Plant-Microbe Sym...
Follow
Find
50.9K views | +102 today
 
Scooped by Jean-Michel Ané
onto Plant-Microbe Symbioses
Scoop.it!

Diversity of Arbuscular Mycorrhizal Fungi and Their Roles in Ecosystems

Arbuscular mycorrhizal fungi (AMF) have mutualistic relationships with more than 80% of terrestrial plant species. This symbiotic relationship is ancient and would have had important roles in establishment of plants on land. Despite their abundance and wide range of relationship with plant species, AMF have shown low species diversity. However, molecular studies have suggested that diversity of these fungi may be much higher, and genetic variation of AMF is very high within a species and even within a single spore. Despite low diversity and lack of host specificity, various functions have been associated with plant growth responses to arbuscular mycorrhizal fungal colonization. In addition, different community composition of AMF affects plants differently, and plays a potential role in ecosystem variability and productivity. AMF have high functional diversity because different combinations of host plants and AMF have different effects on the various aspects of symbiosis. Consequently, recent studies have focused on the different functions of AMF according to their genetic resource and their roles in ecosystem functioning. This review summarizes taxonomic, genetic, and functional diversities of AMF and their roles in natural ecosystems.
more...
No comment yet.
Plant-Microbe Symbioses
Symbiotic associations between plants and microbes
Your new post is loading...
Your new post is loading...
Scooped by Jean-Michel Ané
Scoop.it!

Analyses of Sporocarps, Morphotyped Ectomycorrhizae, Environmental ITS and LSU Sequences Identify Common Genera that Occur at a Periglacial Site

Analyses of Sporocarps, Morphotyped Ectomycorrhizae, Environmental ITS and LSU Sequences Identify Common Genera that Occur at a Periglacial Site | Plant-Microbe Symbioses | Scoop.it
Periglacial substrates exposed by retreating glaciers represent extreme and sensitive environments defined by a variety of abiotic stressors that challenge organismal establishment and survival. The simple communities often residing at these sites enable their analyses in depth. We utilized existing data and mined published sporocarp, morphotyped ectomycorrhizae (ECM), as well as environmental sequence data of internal transcribed spacer (ITS) and large subunit (LSU) regions of the ribosomal RNA gene to identify taxa that occur at a glacier forefront in the North Cascades Mountains in Washington State in the USA. The discrete data types consistently identified several common and widely distributed genera, perhaps best exemplified by Inocybe and Laccaria. Although we expected low diversity and richness, our environmental sequence data included 37 ITS and 26 LSU operational taxonomic units (OTUs) that likely form ECM. While environmental surveys of metabarcode markers detected large numbers of targeted ECM taxa, both the fruiting body and the morphotype datasets included genera that were undetected in either of the metabarcode datasets. These included hypogeous (Hymenogaster) and epigeous (Lactarius) taxa, some of which may produce large sporocarps but may possess small and/or spatially patchy genets. We highlight the importance of combining various data types to provide a comprehensive view of a fungal community, even in an environment assumed to host communities of low species richness and diversity.
more...
No comment yet.
Scooped by Jean-Michel Ané
Scoop.it!

Genomes of mycorrhizal fungi

Within the framework of the JGI Mycorrhizal Genomics Initiative (MGI) project, we are sequencing a phylogenetically and ecologically diverse suite of mycorrhizal fungi (Basidiomycota and Ascomycota), which include the major clades of symbiotic species associating with trees and woody shrubs. Analyses of these genomes will provide new insights into the diversity of mechanisms for the mycorrhizal symbioses, including ericoid-, orchidoid- and ectomycorrhizal associations. A large collaborative effort led by PI of these project, Francis Martin (INRA), aims for master publication(s) of the MGI data analyses. Researchers who wish to publish analyses using data from unpublished MGI genomes are respectfully required to contact the PIs and JGI to avoid potential conflicts on data use and coordinate other publications with the MGI master paper(s).
more...
No comment yet.
Scooped by Jean-Michel Ané
Scoop.it!

Mesorhizobium soli sp. nov., a novel species isolated from the rhizosphere of Robinia pseudoacacia L. in South Korea by using a modified culture method

