MycorWeb Plant-Mi...
Follow
Find
30.6K views | +62 today
MycorWeb Plant-Microbe Interactions
Your new post is loading...
Your new post is loading...
Scooped by Francis Martin
Scoop.it!

Role of stress-related hormones in plant defence during early infection of the cyst nematode Heterodera schachtii in Arabidopsis

Role of stress-related hormones in plant defence during early infection of the cyst nematode Heterodera schachtii in Arabidopsis | MycorWeb Plant-Microbe Interactions | Scoop.it
Heterodera schachtii, a plant-parasitic cyst nematode, invades host roots and induces a specific syncytial feeding structure, from which it withdraws all required nutrients, causing severe yield losses. The system H. schachtii–Arabidopsis is an excellent research model for investigating plant defence mechanisms. Such responses are suppressed in well-established syncytia, whereas they are induced during early parasitism. However, the mechanisms by which the defence responses are modulated and the role of phytohormones are largely unknown.
The aim of this study was to elucidate the role of hormone-based defence responses at the onset of nematode infection. First, concentrations of main phytohormones were quantified and the expression of several hormone-related genes was analysed using quantitative real-time (qRT)-PCR or GeneChip. Further, the effects of individual hormones were evaluated via nematode attraction and infection assays using plants with altered endogenous hormone concentrations.
Our results suggest a pivotal and positive role for ethylene during nematode attraction, whereas jasmonic acid triggers early defence responses against H. schachtii. Salicylic acid seems to be a negative regulator during later syncytium and female development.
We conclude that nematodes are able to impose specific changes in hormone pools, thus modulating hormone-based defence and signal transduction in strict dependence on their parasitism stage.
more...
No comment yet.
Scooped by Francis Martin
Scoop.it!

Symbiotic plant-fungi interactions stripped down to the root : Nature Genetics

Symbiotic plant-fungi interactions stripped down to the root : Nature Genetics | MycorWeb Plant-Microbe Interactions | Scoop.it
Mycorrhizal fungi live in the roots of host plants and are crucial components of all forest ecosystems. A large-scale study of fungal genomics provides new insights into the evolution of mycorrhizae and a deep exploration of mycorrhizal diversity that helps to uncover the molecular and genetic details of fungal symbiotic relationships with plants.
more...
No comment yet.
Scooped by Francis Martin
Scoop.it!

Cell wall composition profiling of parasitic giant dodder (Cuscuta reflexa) and its hosts: a priori differences and induced changes

Cell wall composition profiling of parasitic giant dodder (Cuscuta reflexa) and its hosts: a priori differences and induced changes | MycorWeb Plant-Microbe Interactions | Scoop.it
Host plant penetration is the gateway to survival for holoparasitic Cuscuta and requires host cell wall degradation. Compositional differences of cell walls may explain why some hosts are amenable to such degradation while others can resist infection.Antibody-based techniques for comprehensive profiling of cell wall epitopes and cell wall-modifying enzymes were applied to several susceptible hosts and a resistant host of Cuscuta reflexa and to the parasite itself.Infected tissue of Pelargonium zonale contained high concentrations of de-esterified homogalacturonans in the cell walls, particularly adjacent to the parasite's haustoria. High pectinolytic activity in haustorial extracts and high expression levels of pectate lyase genes suggest that the parasite contributes directly to wall remodeling. Mannan and xylan concentrations were low in P. zonale and in five susceptible tomato introgression lines, but high in the resistant Solanum lycopersicum cv M82, and in C. reflexa itself.Knowledge of the composition of resistant host cell walls and the parasite's own cell walls is useful in developing strategies to prevent infection by parasitic plants.
more...
No comment yet.
Rescooped by Francis Martin from Plants and Microbes
Scoop.it!

Phytobiomes 2015: Designing a New Paradigm for Crop Improvement​​​​​​​​​​​​​​​​​​​​​​, June 30–J​uly 2, 2015, Washington, DC, U.S.A.​

Phytobiomes 2015: Designing a New Paradigm for Crop Improvement​​​​​​​​​​​​​​​​​​​​​​, June 30–J​uly 2, 2015, Washington, DC, U.S.A.​ | MycorWeb Plant-Microbe Interactions | Scoop.it

Phytobiomes 2015: Designing a New Paradigm for Crop Improvement brings together renowned experts in diverse fields related to phytobiomes with sessions ranging from the lessons that can be learned from other microbiome efforts to designing a path forward for a phytobiomes systems approach. Plan now to attend these 2 ½ days encompassing plenary speakers, discussions, and posters presentations.


