testing different responses to jasmonic acid (JA) revealed the presence of at least two separate JA signalling pathways. Treatment of the vtc1 mutant with JA led to hyper-induction of MONODEHYDROASCORBATE REDUCTASE3, indicating that low ascorbic acid concentrations prime the response to JA. Furthermore, NPR1 was found to be a positive regulator of JA-induced expression of MDHAR3 and TAT3. The vtc1 and npr1 mutants were sensitive to glucose inhibition of seed germination; an opposite response was found in cad2 and pad2. Overall, low ascorbic acid concentrations mostly led to opposite phenotypes to low glutathione concentrations, and both antioxidants interacted with SA and JA signalling pathways.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

NADH-dependent glutamate synthase participated in ammonium assimilation in Arabidopsis root.

PubMed comprises more than 23 million citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.
Biswapriya Biswavas Misra's insight:

Higher plants have 2 GOGAT species, Fd-GOGAT and NADH-GOGAT. While Fd-GOGAT mainly assimilates ammonium in leaves, which is derived from photorespiration, the function of NADH-GOGAT, which is highly expressed in roots, 1 needs to be elucidated. The aim of this study was to clarify the role of NADH-GOGAT in Arabidopsis roots. The supply of ammonium to the roots caused an accumulation of NADH-GOGAT, while Fd-GOGAT 1 and Fd-GOGAT 2 showed no response. A promoter-GUS fusion analysis and immunohistochemistry showed that NADH-GOGAT was located in non-green tissues like vascular bundles, shoot apical meristem, pollen, stigma, and roots. The localization of NADH-GOGAT and Fd-GOGAT was not overlapped. NADH-GOGAT T-DNA insertion lines showed a reduction of glutamate and biomass under normal CO 2 conditions. These data emphasizes the importance of NADH-GOGAT in the ammonium assimilation of Arabidopsis roots.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

The effects of low concentrations of the enantiomers of mushroom alcohol (1-octen-3-ol) on Arabidopsis thaliana

The effects of low concentrations of the enantiomers of mushroom alcohol (1-octen-3-ol) on Arabidopsis thaliana | PlantBioInnovation | Scoop.it
(2014). The effects of low concentrations of the enantiomers of mushroom alcohol (1-octen-3-ol) on Arabidopsis thaliana. Mycology: Vol. 5, No. 2, pp. 73-80. doi: 10.1080/21501203.2014.902401
Biswapriya Biswavas Misra's insight:

“Mushroom alcohol,” or 1-octen-3-ol, is a common fungal volatile organic compound (VOC) that has been studied for its flavor properties, its effects on fungal spore germination, mushroom development, and as a signaling agent for insects. Far less is known about its effects on plants. We exposed Arabidopsis thaliana seeds, under conditions conducive to germination, to high (10 and 100 mg/l) and low concentrations (1, 2, and 3 mg/l) of racemic, S, and R forms of 1-octen-3-ol for 3 days. In addition, 1-, 2-, 3-, and 4-week-old A. thaliana plants also were exposed to 1 mg/l of the compounds for the same period of time. Seedling formation was retarded with all tested levels of exposure to 1-octen-3-ol for both enantiomers and the racemer, while 95% of unexposed control seeds germinated to seedling within 3 days. There was a dose-dependent response in the reduction of seedling formation between 1 mg/l and 3 mg/l of exposure. When exposed seeds were removed from the VOC, nearly all resumed germination. Young plants exposed to 1 mg/l of the R and S enantiomers of 1-octen-3-ol exhibited a mild inhibition of growth and chlorophyll production at 2 and 3 weeks but not at 4 weeks.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

The Stem Cell Niche in Leaf Axils Is Established by Auxin and Cytokinin in Arabidopsis

The Stem Cell Niche in Leaf Axils Is Established by Auxin and Cytokinin in Arabidopsis | PlantBioInnovation | Scoop.it
Biswapriya Biswavas Misra's insight:

Plants differ from most animals in their ability to initiate new cycles of growth and development, which relies on the establishment and activity of branch meristems harboring new stem cell niches. In seed plants, this is achieved by axillary meristems, which are established in the axil of each leaf base and develop into lateral branches. Here, we describe the initial processes of Arabidopsis thaliana axillary meristem initiation. Using reporter gene expression analysis, we find that axillary meristems initiate from leaf axil cells with low auxin through stereotypical stages. Consistent with this, ectopic overproduction of auxin in the leaf axil efficiently inhibits axillary meristem initiation. Furthermore, our results demonstrate that auxin efflux is required for the leaf axil auxin minimum and axillary meristem initiation. After lowering of auxin levels, a subsequent cytokinin signaling pulse is observed prior to axillary meristem initiation. Genetic analysis suggests that cytokinin perception and signaling are both required for axillary meristem initiation. Finally, we show that cytokinin overproduction in the leaf axil partially rescue axillary meristem initiation-deficient mutants. These results define a mechanistic framework for understanding axillary meristem initiation.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

A mutually assured destruction mechanism attenuates light signaling in Arabidopsis

Biswapriya Biswavas Misra's insight:

After light-induced nuclear translocation, phytochrome photoreceptors interact with and induce rapid phosphorylation and degradation of basic helix-loop-helix transcription factors, such as PHYTOCHROME-INTERACTING FACTOR 3 (PIF3), to regulate gene expression. Concomitantly, this interaction triggers feedback reduction of phytochrome B (phyB) levels. Light-induced phosphorylation of PIF3 is necessary for the degradation of both proteins. We report that this PIF3 phosphorylation induces, and is necessary for, recruitment of LRB [Light-Response Bric-a-Brack/Tramtrack/Broad (BTB)] E3 ubiquitin ligases to the PIF3-phyB complex. The recruited LRBs promote concurrent polyubiqutination and degradation of both PIF3 and phyB in vivo. These data reveal a linked signal-transmission and attenuation mechanism involving mutually assured destruction of the receptor and its immediate signaling partner.

more...
No comment yet.
Rescooped by Biswapriya Biswavas Misra from Chitin induced PTI in Wheat
Scoop.it!

PLOS Biology: Unsolved Mystery - How Do Filamentous Pathogens Deliver Effector Proteins into Plant Cells? (2014)

PLOS Biology: Unsolved Mystery - How Do Filamentous Pathogens Deliver Effector Proteins into Plant Cells? (2014) | PlantBioInnovation | Scoop.it

Fungal and oomycete plant parasites are among the most devastating pathogens of food crops. These microbes secrete effector proteins inside plant cells to manipulate host processes and facilitate colonization. How these effectors reach the host cytoplasm remains an unclear and debated area of plant research. In this article, we examine recent conflicting findings that have generated discussion in the field. We also highlight promising approaches based on studies of both parasite and host during infection. Ultimately, this knowledge may inform future broad spectrum strategies for protecting crops from such pathogens.


Via Kamoun Lab @ TSL, CP, William Kay
more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Arabidopsis AtHB7 and AtHB12 evolved divergently to fine tune processes

Arabidopsis AtHB7 and AtHB12 evolved divergently to fine tune processes ...
more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Rapid and long-term effects of water deficit on gas exchange and hydraulic conductance of silver birch trees grown under varying atmospheric humidity

Effects of water deficit on plant water status, gas exchange and hydraulic conductance were investigated in Betula pendula under artificially manipulated air humidity in Eastern Estonia. The study was aimed to broaden an understanding of the ability of trees to acclimate with the increasing atmospheric humidity predicted for northern Europe. Rapidly-induced water deficit was imposed by dehydrating cut branches in open-air conditions; long-term water deficit was generated by seasonal drought.
Biswapriya Biswavas Misra's insight:
Background

Effects of water deficit on plant water status, gas exchange and hydraulic conductance were investigated in Betula pendula under artificially manipulated air humidity in Eastern Estonia. The study was aimed to broaden an understanding of the ability of trees to acclimate with the increasing atmospheric humidity predicted for northern Europe. Rapidly-induced water deficit was imposed by dehydrating cut branches in open-air conditions; long-term water deficit was generated by seasonal drought.

Results

The rapid water deficit quantified by leaf (ΨL) and branch water potentials (ΨB) had a significant (P < 0.001) effect on gas exchange parameters, while inclusion of ΨB in models resulted in a considerably better fit than those including ΨL, which supports the idea that stomatal openness is regulated to prevent stem rather than leaf xylem dysfunction. Under moderate water deficit (ΨL≥-1.55 MPa), leaf conductance to water vapour (gL), transpiration rate and leaf hydraulic conductance (KL) were higher (P < 0.05) and leaf temperature lower in trees grown in elevated air humidity (H treatment) than in control trees (C treatment). Under severe water deficit (ΨL<-1.55 MPa), the treatments showed no difference. The humidification manipulation influenced most of the studied characteristics, while the effect was to a great extent realized through changes in soil water availability, i.e. due to higher soil water potential in H treatment. Two functional characteristics (gL, KL) exhibited higher (P < 0.05) sensitivity to water deficit in trees grown under increased air humidity.