Strain NHI-8T was isolated from a forest soil sample, collected in South Korea, by using a modified culture method. Comparative analysis of its nearly full-length 16S rRNA gene sequence showed that strain NHI-8T belongs to the genus Mesorhizobium and to be closely related to Mesorhizobium chacoense PR5T (97.32 %). The levels of DNA–DNA relatedness between strain NHI-8T and reference type strains of the genus Mesorhizobium were 32.28–53.65 %. SDS-PAGE of total soluble proteins and the sequences of the housekeeping genes recA, glnII, and atpD were also used to support the clade grouping in rhizobia. The new strain contained summed feature 8 (57.0 %), cyclo-C19:0ω8c (17.3 %), and C18:0 (11.0 %) as the major fatty acids, as in genus Mesorhizobium. The strain contained cardiolipin, phosphatidylglycerol, ornithine-containing lipid, phosphatidylethanolamine, phosphatidyl-N-dimethylethanolamine, and phosphatidylcholine. Morphological and physiological analyses were performed to compare the characteristics of our strain with those of the reference type strains. Based on the results, strain NHI-8T was determined to represent a novel member of the genus Mesorhizobium, and the name Mesorhizobium soli is proposed. The type strain is NHI-8T (=KEMB 9005-153T = KACC 17916T = JCM 19897T).
more...
No comment yet.
Scooped by Jean-Michel Ané
Scoop.it!

Molecular mechanisms underlying the close association between soil Burkholderia and fungi

Bacterial species belonging to the genus Burkholderia have been repeatedly reported to be associated with fungi but the extent and specificity of these associations in soils remain undetermined. To assess whether associations between Burkholderia and fungi are widespread in soils, we performed a co-occurrence analysis in an intercontinental soil sample collection. This revealed that Burkholderia significantly co-occurred with a wide range of fungi. To analyse the molecular basis of the interaction, we selected two model fungi frequently co-occurring with Burkholderia, Alternaria alternata and Fusarium solani, and analysed the proteome changes caused by cultivation with either fungus in the widespread soil inhabitant B. glathei, whose genome we sequenced. Co-cultivation with both fungi led to very similar changes in the B. glathei proteome. Our results indicate that B. glathei significantly benefits from the interaction, which is exemplified by a lower abundance of several starvation factors that were highly expressed in pure culture. However, co-cultivation also gave rise to stress factors, as indicated by the increased expression of multidrug efflux pumps and proteins involved in oxidative stress response. Our data suggest that the ability of Burkholderia to establish a close association with fungi mainly lies in the capacities to utilize fungal-secreted metabolites and to overcome fungal defense mechanisms. This work indicates that beneficial interactions with fungi might contribute to the survival strategy of Burkholderia species in environments with sub-optimal conditions, including acidic soils.
Jean-Michel Ané's insight:

Very cool study.

more...
No comment yet.
Scooped by Jean-Michel Ané
Scoop.it!

Significant nonsymbiotic nitrogen fixation in Patagonian ombrotrophic bogs

Significant nonsymbiotic nitrogen fixation in Patagonian ombrotrophic bogs | Plant-Microbe Symbioses | Scoop.it
Nitrogen (N) nutrition in pristine peatlands relies on the natural input of inorganic N through atmospheric deposition or biological dinitrogen (N2) fixation. However, N2 fixation and its significance for N cycling, plant productivity, and peat buildup are mostly associated with the presence of Sphagnum mosses. Here, we report high nonsymbiotic N2-fixation rates in two pristine Patagonian bogs with diversified vegetation and natural N deposition. Nonsymbiotic N2 fixation was measured in samples from 0 to 10, 10 to 20, and 40 to 50 cm depth using the 15N2 assay as well as the acetylene reduction assay (ARA). The ARA considerably underestimated N2 fixation and can thus not be recommended for peatland studies. Based on the 15N2 assay, high nonsymbiotic N2-fixation rates of 0.3–1.4 μmol N2 g−1 day−1 were found down to 50 cm under micro-oxic conditions (2 vol.%) in samples from plots covered by Sphagnum magellanicum or by vascular cushion plants, latter characterized by dense and deep aerenchyma roots. Peat N concentrations point to greater potential of nonsymbiotic N2 fixation under cushion plants, likely because of the availability of easily decomposable organic compounds and oxic conditions in the rhizosphere. In the Sphagnum plots, high N2 fixation below 10 cm depth rather reflects the potential during dry periods or low water level when oxygen penetrates the top peat layer and triggers peat mineralization. Natural abundance of the 15N isotope of live Sphagnum (5.6 δ‰) from 0 to 10 cm points to solely N uptake from atmospheric deposition and nonsymbiotic N2 fixation. A mean 15N signature of −0.7 δ‰ of peat from the cushion plant plots indicates additional N supply from N mineralization. Our findings suggest that nonsymbiotic N2 fixation overcomes N deficiency in different vegetation communities and has great significance for N cycling and peat accumulation in pristine peatlands.
Jean-Michel Ané's insight:

Very interesting

more...
No comment yet.
Scooped by Jean-Michel Ané
Scoop.it!