Via Kamoun Lab @ TSL
more...
David Kuykendall's curator insight, Today, 10:48 AM

Microbes that inhabit the plant surfaces are being characterized by DNA sequencing.

Rescooped by Francis Martin from The Plant Microbiome
Scoop.it!

PNAS: Molecular cartography of the human skin surface in 3D

PNAS: Molecular cartography of the human skin surface in 3D | MycorWeb Plant-Microbe Interactions | Scoop.it

The human skin is an organ with a surface area of 1.5–2 m2 that provides our interface with the environment. The molecular composition of this organ is derived from host cells, microbiota, and external molecules. The chemical makeup of the skin surface is largely undefined. Here we advance the technologies needed to explore the topographical distribution of skin molecules, using 3D mapping of mass spectrometry data and microbial 16S rRNA amplicon sequences. Our 3D maps reveal that the molecular composition of skin has diverse distributions and that the composition is defined not only by skin cells and microbes but also by our daily routines, including the application of hygiene products. The technological development of these maps lays a foundation for studying the spatial relationships of human skin with hygiene, the microbiota, and environment, with potential for developing predictive models of skin phenotypes tailored to individual health.


Via Stéphane Hacquard
more...
Max-Bernhard Rudnick's curator insight, March 31, 2:11 AM

Not really soil related, but just too cool to not post it :-)

Rescooped by Francis Martin from The Plant Microbiome
Scoop.it!

Frontiers: Chemical diversity of microbial volatiles and their potential for plant growth and productivity

Frontiers: Chemical diversity of microbial volatiles and their potential for plant growth and productivity | MycorWeb Plant-Microbe Interactions | Scoop.it

Microbial volatile organic compounds (MVOCs) are produced by a wide array of microorganisms ranging from bacteria to fungi. A growing body of evidence indicates that MVOCs are ecofriendly and can be exploited as a cost-effective sustainable strategy for use in agricultural practice as agents that enhance plant growth, productivity and disease resistance. As naturally occurring chemicals, MVOCs have potential as possible alternatives to harmful pesticides, fungicides and bactericides as well as genetic modification. Recent studies performed under open field conditions demonstrate that efficiently adopting MVOCs may contribute to sustainable crop protection and production. We review here the chemical diversity of MVOCs and their potential physiological effects on crops and analyze potential and actual limitations for MVOC use as a sustainable strategy for improving productivity and reducing pesticide use.


Via Stéphane Hacquard
more...
Jean-Michel Ané's curator insight, March 10, 9:25 PM

Good job Mickael!

Rescooped by Francis Martin from The Plant Microbiome
Scoop.it!

Peer J: Wild plant species growing closely connected in a subalpine meadow host distinct root-associated bacterial communities

Peer J: Wild plant species growing closely connected in a subalpine meadow host distinct root-associated bacterial communities | MycorWeb Plant-Microbe Interactions | Scoop.it
Plant roots are known to harbor large and diverse communities of bacteria. It has been suggested that plant identity can structure these root-associated communities, but few studies have specifically assessed how the composition of root microbiota varies within and between plant species growing under natural conditions. We assessed the community composition of endophytic and epiphytic bacteria through high throughput sequencing using 16S rDNA derived from root tissues collected from a population of a wild, clonal plant (Orange hawkweed–Pilosella aurantiaca) as well as two neighboring plant species (Oxeye daisy–Leucanthemum vulgare and Alsike clover–Trifolium hybridum). Our first goal was to determine if plant species growing in close proximity, under similar environmental conditions, still hosted unique root microbiota. Our results showed that plants of different species host distinct bacterial communities in their roots. In terms of community composition, Betaproteobacteria (especially the family Oxalobacteraceae) were found to dominate in the root microbiota of L. vulgare and T. hybridum samples, whereas the root microbiota of P. aurantiaca had a more heterogeneous distribution of bacterial abundances where Gammaproteobacteria and Acidobacteria occupied a larger portion of the community. We also explored the extent of individual variance within each plant species investigated, and found that in the plant species thought to have the least genetic variance among individuals (P. aurantiaca) still hosted just as diverse microbial communities. Whether all plant species host their own distinct root microbiota and plants more closely related to each other share more similar bacterial communities still remains to be fully explored, but among the plants examined in this experiment there was no trend that the two species belonging to the same family shared more similarities in terms of bacterial community composition.