Conclusions

The experiment supported the hypothesis that physiological traits in trees acclimated to higher air humidity exhibit higher sensitivity to rapid water deficit with respect to two characteristics - leaf conductance to water vapour and leaf hydraulic conductance. Disproportionate changes in sensitivity of stomatal versus leaf hydraulic conductance to water deficit will impose greater risk of desiccation-induced hydraulic dysfunction on the plants, grown under high atmospheric humidity, in case of sudden weather fluctuations, and might represent a potential threat in hemiboreal forest ecosystems. There is no trade-off between plant hydraulic capacity and photosynthetic water-use efficiency on short time scale.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Phosphoprotein SAK1 is a regulator of acclimation to singlet oxygen in Chlamydomonas reinhardtii

Phosphoprotein SAK1 is a regulator of acclimation to singlet oxygen in Chlamydomonas reinhardtii | PlantBioInnovation | Scoop.it
eLife - Open access to the most promising advances in science
Biswapriya Biswavas Misra's insight:

Singlet oxygen is a highly toxic and inevitable byproduct of oxygenic photosynthesis. The unicellular green alga Chlamydomonas reinhardtii is capable of acclimating specifically to singlet oxygen stress, but the retrograde signaling pathway from the chloroplast to the nucleus mediating this response is unknown. Here we describe a mutant, singlet oxygen acclimation knocked-out 1 (sak1), that lacks the acclimation response to singlet oxygen. Analysis of genome-wide changes in RNA abundance during acclimation to singlet oxygen revealed that SAK1 is a key regulator of the gene expression response during acclimation. The SAK1 gene encodes an uncharacterized protein with a domain conserved among chlorophytes and present in some bZIP transcription factors. The SAK1 protein is located in the cytosol, and it is induced and phosphorylated upon exposure to singlet oxygen, suggesting that it is a critical intermediate component of the retrograde signal transduction pathway leading to singlet oxygen acclimation.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Plant biology: Pass the ammunition : Nature : Nature Publishing Group

Plant biology: Pass the ammunition : Nature : Nature Publishing Group | PlantBioInnovation | Scoop.it
Tomato plants that have been damaged by herbivorous insects emit airborne chemicals that warn neighbours of an impending attack. It emerges that the receiving plants transform these signals into defensive weapons.
Biswapriya Biswavas Misra's insight:

Plants may seem passive, but in fact they respond in complex ways to diverse features of their environment. It is becoming increasingly clear, for example, that plants perceive and respond to environmental odours. However, almost nothing is known about the mechanisms by which plant olfaction occurs. Writing in Proceedings of the National Academy of Sciences, Sugimoto et al.1 report that when plants are exposed to odours emitted by neighbours that have been damaged by herbivorous insects, they react by transforming compounds in the odour into effective anti-herbivore defences.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Protein patterns of black fungi under simulated Mars-like conditions

Protein patterns of black fungi under simulated Mars-like conditions | PlantBioInnovation | Scoop.it
Two species of microcolonial fungi - Cryomyces antarcticus and Knufia perforans - and a species of black yeasts-Exophiala jeanselmei - were exposed to thermo-physical Mars-like conditions in the simulation chamber of the German Aerospace Center. In this study the alterations at the protein expression level from various fungi species under Mars-like conditions were analyzed for the first time using 2D gel electrophoresis. Despite of the expectations, the fungi did not express any additional proteins under Mars simulation that could be interpreted as stress induced HSPs. However, up-regulation of some proteins and significant decreasing of protein number were detected within the first 24[emsp14]hours of the treatment. After 4 and 7 days of the experiment protein spot number was increased again and the protein patterns resemble the protein patterns of biomass from normal conditions. It indicates the recovery of the metabolic activity under Martian environmental conditions after one week of exposure.
more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

The ABA Receptor PYL8 Promotes Lateral Root Growth by Enhancing MYB77-Dependent Transcription of Auxin-Responsive Genes

Biswapriya Biswavas Misra's insight:

Abstract: The phytohormone abscisic acid (ABA) regulates plant growth, development, and abiotic stress responses. ABA signaling is mediated by a group of receptors known as the PYR1/PYL/RCAR family, which includes the pyrabactin resistance 1–like protein PYL8. Under stress conditions, ABA signaling activates SnRK2 protein kinases to inhibit lateral root growth after emergence from the primary root. However, even in the case of persistent stress, lateral root growth eventually recovers from inhibition. We showed that PYL8 is required for the recovery of lateral root growth, following inhibition by ABA. PYL8 directly interacted with the transcription factors MYB77, MYB44, and MYB73. The interaction of PYL8 and MYB77 increased the binding of MYB77 to its target MBSI motif in the promoters of multiple auxin-responsive genes. Compared to wild-type seedlings, the lateral root growth of pyl8 mutant seedlings and myb77 mutant seedlings was more sensitive to inhibition by ABA. The recovery of lateral root growth was delayed in pyl8 mutant seedlings in the presence of ABA, and the defect was rescued by exposing pyl8 mutant seedlings to the auxin IAA (3-indoleacetic acid). Thus, PYL8 promotes lateral root growth independently of the core ABA-SnRK2 signaling pathway by enhancing the activities of MYB77 and its paralogs, MYB44 and MYB73, to augment auxin signaling.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

An EAR-Dependent Regulatory Module Promotes Male Germ Cell Division and Sperm Fertility in Arabidopsis

An EAR-Dependent Regulatory Module Promotes Male Germ Cell Division and Sperm Fertility in Arabidopsis | PlantBioInnovation | Scoop.it
Biswapriya Biswavas Misra's insight:

The production of the sperm cells in angiosperms requires coordination of cell division and cell differentiation. In Arabidopsis thaliana, the germline-specific MYB protein DUO1 integrates these processes, but the regulatory hierarchy in which DUO1 functions is unknown. Here, we identify an essential role for two germline-specific DUO1 target genes, DAZ1 and DAZ2, which encode EAR motif–containing C2H2-type zinc finger proteins. We show that DAZ1/DAZ2 are required for germ cell division and for the proper accumulation of mitotic cyclins. Importantly, DAZ1/DAZ2 are sufficient to promote G2- to M-phase transition and germ cell division in the absence of DUO1. DAZ1/DAZ2 are also required for DUO1-dependent cell differentiation and are essential for gamete fusion at fertilization. We demonstrate that the two EAR motifs in DAZ1/DAZ2 mediate their function in the male germline and are required for transcriptional repression and for physical interaction with the corepressor TOPLESS. Our findings uncover an essential module in a regulatory hierarchy that drives mitotic transition in male germ cells and implicates gene repression pathways in sperm cell formation and fertility.

 

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Functional analysis of the Arabidopsis PLDZ2 promoter reveals an evolutionarily conserved low-Pi-responsive transcriptional enhancer element.

PubMed comprises more than 23 million citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.
Biswapriya Biswavas Misra's insight:

Plants have evolved a plethora of responses to cope with phosphate (Pi) deficiency, including the transcriptional activation of a large set of genes. Among Pi-responsive genes, the expression of the Arabidopsis phospholipase DZ2 (PLDZ2) is activated to participate in the degradation of phospholipids in roots in order to release Pi to support other cellular activities. A deletion analysis was performed to identify the regions determining the strength, tissue-specific expression, and Pi responsiveness of this regulatory region. This study also reports the identification and characterization of a transcriptional enhancer element that is present in the PLDZ2 promoter and able to confer Pi responsiveness to a minimal, inactive 35S promoter. This enhancer also shares the cytokinin and sucrose responsive properties observed for the intact PLDZ2 promoter. The EZ2 element contains two P1BS motifs, each of which is the DNA binding site of transcription factor PHR1. Mutation analysis showed that the P1BS motifs present in EZ2 are necessary but not sufficient for the enhancer function, revealing the importance of adjacent sequences. The structural organization of EZ2 is conserved in the orthologous genes of at least eight families of rosids, suggesting that architectural features such as the distance between the two P1BS motifs are also important for the regulatory properties of this enhancer element.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Is gene flow the most important evolutionary force in plants?