Leaf bacteria fertilize trees, researchers claim

Leaf bacteria fertilize trees, researchers claim | Plant-Microbe Symbioses | Scoop.it
One of the fastest growing trees, poplars, may rely on tiny microbes in their leaves to fuel their growth. For more than a decade, a lone researcher has been building a case for nitrogen fixation by bacteria living in poplar leaves. There have been many claims of nitrogen fixation in plants outside nodules where it was known to occur for more than a century. Newly reported experiments involving rice grown on nitrogen-poor soil and poplar cuttings put in air with heavy nitrogen should help convince the skeptics. In addition, another researcher finds evidence of nitrogen fixation in the needles of limber pine and Englemann spruce. If these bacteria prove to be widespread, they could be used to boost crop production on marginal soils.
more...
No comment yet.
Scooped by Jean-Michel Ané
Scoop.it!

An Autophosphorylation Site Database for Leucine-Rich Repeat Receptor-Like Kinases in Arabidopsis thaliana

An Autophosphorylation Site Database for Leucine-Rich Repeat Receptor-Like Kinases in Arabidopsis thaliana | Plant-Microbe Symbioses | Scoop.it
Leucine-rich repeat receptor-like kinases (LRR RLKs) form a large family of plant signaling proteins consisting of an extracellular domain connected by a single-pass transmembrane sequence to a cytoplasmic kinase domain. Autophosphorylation on specific Ser and/or Thr residues in the cytoplasmic domain is often critical for the activation of several LRR RLK family members with proven functional roles in plant growth regulation, morphogenesis, disease resistance, and stress responses. While identification and functional characterization of in vivo phosphorylation sites is ultimately required for full understanding of LRR RLK biology and function, bacterial expression of recombinant LRR RLK cytoplasmic catalytic domains for identification of in vitro autophosphorylation sites provides a useful resource for further targeted identification and functional analysis of in vivo sites. In this study we employed high-throughput cloning and a variety of mass spectrometry approaches to generate an autophosphorylation site database representative of more than 30% of the approximately 223 LRR RLKs in Arabidopsis thaliana. His-tagged constructs of complete cytoplasmic domains were used to identify a total of 591 phosphorylation events across 73 LRR RLKs, with 496 sites uniquely assigned to specific Ser (268 sites) or Thr (228 sites) residues in 68 LRR RLKs. Multiple autophosphorylation sites per LRR RLK were the norm, with an average of seven sites per cytoplasmic domain, while some proteins showed more than 20 unique autophosphorylation sites. The database was used to analyze trends in the localization of phosphorylation sites across cytoplasmic kinase subdomains, and to derive a statistically significant sequence motif for phosphoSer autophosphorylation.
Jean-Michel Ané's insight:

That should be super useful but... where is this database??

more...
No comment yet.
Scooped by Jean-Michel Ané
Scoop.it!

The reallocation of carbon in P deficient lupins affects biological nitrogen fixation

The reallocation of carbon in P deficient lupins affects biological nitrogen fixation | Plant-Microbe Symbioses | Scoop.it
It is not known how phosphate (P) deficiency affects the allocation of carbon (C) to biological nitrogen fixation (BNF) in legumes. The alteration of the respiratory and photosynthetic C costs of BNF was investigated under P deficiency. Although BNF can impose considerable sink stimulation on host respiratory and photosynthetic C, it is not known how the change in the C and energy allocation during P deficiency may affect BNF. Nodulated Lupinus luteus plants were grown in sand culture, using a modified Long Ashton nutrient solution containing no nitrogen (N) for ca. four weeks, after which one set was exposed to a P-deficient nutrient medium, while the other set continued growing on a P-sufficient nutrient medium. Phosphorus stress was measured at 20 days after onset of P-starvation. During P stress the decline in nodular P levels was associated with lower BNF and nodule growth. There was also a shift in the balance of photosynthetic and respiratory C toward a loss of C during P stress. Below-ground respiration declined under limiting P conditions. However, during this decline there was also a shift in the proportion of respiratory energy from maintenance toward growth respiration. Under P stress, there was an increased allocation of C toward root growth, thereby decreasing the amount of C available for maintenance respiration. It is therefore possible that the decline in BNF under P deficiency may be due to this change in resource allocation away from respiration associated with direct nutrient uptake, but rather toward a long term nutrient acquisition strategy of increased root growth.
more...
No comment yet.
Scooped by Jean-Michel Ané
Scoop.it!

Milestones of Plant Evolution

Milestones of Plant Evolution | Plant-Microbe Symbioses | Scoop.it
Nearly all life and our human culture depend on plants. We consume plants and plant-derived material every day in large amounts as food, raw material for clothes, construction etc. However, most of us might not be aware of that plants (defined in a broad sense as oxygen-producing photosynthesizing organisms, as in this book) did so much more for us over the past 3.8 billion years. Without the great oxygenation event no complex animal life (as we know it) would have been possible on earth. Plants produced the fossil energy resources which enabled the industrial revolution and which we still depend on.
more...
No comment yet.
Scooped by Jean-Michel Ané
Scoop.it!