Via Stéphane Hacquard
more...
No comment yet.
Rescooped by Francis Martin from The Plant Microbiome
Scoop.it!

AEM: Community Dynamics of Arbuscular Mycorrhizal Fungi in High-Input and Intensively Irrigated Rice Cultivation Systems

Application of a mycorrhizal inoculum could be one way to increase the yield of rice plants and reduce the application of fertilizer. We therefore studied arbuscular mycorrhizal fungi (AMF) in the roots of wetland rice (Oryza sativa L.) collected at the seedling, tillering, heading, and ripening stages in four paddy wetlands that had been under a high-input and intensively irrigated rice cultivation system for more than 20 years. It was found that AMF colonization was mainly established in the heading and ripening stages. The AMF community structure was characterized in rhizosphere soils and roots from two of the studied paddy wetlands. A fragment covering the partial small subunit (SSU), the whole internal transcribed spacer (ITS), and the partial large subunit (LSU) rRNA operon regions of AMF was amplified, cloned, and sequenced from roots and soils. A total of 639 AMF sequences were obtained, and these were finally assigned to 16 phylotypes based on a phylogenetic analysis, including 12 phylotypes from Glomeraceae, one phylotype from Claroideoglomeraceae, two phylotypes from Paraglomeraceae, and one unidentified phylotype. The AMF phylotype compositions in the soils were similar between the two surveyed sites, but there was a clear discrepancy between the communities obtained from root and soil. The relatively high number of AMF phylotypes at the surveyed sites suggests that the conditions are suitable for some species of AMF and that they may have an important function in conventional rice cultivation systems. The species richness of root-colonizing AMF increased with the growth of rice, and future studies should consider the developmental stages of this crop in the exploration of AMF function in paddy wetlands


Via Stéphane Hacquard
more...
No comment yet.
Rescooped by Francis Martin from The Plant Microbiome
Scoop.it!

The Soil Microbiome Influences Grapevine-Associated Microbiota

The Soil Microbiome Influences Grapevine-Associated Microbiota | MycorWeb Plant-Microbe Interactions | Scoop.it
Grapevine is a well-studied, economically relevant crop, whose associated bacteria could influence its organoleptic properties. In this study, the spatial and temporal dynamics of the bacterial communities associated with grapevine organs (leaves, flowers, grapes, and roots) and soils were characterized over two growing seasons to determine the influence of vine cultivar, edaphic parameters, vine developmental stage (dormancy, flowering, preharvest), and vineyard. Belowground bacterial communities differed significantly from those aboveground, and yet the communities associated with leaves, flowers, and grapes shared a greater proportion of taxa with soil communities than with each other, suggesting that soil may serve as a bacterial reservoir. A subset of soil microorganisms, including root colonizers significantly enriched in plant growth-promoting bacteria and related functional genes, were selected by the grapevine. In addition to plant selective pressure, the structure of soil and root microbiota was significantly influenced by soil pH and C:N ratio, and changes in leaf- and grape-associated microbiota were correlated with soil carbon and showed interannual variation even at small spatial scales. Diazotrophic bacteria, e.g., Rhizobiaceae and Bradyrhizobium spp., were significantly more abundant in soil samples and root samples of specific vineyards. Vine-associated microbial assemblages were influenced by myriad factors that shape their composition and structure, but the majority of organ-associated taxa originated in the soil, and their distribution reflected the influence of highly localized biogeographic factors and vineyard management.

Via Jean-Michel Ané, Christophe Jacquet, Stéphane Hacquard
more...
Jean-Michel Ané's curator insight, March 25, 6:41 PM

It always ticks me off when people claim the presence of "diazotrophic bacteria" based on that kind of study... They have no idea if these bacteria fix nitrogen and, in fact, it is very likely that they don't in the grape rhizoshere. 