Although theory has demonstrated rather low levels of gene flow are sufficient to counteract opposing mutation, drift, and selection, widespread recognition of the evolutionary importance of gene flow has come slowly. The perceived role of gene flow as an evolutionary force has vacillated over the last century. In the last few decades, new methods and analyses have demonstrated that plant gene flow rates vary tremendously—from nil to very high—depending on the species and specific populations involved, and sometimes over time for individual populations. In many cases, the measured gene flow rates are evolutionarily significant at distances of hundreds and sometimes thousands of meters, occurring at levels sufficient to counteract drift, spread advantageous alleles, or thwart moderate levels of opposing local selection. Gene flow in plants is likely to often act as a cohesive force, uniting individual plant species into real evolutionary units. Also, gene flow can evolve under natural selection, decreasing or increasing. The fact of frequent, but variable, plant gene flow has important consequences for applied issues in which the presence or absence of gene flow might influence the outcome of a policy, regulatory, or management decision. Examples include the unintended spread of engineered genes, the evolution of invasiveness, and conservation. New data-rich genomic techniques allow closer scrutiny of the role of gene flow in plant evolution. Most plant evolutionists now recognize the importance of gene flow, and it is receiving increased recognition from other areas of plant biology as well.

Biswapriya Biswavas Misra's insight:

Although theory has demonstrated rather low levels of gene flow are sufficient to counteract opposing mutation, drift, and selection, widespread recognition of the evolutionary importance of gene flow has come slowly. The perceived role of gene flow as an evolutionary force has vacillated over the last century. In the last few decades, new methods and analyses have demonstrated that plant gene flow rates vary tremendously—from nil to very high—depending on the species and specific populations involved, and sometimes over time for individual populations. In many cases, the measured gene flow rates are evolutionarily significant at distances of hundreds and sometimes thousands of meters, occurring at levels sufficient to counteract drift, spread advantageous alleles, or thwart moderate levels of opposing local selection. Gene flow in plants is likely to often act as a cohesive force, uniting individual plant species into real evolutionary units. Also, gene flow can evolve under natural selection, decreasing or increasing. The fact of frequent, but variable, plant gene flow has important consequences for applied issues in which the presence or absence of gene flow might influence the outcome of a policy, regulatory, or management decision. Examples include the unintended spread of engineered genes, the evolution of invasiveness, and conservation. New data-rich genomic techniques allow closer scrutiny of the role of gene flow in plant evolution. Most plant evolutionists now recognize the importance of gene flow, and it is receiving increased recognition from other areas of plant biology as well.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Modulation of root-skewing responses by KNAT1 in Arabidopsis thaliana.

PubMed comprises more than 23 million citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.
Biswapriya Biswavas Misra's insight:

The KNOTTED1 homeobox (KNOX) family transcription factors are essential for stem cell establishment and maintenance and regulate various aspects of development in all green plants. Expression patterns of the KNOX genes in the roots of plants have been reported, but their role in development remains unclear. Here we show how the KNAT1 gene is specifically involved in root skewing in Arabidopsis. The roots of two mutant alleles of KNAT1 (bp-1 and bp-5) exhibited exaggerated skewing to the right of gravity when grown on both vertical and tilted agar medium surfaces. This skewing phenotype was enhanced by treatments with low concentrations of propyzamide, and required auxin transport. The KNAT1 mutation substantially decreased basipetal auxin transport and increased auxin accumulation in the roots. Using a PIN2-GFP reporter and western blot analysis, we found that this alteration in auxin transport was accompanied by a decrease in PIN2 levels in the root tip. Decreased PIN2 expression in the mutant roots was not accompanied by reduced mRNA levels, suggesting that the KNAT1 mutations affected PIN2 expression at the posttranscriptional level. In vivo visualization of intracellular vacuolar targeting indicated that vacuolar degradation of PIN2-GFP was significantly promoted in the root tips of the bp allelic mutants. Together, these results demonstrate that KNAT1 negatively modulates root skewing, possibly by regulating auxin transport.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

miR824-Regulated AGAMOUS-LIKE16 Contributes to Flowering Time Repression in Arabidopsis

miR824-Regulated AGAMOUS-LIKE16 Contributes to Flowering Time Repression in Arabidopsis | PlantBioInnovation | Scoop.it
Biswapriya Biswavas Misra's insight:

The timing of flowering is pivotal for maximizing reproductive success under fluctuating environmental conditions. Flowering time is tightly controlled by complex genetic networks that integrate endogenous and exogenous cues, such as light, temperature, photoperiod, and hormones. Here, we show that AGAMOUS-LIKE16 (AGL16) and its negative regulator microRNA824 (miR824) control flowering time in Arabidopsis thaliana. Knockout of AGL16 effectively accelerates flowering in nonvernalized Col-FRI, in which the floral inhibitor FLOWERING LOCUS C (FLC) is strongly expressed, but shows no effect if plants are vernalized or grown in short days. Alteration of AGL16 expression levels by manipulating miR824 abundance influences the timing of flowering quantitatively, depending on the expression level and number of functional FLC alleles. The effect of AGL16 is fully dependent on the presence of FLOWERING LOCUS T (FT). Further experiments show that AGL16 can interact directly with SHORT VEGETATIVE PHASE and indirectly with FLC, two proteins that form a complex to repress expression of FT. Our data reveal that miR824 and AGL16 modulate the extent of flowering time repression in a long-day photoperiod.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

SPECTROSCOPIC FEATURES OF PLANT CUTICLES: A REVIEW

The cuticle is one of the most important plant barriers. It is an external and continuous lipid membrane that covers the surface of epidermal cells and whose main function is to prevent the massive loss of water. The spectroscopic characterization of the plant cuticle and its components (cutin, cutan, waxes, polysaccharides and phenolics) by infrared and Raman spectroscopies has provided significant advances in the knowledge of the functional groups present in the cuticular matrix and on their structural role, interaction and macromolecular arrangement. Additionally, these spectroscopies have been used in the study of cuticle interaction with exogenous molecules, degradation, distribution of components within the cuticle matrix, changes during growth and development and characterization of fossil plants.
Biswapriya Biswavas Misra's insight:

The cuticle is one of the most important plant barriers. It is an external and continuous lipid membrane that covers the surface of epidermal cells and whose main function is to prevent the massive loss of water. The spectroscopic characterization of the plant cuticle and its components (cutin, cutan, waxes, polysaccharides and phenolics) by infrared and Raman spectroscopies has provided significant advances in the knowledge of the functional groups present in the cuticular matrix and on their structural role, interaction and macromolecular arrangement. Additionally, these spectroscopies have been used in the study of cuticle interaction with exogenous molecules, degradation, distribution of components within the cuticle matrix, changes during growth and development and characterization of fossil plants.

more...
No comment yet.
Rescooped by Biswapriya Biswavas Misra from Chitin induced PTI in Wheat
Scoop.it!

Inside plant: biotrophic strategies to modulate host immunity and metabolism

Inside plant: biotrophic strategies to modulate host immunity and metabolism | PlantBioInnovation | Scoop.it

Filamentous plant pathogens that establish biotrophic interactions need to avoid plant immune responses. Recent findings from different pathosystems suggest that sufficient suppression of host immunity is based on the modulation of a rather limited number of host targets. Microbial strategies to target host physiology dependent on the duration of biotrophy, the style of host tissue colonization and the degree of interference with plant development. In this article, we present current concepts in biotrophic virulence strategies and discuss mechanisms of pathogen adaptation and effector specialization.


Via CP, William Kay
more...
No comment yet.
Rescooped by Biswapriya Biswavas Misra from Chitin induced PTI in Wheat
Scoop.it!

MPMI: Effectors as tools in disease resistance breeding against biotrophic, hemi-biotrophic and necrotrophic plant pathogens (2014)

MPMI: Effectors as tools in disease resistance breeding against biotrophic, hemi-biotrophic and necrotrophic plant pathogens (2014) | PlantBioInnovation | Scoop.it

One of most important challenges in plant breeding is improving resistance to the plethora of pathogens that threaten our crops. The ever growing world population, changing pathogen populations and fungicide resistance issues have increased the urgency of this task. In addition to a vital inflow of novel resistance sources into breeding programmes, the functional characterisation and deployment of resistance also needs improvement. Plant breeders therefore need to adopt new strategies and techniques. In modern resistance breeding, effectors are emerging as tools to accelerate and improve the identification, functional characterisation and deployment of R genes. Since genome-wide catalogues of effectors have become available for various pathogens, including biotrophs as well as necrotrophs, effector-assisted breeding has been shown to be successful for various crops. “Effectoromics” has contributed to classical resistance breeding as well as for GM approaches. Here we present an overview of how effector-assisted breeding and deployment is being exploited for various pathosystems.


Via Kamoun Lab @ TSL, CP, William Kay
more...
No comment yet.