Enzymes of importance to rhizosphere processes

Enzymes of importance to rhizosphere processes | Plant-Microbe Symbioses | Scoop.it
All processes and functions taking place in the rhizosphere are dominated by the activities of plant roots, rhizosphere microorganisms and root-microorganism interactions, and enzymes are recognized as main actors of all activities occurring in rhizosphere environments. Rhizosphere enzymes have, in general, a higher activity than those operating in bulk soil, asthe rhizosphere soil is richer in organic C substrates. Enzymes, produced and released by both roots and microorganisms concur to altering the availability of nutrients in the rhizosphere, being implied in the hydrolysis of C-substrates and organic forms of nutrients such as N, P and S.

The production and activity of rhizosphere enzymes is controlled by several factors, in turn depending on soil-plant-microorganism interactions. In general, higher activity of rhizosphere enzymes can be interpreted as a greater functional diversity of the microbial community. An interesting aspect is their in volvement in the possible removal of both inorganic and organic pollutants from the terrestrial food chain.

The lack of satisfying methodologies for measuring the location and activity of rhizosphere enzymes has often hampered a clear knowledge of their properties and functions. Sophisticated technologies, now available, will be helpful to reveal the origins, locations and activities of enzymes in rhizosphere.

The main scope of the present paper is to cover briefly general and specific concepts about rhizosphere enzymes and their role in soil processes. Examples chosen among those published recently, supporting and confirming properties, features, and functions of rhizosphere enzymes will be illustrated.
more...
No comment yet.
Scooped by Jean-Michel Ané
Scoop.it!

Photosynthesis is induced in rice plants that associate with arbuscular mycorrhizal fungi and are grown under arsenate and arsenite stress

Photosynthesis is induced in rice plants that associate with arbuscular mycorrhizal fungi and are grown under arsenate and arsenite stress | Plant-Microbe Symbioses | Scoop.it
The metalloid arsenic (As) increases in agricultural soils because of anthropogenic activities and may have phytotoxic effects depending on the available concentrations. Plant performance can be improved by arbuscular mycorrhiza (AM) association under challenging conditions, such as those caused by excessive soil As levels. In this study, the influence of AM on CO2 assimilation, chlorophyll a fluorescence, SPAD-chlorophyll contents and plant growth was investigated in rice plants exposed to arsenate (AsV) or arsenite (AsIII) and inoculated or not with Rhizophagus irregularis. Under AsV and AsIII exposure, AM rice plants had greater biomass accumulation and relative chlorophyll content, increased water-use efficiency, higher carbon assimilation rate and higher stomatal conductance and transpiration rates than non-AM rice plants did. Chlorophyll a fluorescence analysis revealed significant differences in the response of AM-associated and -non-associated plants to As. Mycorrhization increased the maximum and actual quantum yields of photosystem II and the electron transport rate, maintaining higher values even under As exposure. Apart from the negative effects of AsV and AsIII on the photosynthetic rates and PSII efficiency in rice leaves, taken together, these results indicate that AM is able to sustain higher rice photosynthesis efficiency even under elevated As concentrations, especially when As is present as AsV.
more...
No comment yet.
Scooped by Jean-Michel Ané
Scoop.it!

Supplementation with solutions of lipo-chitooligosacharide Nod Bj V (C18:1, MeFuc) and thuricin 17 regulates leaf arrangement, biomass, and root development of canola ( Brassica napus [L.])

Recent work has shown that plant-to-microbe signals can enhance the growth of a wide range of crops. Nevertheless, canola (Brassica napus L.), which forms neither arbuscular mycorrhizal nor nitrogen-fixing symbioses, has not been rigorously evaluated for its capacity to perceive and respond to microbe-to-plant signals. It was shown previously that the Bradyrhizobium japonicum lipo-chitooligosaccharide (LCO) and Bacillus thuringiensis bacteriocin thuricin 17 enhance the germination and growth of other crop species. To evaluate canola’s response, B. napus plants were grown in controlled environment chambers, in either peat pellets or large plant culture vessels. In the peat pellet system, plants that were irrigated with 10−6 M LCO, and grown at 30 °C, produced one more leaf than water- or signal-treated plants that were grown at 25/20 °C. The numbers of cotyledons (seed leaves) produced by thuricin 17-treated plants was greater than LCO treated plants and the control treatment. Among the plants grown in vessels, those grown with 0.2 M NaCl and 10−9 M thuricin 17 were taller than either treated or untreated plants that were grown with 10−5 M NaCl. Under 10/4 °C and 4 × 10−5 M NaCl conditions, only seeds treated with thuricin 17 produced roots. Among the plants grown in vessels at 30/30 °C, those treated with 10−11 M thuricin 17 resulted in approximately one more leaf per plant than nM. Root lengths were shortened with 10−5 M NaCl and 10−9 M thuricin 17, compared to lower salinities. At 30/30 °C, plants grown with 10−5 M NaCl and 10−9 M thuricin 17 were heavier than plants grown in nonsaline media without thuricin 17. Where LCO supplementation may stimulate a competitive form, thuricin 17 supplementation triggers a reduction in the plant’s surface area, which may reduce the plant’s vulnerability to prohibitive salinity levels.
Jean-Michel Ané's insight:

10-6 M LCOs... That's  very concentrated.

more...
No comment yet.
Scooped by Jean-Michel Ané
Scoop.it!