Stijn Spaepen's comment, March 26, 1:09 PM
Totally agree with your comment, Jean-Michel!
Scooped by Francis Martin
Scoop.it!

Primary transcripts of microRNAs encode regulatory peptides : Nature

Primary transcripts of microRNAs encode regulatory peptides : Nature | MycorWeb Plant-Microbe Interactions | Scoop.it
MicroRNAs (miRNAs) are small regulatory RNA molecules that inhibit the expression of specific target genes by binding to and cleaving their messenger RNAs or otherwise inhibiting their translation into proteins. miRNAs are transcribed as much larger primary transcripts (pri-miRNAs), the function of which is not fully understood. Here we show that plant pri-miRNAs contain short open reading frame sequences that encode regulatory peptides. The pri-miR171b of Medicago truncatula and the pri-miR165a of Arabidopsis thaliana produce peptides, which we term miPEP171b and miPEP165a, respectively, that enhance the accumulation of their corresponding mature miRNAs, resulting in downregulation of target genes involved in root development. The mechanism of miRNA-encoded peptide (miPEP) action involves increasing transcription of the pri-miRNA. Five other pri-miRNAs of A. thaliana and M. truncatula encode active miPEPs, suggesting that miPEPs are widespread throughout the plant kingdom. Synthetic miPEP171b and miPEP165a peptides applied to plants specifically trigger the accumulation of miR171b and miR165a, leading to reduction of lateral root development and stimulation of main root growth, respectively, suggesting that miPEPs might have agronomical applications.
more...
No comment yet.
Rescooped by Francis Martin from Personal Branding
Scoop.it!

Genome Biology: Wheat rusts never sleep but neither do sequencers: will pathogenomics transform the way plant diseases are managed? (2015)

Genome Biology: Wheat rusts never sleep but neither do sequencers: will pathogenomics transform the way plant diseases are managed? (2015) | MycorWeb Plant-Microbe Interactions | Scoop.it

Field pathogenomics adds highly informative data to surveillance surveys by enabling rapid evaluation of pathogen variability, population structure and host genotype.

 

Yellow rust, caused by Puccinia striiformis f. sp. tritici (PST), is a major disease of wheat and, together with stem rust (Puccinia graminis) and leaf rust (Puccinia triticina), causes some of the most devastating epidemics on wheat worldwide [1]. Control of these rust pathogens relies predominantly on breeding and deployment of resistant varieties of wheat. To date, nearly 200 wheat-rust-resistance genes have been catalogued [2]; however, resistance has often proved to be ephemeral owing to changes in the pathogen population. In order to increase the durability of resistance, gene-deployment strategies need to consider extant and potential pathogen variability. Although these concepts are not new [3], their implementation was difficult until the advent of high-throughput sequencing (HTS) and genotyping technologies.

 

Next-generation sequencing technologies provide new opportunities to study pathogens and the hosts they infect. The increasing availability of crop and pathogen genomes [4] is providing new insights into pathogen biology, population structure and pathogenesis. This provides new opportunities for disease management. An important input into resistance breeding programs should be surveillance of the pathogen population. High-throughput pathogenomics offers the possibility for analyzing a large number of pathogen isolates and host varieties rapidly and at low cost.

 

In an article published in Genome Biology, Hubbard and colleagues [5] implemented a robust and rapid method to screen field isolates of PST and their host cultivars. In this particular version of pathogenomics, a selected set of 39 samples of infected wheat and triticale leaf tissue were collected directly from the field in 2013 and analyzed using RNAseq. In addition, the genomes of 21 archived PST isolates from the UK and France were also sequenced. Transcriptome analysis restricted the amount of sequence necessary to obtain diagnostic information for both host and pathogen; this not only accelerated genetic analysis of PST populations in situ but also allowed simultaneous assessment of the host genotype in the same sequencing runs. Another advantage of transcriptome analysis is that it detects genes being expressed and therefore the determinants of the interaction; thus, non-expressed genes present in the genome do not obscure genotype-phenotype correlations.


Via Kamoun Lab @ TSL, SENAME Interactive
more...
No comment yet.
Scooped by Francis Martin
Scoop.it!