RNA-seq Transcriptional Profiling of an Arbuscular Mycorrhiza Provides Insights into Regulated and Coordinated Gene Expression in Lotus japonicus and Rhizophagus irregularis

Gene expression during arbuscular mycorrhizal development is highly orchestrated in both plants and arbuscular mycorrhizal fungi. To elucidate the gene expression profiles of the symbiotic association, we performed a digital gene expression analysis of Lotus japonicus and Rhizophagus irregularis using a HiSeq 2000 next-generation sequencer with a Cufflinks assembly and de novo transcriptome assembly. There were 3,641 genes differentially expressed during arbuscular mycorrhizal development, approximately 80% of which were upregulated. The upregulated genes included secreted proteins, transporters, proteins involved in lipid and amino acid metabolism, ribosomes, and histones. We also detected many genes that were differentially expressed in small-secreted peptides and transcription factors, which may be involved in signal transduction or transcription regulation during symbiosis. Co-regulated genes between arbuscular mycorrhizal and root nodule symbiosis were not particularly abundant, but transcripts encoding for membrane traffic-related proteins, transporters and iron transport-related proteins were found to be highly co-upregulated. In transcripts of arbuscular mycorrhizal fungi, expansion of cytochrome P450 was observed, which may contribute to various metabolic pathways required to accommodate roots and soil. The comprehensive gene expression data of both plants and arbuscular mycorrhizal fungi provide a powerful platform for investigating the functional and molecular mechanisms underlying arbuscular mycorrhizal symbiosis.
more...
No comment yet.
Scooped by Jean-Michel Ané
Scoop.it!

Bacteria can drive the evolution of new species

Bacteria can drive the evolution of new species | Plant-Microbe Symbioses | Scoop.it
Bacteria that live on the fruitfly Drosophila melanogaster can affect their host's choice of mate by altering the fly's pheromones, a new study suggests. That change in mate choice could in turn lead to the evolution of new fly species — suggesting that bacteria can indirectly change the species of their hosts.

When microbiologist Gil Sharon, at Tel-Aviv University in Israel, and his colleagues raised some fruitflies on molasses and others on starch, they expected — on the basis of previous studies — that the flies would mate preferentially with partners raised on the same diet, and the flies did. However, why the flies showed a preference for mates that shared the same diet was unknown.
Jean-Michel Ané's insight:

I would not be surprised if we can find examples of that for plants too.

more...
No comment yet.
Scooped by Jean-Michel Ané
Scoop.it!

Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw

Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw | Plant-Microbe Symbioses | Scoop.it
Addition of organic matter such as livestock manures and plant residues is a feasible practice to mitigate soil degradation caused by long-term application of chemical fertilizers, and the mitigation is largely mediated though activities of the soil-dwelling microorganisms. However, the roles of different kinds of organic matter in maintaining bacterial community structure have not been assessed in a comparative manner. In this study, 454 pyrosequencing of 16S rRNA gene was employed to compare the bacterial community structure among soils that had been subjected to 30 years of NPK fertilization under six treatment regimes: non-fertilization control, fertilization only, and fertilization combined with the use of pig manure, cow manure or low- and high-level of wheat straws. Consistent with expectation, long-term application of NPK chemical fertilizers caused a significant decrease of bacterial diversity in terms of species richness (i.e. number of unique operational taxonomic units (OTU)), Faith's index of phylogenetic diversity and Chao 1 index. Incorporation of wheat straw into soil produced little effects on bacterial community, whereas addition of either pig manure or cow manure restored bacterial diversity to levels that are comparable to that of the non-fertilization control. Moreover, bacterial abundance determined by quantitative PCR was positively correlated with the nutritional status of the soil (e.g., nitrate, total nitrogen, total carbon, available phosphorus); however, bacterial diversity was predominantly determined by soil pH. Together, our data implicate the role of livestock manures in preventing the loss of bacterial diversity during long-term chemical fertilization, and highlight pH as the major deterministic factor for soil bacterial community structure.
Jean-Michel Ané's insight:

That's interesting. I like it.

more...
No comment yet.
Rescooped by Jean-Michel Ané from The Plant Microbiome
Scoop.it!