Diverse ecological roles within fungal communities in decomposing logs of Picea abies

Diverse ecological roles within fungal communities in decomposing logs of Picea abies | MycorWeb Plant-Microbe Interactions | Scoop.it
Fungal communities in Norway spruce (Picea abies) logs in two forests in Sweden were investigated by 454-sequence analyses and by examining the ecological roles of the detected taxa. We also investigated the relationship between fruit bodies and mycelia in wood and whether community assembly was affected by how the dead wood was formed. Fungal communities were highly variable in terms of phylogenetic composition and ecological roles: 1910 fungal operational taxonomic units (OTUs) were detected; 21% were identified to species level. In total, 58% of the OTUs were ascomycetes and 31% basidiomycetes. Of the 231 337 reads, 38% were ascomycetes and 60% basidiomycetes. Ecological roles were assigned to 35% of the OTUs, accounting for 62% of the reads. Wood-decaying fungi were the most common group; however, other saprotrophic, mycorrhizal, lichenized, parasitic and endophytic fungi were also common. Fungal communities in logs formed by stem breakage were different to those in logs originating from butt breakage or uprooting. DNA of specific species was detected in logs many years after the last recorded fungal fruiting. Combining taxonomic identification with knowledge of ecological roles may provide valuable insights into properties of fungal communities; however, precise ecological information about many fungal species is still lacking.
more...
No comment yet.
Scooped by Francis Martin
Scoop.it!

Validation of reference genes for quantitative real-time PCR in Périgord black truffle (Tuber melanosporum) developmental stages

Validation of reference genes for quantitative real-time PCR in Périgord black truffle (Tuber melanosporum) developmental stages | MycorWeb Plant-Microbe Interactions | Scoop.it

The symbiotic fungus Tuber melanosporum Vittad. (Périgord black truffle) belongs to the Ascomycota and forms mutualistic symbiosis with tree and shrub roots. This truffle has a high value in a global market and is cultivated in many countries of both hemispheres. The publication of the T. melanosporum genome has given researchers unique opportunities to learn more about the biology of the fungus. Real-time quantitative PCR (qRT-PCR) is a definitive technique for quantitating differences in transcriptional gene expression levels between samples. To facilitate gene expression studies and obtain more accurate qRT-PCR data, normalization relative to stable housekeeping genes is required. These housekeeping genes must show stable expression under given experimental conditions for the qRT-PCR results to be accurate. Unfortunately, there are no studies on the stability of housekeeping genes used in T. melanosporumdevelopment. In this study, we present a morphological and microscopical classification of the developmental stages of T. melanosporum fruit body, and investigate the expression levels of 12 candidate reference genes (18S rRNA; 5.8S rRNA; Elongation factor 1-alpha; Elongation factor 1-beta; α-tubulin; 60S ribosomal protein L29; β-tubulin; 40S ribosomal protein S1; 40S ribosomal protein S3; Glucose-6-phosphate dehydrogenase; β-actin; Ubiquitin-conjugating enzyme). To evaluate the suitability of these genes as endogenous controls, five software-based approaches and one web-based comprehensive tool (RefFinder) were used to analyze and rank the tested genes. We demonstrate here that the 18S rRNA gene shows the most stable expression during T. melanosporum development and that a set of three genes, 18S rRNA, Elongation factor 1-alpha and 40S ribosomal protein S3, is the most suitable to normalize qRT-PCR data from all the analyzed developmental stages; conversely, 18S rRNA, Glucose-6-phosphate dehydrogenase and Elongation factor 1-alpha are the most suitable genes for fruiting body developmental stages.

more...
Christophe Jacquet's comment, March 18, 1:18 PM
What a waste to do PCR on truffle!
Scooped by Francis Martin
Scoop.it!

The fascinating and secret wild life of the budding yeast S. cerevisiae

The fascinating and secret wild life of the budding yeast S. cerevisiae | MycorWeb Plant-Microbe Interactions | Scoop.it

The budding yeast Saccharomyces cerevisiae has been used in laboratory experiments for over a century and has been instrumental in understanding virtually every aspect of molecular biology and genetics. However, it wasn't until a decade ago that the scientific community started to realise how little was known about this yeast's ecology and natural history, and how this information was vitally important for interpreting its biology. Recent large-scale population genomics studies coupled with intensive field surveys have revealed a previously unappreciated wild lifestyle of S. cerevisiae outside the restrictions of human environments and laboratories. The recent discovery that Chinese isolates harbour almost twice as much genetic variation as isolates from the rest of the world combined suggests that Asia is the likely origin of the modern budding yeast.

more...
No comment yet.
Scooped by Francis Martin
Scoop.it!