Frontiers: Seasonal variation of bacterial endophytes in urban trees

Frontiers: Seasonal variation of bacterial endophytes in urban trees | Plant-Microbe Symbioses | Scoop.it

Bacterial endophytes, non-pathogenic bacteria residing within plants, contribute to the growth and development of plants and their ability to adapt to adverse conditions. In order to fully exploit the capabilities of these bacteria, it is necessary to understand the extent to which endophytic communities vary between species and over time. The endophytes of Acer negundo, Ulmus pumila, and Ulmus parvifoliawere sampled over three seasons and analyzed using culture dependent and independent methods (culture on two media, terminal restriction fragment length polymorphism, and tagged pyrosequencing of 16S ribosomal amplicons). The majority of culturable endophytes isolated were Actinobacteria, and all the samples harbored Bacillus, Curtobacterium, Frigoribacterium, Methylobacterium, Paenibacilllus, and Sphingomonas species. Regardless of culture medium used, only the culturable communities obtained in the winter for A. negundo could be distinguished from those of Ulmus spp. In contrast, the nonculturable communities were dominated by Proteobacteria and Actinobacteria, particularly Erwinia, Ralstonia, and Sanguibacter spp. The presence and abundance of various bacterial classes and phyla changed with the changing seasons. Multivariate analysis on the culture independent data revealed significant community differences between the endophytic communities of A. negundo and Ulmus spp., but overall season was the main determinant of endophytic community structure. This study suggests studies on endophytic populations of urban trees should expect to find significant seasonal and species-specific community differences and sampling should proceed accordingly.


Via Stéphane Hacquard
more...
No comment yet.
Scooped by Jean-Michel Ané
Scoop.it!

Arbuscular mycorrhizal fungal diversity associated with Eleocharis obtusa and Panicum capillare growing in an extreme petroleum hydrocarbon-polluted sedimentation basin

Arbuscular mycorrhizal fungi (AMF) have been extensively studied in natural and agricultural ecosystems, but little is known about their diversity and community structure in highly petroleum-polluted soils. In this study we described an unexpected diversity of AMF in a sedimentation basin of a former petro-chemical plant, in which petroleum hydrocarbon (PH) wastes were dumped for many decades. We used high-throughput PCR, cloning and sequencing on 18S rDNA to assess the molecular diversity of AMF associated with Eleocharis obtusa and Panicum capillare spontaneously inhabiting extremely PH-contaminated sediments. The analyses of rhizosphere and root samples over two years showed a remarkable AMF richness comparable with that found in temperate natural ecosystems. Twenty-one taxa, encompassing the major families within Glomeromycota, were detected. The most abundant OTUs belong to genera Claroideoglomus, Diversispora, Rhizophagus and Paraglomus. Both plants had very similar overall community structures and OTU abundances, however AMF community structure differed when comparing the overall OTU distribution across the two years of sampling. This could be likely explained by variations in precipitations between 2011 and 2012. Our study provides the first view of AMF molecular diversity in soils extremely polluted by PH, and demonstrated the ability of AMF to colonize and establish in harsh environments.
more...
No comment yet.
Scooped by Jean-Michel Ané
Scoop.it!

MuTAnT: a family of Mutator-like transposable elements targeting TA microsatellites in Medicago truncatula

Transposable elements (TEs) are mobile DNA segments, abundant and dynamic in plant genomes. Because their mobility can be potentially deleterious to the host, a variety of mechanisms evolved limiting that negative impact, one of them being preference for a specific target insertion site. Here, we describe a family of Mutator-like DNA transposons in Medicago truncatula targeting TA microsatellites. We identified 218 copies of MuTAnTs and an element carrying a complete ORF encoding a mudrA-like transposase. Most insertion sites are flanked by a variable number of TA tandem repeats, indicating that MuTAnTs are specifically targeting TA microsatellites. Other TE families flanked by TA repeats (e.g. TAFT elements in maize) were described previously, however we identified the first putative autonomous element sharing that characteristics with a related group of short non-autonomous transposons.
more...
No comment yet.
Scooped by Jean-Michel Ané
Scoop.it!

Tall fescue cultivar and fungal endophyte combinations influence plant growth and root exudate composition

Tall fescue cultivar and fungal endophyte combinations influence plant growth and root exudate composition | Plant-Microbe Symbioses | Scoop.it
Tall fescue [Lolium arundinaceum (Schreb.)] is a cool-season perennial grass used in pastures throughout the Southeastern United States. The grass can harbor a shoot-specific fungal endophyte (Epichloë coenophiala) thought to provide the plant with enhanced resistance to biotic and abiotic stresses. Because alkaloids produced by the common variety of the endophyte cause severe animal health issues, focus has been on replacing the common-toxic strain with novel varieties that do not produce the mammal-toxic alkaloids but maintain abiotic and biotic stress tolerance benefits. Little attention has been given to the influence of the plant-fungal symbiosis on rhizosphere processes. Therefore, our objective was to study the influence of this relationship on plant biomass production and root exudate composition in tall fescue cultivars PDF and 97TF1, which were either not infected with the endophyte (E-), infected with the common toxic endophyte (CTE+) strain or with one of two novel endophytes (AR542E+, AR584E+). Plants were grown sterile for 3 weeks after which plant biomass, total organic carbon, total phenolic content and detailed chemical composition of root exudates were determined. Plant biomass production and exudate phenolic and organic carbon content were influenced by endophyte status, tall fescue cultivar, and their interaction. GC-TOF MS identified 132 compounds, including lipids, carbohydrates and carboxylic acids. Cluster analysis showed that the interaction between endophyte and cultivar resulted in unique exudate profiles. This is the first detailed study to assess how endophyte infection, notably with novel endophytes, and tall fescue cultivar interact to influence root exudate composition. Our results illustrate that tall fescue cultivar and endophyte status can influence plant growth and root exudate composition, which may help explain the observed influence of this symbiosis on rhizosphere biogeochemical processes.
more...
No comment yet.
Scooped by Jean-Michel Ané
Scoop.it!

Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi

Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi | Plant-Microbe Symbioses | Scoop.it
Rapid development of high-throughput (HTS) molecular identification methods has revolutionized our knowledge about taxonomic diversity and ecology of fungi. However, PCR-based methods exhibit multiple technical shortcomings that may bias our understanding of the fungal kingdom. This study was initiated to quantify potential biases in fungal community ecology by comparing the relative performance of amplicon-free shotgun metagenomics and amplicons of nine primer pairs over seven nuclear ribosomal DNA (rDNA) regions often used in metabarcoding analyses. The internal transcribed spacer (ITS) barcodes ITS1 and ITS2 provided greater taxonomic and functional resolution and richness of operational taxonomic units (OTUs) at the 97% similarity threshold compared to barcodes located within the ribosomal small subunit (SSU) and large subunit (LSU) genes. All barcode-primer pair combinations provided consistent results in ranking taxonomic richness and recovering the importance of floristic variables in driving fungal community composition in soils of Papua New Guinea. The choice of forward primer explained up to 2.0% of the variation in OTU-level analysis of the ITS1 and ITS2 barcode data sets. Across the whole data set, barcode-primer pair combination explained 37.6–38.1% of the variation, which surpassed any environmental signal. Overall, the metagenomics data set recovered a similar taxonomic overview, but resulted in much lower fungal rDNA sequencing depth, inability to infer OTUs, and high uncertainty in identification. We recommend the use of ITS2 or the whole ITS region for metabarcoding and we advocate careful choice of primer pairs in consideration of the relative proportion of fungal DNA and expected dominant groups.
more...
No comment yet.
Scooped by Jean-Michel Ané
Scoop.it!

Cell Cycle Control by the Master Regulator CtrA in Sinorhizobium meliloti

Cell Cycle Control by the Master Regulator CtrA in  Sinorhizobium meliloti | Plant-Microbe Symbioses | Scoop.it
In all domains of life, proper regulation of the cell cycle is critical to coordinate genome replication, segregation and cell division. In some groups of bacteria, e.g. Alphaproteobacteria, tight regulation of the cell cycle is also necessary for the morphological and functional differentiation of cells. Sinorhizobium meliloti is an alphaproteobacterium that forms an economically and ecologically important nitrogen-fixing symbiosis with specific legume hosts. During this symbiosis S. meliloti undergoes an elaborate cellular differentiation within host root cells. The differentiation of S. meliloti results in massive amplification of the genome, cell branching and/or elongation, and loss of reproductive capacity. In Caulobacter crescentus, cellular differentiation is tightly linked to the cell cycle via the activity of the master regulator CtrA, and recent research in S. meliloti suggests that CtrA might also be key to cellular differentiation during symbiosis. However, the regulatory circuit driving cell cycle progression in S. meliloti is not well characterized in both the free-living and symbiotic state. Here, we investigated the regulation and function of CtrA in S. meliloti. We demonstrated that depletion of CtrA cause cell elongation, branching and genome amplification, similar to that observed in nitrogen-fixing bacteroids. We also showed that the cell cycle regulated proteolytic degradation of CtrA is essential in S. meliloti, suggesting a possible mechanism of CtrA depletion in differentiated bacteroids. Using a combination of ChIP-Seq and gene expression microarray analysis we found that although S. meliloti CtrA regulates similar processes as C. crescentus CtrA, it does so through different target genes. For example, our data suggest that CtrA does not control the expression of the Fts complex to control the timing of cell division during the cell cycle, but instead it negatively regulates the septum-inhibiting Min system. Our findings provide valuable insight into how highly conserved genetic networks can evolve, possibly to fit the diverse lifestyles of different bacteria.
more...
No comment yet.
Scooped by Jean-Michel Ané
Scoop.it!

Root-inhabiting fungi in alien plant species in relation to invasion status and soil chemical properties

Root-inhabiting fungi in alien plant species in relation to invasion status and soil chemical properties | Plant-Microbe Symbioses | Scoop.it
In order to recognize interactions between alien vascular plants and soil microorganisms and thus better understand the mechanisms of plant invasions, we examined the mycorrhizal status, arbuscular mycorrhizal fungi (AMF) colonization rate, arbuscular mycorrhiza (AM) morphology and presence of fungal root endophytes in 37 non-native species in Central Europe. We also studied the AMF diversity and chemical properties of soils from under these species. The plant and soil materials were collected in southern Poland. We found that 35 of the species formed AM and their mycorrhizal status depended on species identity. Thirty-three taxa had AM of Arum-type alone. Lycopersicon esculentum showed intermediate AM morphology and Eragrostis albensis developed both Arum and Paris. The mycelia of dark septate endophytes (DSE) were observed in 32 of the species, while sporangia of Olpidium spp. were found in the roots of 10. Thirteen common and worldwide occurring AMF species as well as three unidentified spore morphotypes were isolated from trap cultures established with the soils from under the plant species. Claroideoglomus claroideum, Funneliformis mosseae and Septoglomus constrictum were found the most frequently. The presence of root-inhabiting fungi and the intensity of their colonization were not correlated with soil chemical properties, plant invasion status, their local abundance and habitat type. No relationships were also found between the presence of AMF, DSE and Olpidium spp. These suggest that other edaphic conditions, plant and fungal species identity or the abundance of these fungi in soils might have an impact on the occurrence and intensity of fungal root colonization in the plants under study.
more...
No comment yet.
Scooped by Jean-Michel Ané
Scoop.it!

Future challenges and perspectives for applying microbial biotechnology in sustainable agriculture based on a better understanding of plant-microbiome interactions

Future challenges and perspectives for applying microbial biotechnology in sustainable agriculture based on a better understanding of plant-microbiome interactions | Plant-Microbe Symbioses | Scoop.it
An intensive agricultural production is necessary to satisfy food requirements for the growing world population. However, its realization is associated with the mass consumption of non-renewable natural resources and with the emission of greenhouse gases causing climate changes. The research challenge is to meet sustainable environmental and economical issues without compromising yields. In this context, exploiting the agro-ecosystem services ofsoil microbial communities appears as a promising effective approach. This chapter reviews the research efforts aimed atimproving a sustainable and healthy agricultural production through the appropriate management of soil microorganisms.First, the plant-associated microbiome is briefly described. Then, the current research technologies for formulation and application of inocula based on specific beneficial plant-associated microbesare summarized. Finally, the perspectives and opportunities to manage naturally existing microbial populations, including those non-culturable, are analyzed. This analysis concerns: (i) a description of the already available, culture-independent, molecular techniques addressed at increasing our understanding of root-microbiome interactions; (ii) how to improve the ability of soil microbes for alleviating the negative impacts of stress factors on crop productivity; and (iii) whether plants can structure their root-associated microbial communities and, leading on from this, whether the rhizosphere can be engineered (biased) to encourage beneficial organisms, while prevent presence of pathogens.
more...
No comment yet.
Scooped by Jean-Michel Ané
Scoop.it!

Growing rice in controlled environments

Growing rice in controlled environments | Plant-Microbe Symbioses | Scoop.it
Rice (Oryza sativa) is less frequently used in basic research than Arabidopsis, although rice is a valuable model system for many monocot crops and possesses a high genetic variability in physiologically as well as agriculturally relevant features such as abiotic stress tolerance, nutrient efficiency and flower time control. A reason is the seemingly difficult cultivation of rice outside the rice production area. This review aims to assist newcomers to the field to develop cultivation protocols for their local controlled environment. The main challenges are high light demands, photoperiodicity and low micronutrient efficiency. The nutrient efficiency problem can be overcome by adding micronutrient fertiliser to potting substrates and keeping the soil waterlogged to increase micronutrient availability and mobility. Cultivation of rice on adjusted hydroponic solutions with high iron concentration provides the basis for successful heavy isotope labelling. Many rice cultivars need high light intensities in combination with short-day conditions to complete their life cycle. However, some photoperiod-insensitive cultivars will flower even under relatively low light intensities. In highly photoperiod-sensitive cultivars, like Nipponbare, flowering can be induced by a limited period of short-day treatment in the sensitive period, after which the cultivation can be continued in long-day conditions. The life cycle of many cultivars is completed in 90 to 120 days, its length being thus comparable to Arabidopsis and shorter than in other cereals. In conclusion, with the right cultivation technique, rice is an amiable model species for researchers beyond the rice area too.
more...
No comment yet.