Change of a conserved amino acid in the MYC2 and MYC3 transcription factors leads to release of JAZ repression and increased activity

Change of a conserved amino acid in the MYC2 and MYC3 transcription factors leads to release of JAZ repression and increased activity | MycorWeb Plant-Microbe Interactions | Scoop.it
The bHLH transcription factor MYC2, together with its paralogues MYC3 and MYC4, is a master regulator of the response to the jasmonate (JA) hormone in Arabidopsis (Arabidopsis thaliana). In the absence of JA, JASMONATE ZIM (JAZ) proteins interact with the MYC proteins to block their activity. Understanding of the mechanism and specificity of this interaction is key to unravel JA signalling.We generated mutant MYC proteins and assessed their activity and the specificity of their interaction with the 12 Arabidopsis JAZ proteins.We show that the D94N mutation present in the atr2D allele of MYC3 abolishes the interaction between MYC3 and most JAZ proteins. The same effect is observed when the corresponding conserved Asp (D105) was mutated in MYC2. Accordingly, MYC2D105N activated target genes in the presence of JAZ proteins, in contrast to wild-type MYC2. JAZ1 and JAZ10 were the only JAZ proteins still showing interaction with the mutant MYC proteins, due to a second MYC interaction domain, besides the classical Jas domain.Our results visualize the divergence among JAZ proteins in their interaction with MYC proteins. Ultimately, the transferability of the Asp-to-Asn amino acid change might facilitate the design of hyperactive transcription factors for plant engineering.
more...
No comment yet.
Rescooped by Francis Martin from Plants and Microbes
Scoop.it!

#JGI2015 Day 3 of 10th Annual DOE Joint Genome Institute Genomics of Energy & Environment Meeting (with images, tweets)


Via Kamoun Lab @ TSL
more...
No comment yet.
Rescooped by Francis Martin from Plants and Microbes
Scoop.it!

Nature Plants: Elicitin recognition confers enhanced resistance to Phytophthora infestans in potato (2015)

Nature Plants: Elicitin recognition confers enhanced resistance to Phytophthora infestans in potato (2015) | MycorWeb Plant-Microbe Interactions | Scoop.it

Potato late blight, caused by the destructive Irish famine pathogen Phytophthora infestans, is a major threat to global food security1,2. All late blight resistance genes identified to date belong to the coiled-coil, nucleotide-binding, leucine-rich repeat class of intracellular immune receptors3. However, virulent races of the pathogen quickly evolved to evade recognition by these cytoplasmic immune receptors4. Here we demonstrate that the receptor-like protein ELR (elicitin response) from the wild potato Solanum microdontum mediates extracellular recognition of the elicitin domain, a molecular pattern that is conserved in Phytophthora species. ELR associates with the immune co-receptor BAK1/SERK3 and mediates broad-spectrum recognition of elicitin proteins from several Phytophthora species, including four diverse elicitins from P. infestans. Transfer of ELR into cultivated potato resulted in enhanced resistance to P. infestans. Pyramiding cell surface pattern recognition receptors with intracellular immune receptors could maximize the potential of generating a broader and potentially more durable resistance to this devastating plant pathogen.


Via Kamoun Lab @ TSL
more...
No comment yet.
Scooped by Francis Martin
Scoop.it!

Distribution and mixing of old and new nonstructural carbon in two temperate trees

Distribution and mixing of old and new nonstructural carbon in two temperate trees | MycorWeb Plant-Microbe Interactions | Scoop.it
We know surprisingly little about whole-tree nonstructural carbon (NSC; primarily sugars and starch) budgets. Even less well understood is the mixing between recent photosynthetic assimilates (new NSC) and previously stored reserves. And, NSC turnover times are poorly constrained.
We characterized the distribution of NSC in the stemwood, branches, and roots of two temperate trees, and we used the continuous label offered by the radiocarbon (carbon-14, 14C) bomb spike to estimate the mean age of NSC in different tissues.
NSC in branches and the outermost stemwood growth rings had the 14C signature of the current growing season. However, NSC in older aboveground and belowground tissues was enriched in 14C, indicating that it was produced from older assimilates. Radial patterns of 14C in stemwood NSC showed strong mixing of NSC across the youngest growth rings, with limited ‘mixing in’ of younger NSC to older rings.
Sugars in the outermost five growth rings, accounting for two-thirds of the stemwood pool, had a mean age  5 yr. Our results are thus consistent with a previously-hypothesized two-pool (‘fast’ and ‘slow’ cycling NSC) model structure. These pools appear to be physically distinct.
more...
No comment yet.
Rescooped by Francis Martin from The Plant Microbiome
Scoop.it!

Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes

Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes | MycorWeb Plant-Microbe Interactions | Scoop.it
Fine roots acquire essential soil resources and mediate biogeochemical cycling in terrestrial ecosystems. Estimates of carbon and nutrient allocation to build and maintain these structures remain uncertain because of the challenges of consistently measuring and interpreting fine-root systems. Traditionally, fine roots have been defined as all roots ≤ 2 mm in diameter, yet it is now recognized that this approach fails to capture the diversity of form and function observed among fine-root orders. Here, we demonstrate how order-based and functional classification frameworks improve our understanding of dynamic root processes in ecosystems dominated by perennial plants. In these frameworks, fine roots are either separated into individual root orders or functionally defined into a shorter-lived absorptive pool and a longer-lived transport fine-root pool. Using these frameworks, we estimate that fine-root production and turnover represent 22% of terrestrial net primary production globally – a c. 30% reduction from previous estimates assuming a single fine-root pool. Future work developing tools to rapidly differentiate functional fine-root classes, explicit incorporation of mycorrhizal fungi into fine-root studies, and wider adoption of a two-pool approach to model fine roots provide opportunities to better understand below-ground processes in the terrestrial biosphere.

Via Christophe Jacquet, Jennifer Mach, Stéphane Hacquard
more...
No comment yet.
Rescooped by Francis Martin from The Plant Microbiome
Scoop.it!

ISME J: Priority effects during fungal community establishment in beech wood

ISME J: Priority effects during fungal community establishment in beech wood | MycorWeb Plant-Microbe Interactions | Scoop.it

Assembly history of fungal communities has a crucial role in the decomposition of woody resources, and hence nutrient cycling and ecosystem function. However, it has not been clearly determined whether the fungal species that arrive first may, potentially, dictate the subsequent pathway of community development, that is, whether there is a priority effect at the species level. We used traditional culture-based techniques coupled with sequencing of amplified genetic markers to profile the fungal communities in beech (Fagus sylvatica) disks that had been pre-colonised separately with nine species from various stages of fungal succession. Clear differences in community composition were evident following pre-colonisation by different species with three distinct successor communities identified, indicating that individual species may have pivotal effects in driving assembly history. Priority effects may be linked to biochemical alteration of the resource and combative ability of the predecessor.


Via Stéphane Hacquard
more...
No comment yet.
Rescooped by Francis Martin from The Plant Microbiome
Scoop.it!

Unexpected diversity of basidiomycetous endophytes in sapwood and leaves of Hevea

Unexpected diversity of basidiomycetous endophytes in sapwood and leaves of Hevea | MycorWeb Plant-Microbe Interactions | Scoop.it

Research on fungal endophytes has expanded dramatically in recent years, but little is known about the diversity and ecological roles of endophytic basidiomycetes. Here we report the analysis of 310 basidiomycetous endophytes isolated from wild and planted populations of the rubber tree genus, Hevea. Species accumulation curves were nonasymptotic, as in the majority of endophyte surveys, indicating that more sampling is needed to recover the true diversity of the community. One hundred eighteen OTUs were delimited, representing nine orders of Basidiomycota (Agaricales, Atheliales, Auriculariales, Cantharellales, Hymenochaetales, Polyporales, Russulales, Septobasidiales, Tremellales). The diversity of basidiomycetous endophytes found inhabiting wild populations of Hevea was comparable to that present in plantations. However, when samples were segregated by tissue type, sapwood of wild populations was found to contain a higher number of species than sapwood of planted trees. Seventy-five percent of isolates were members of the Polyporales, the majority in the phlebioid clade. Most of the species belong to clades known to cause a white-rot type of wood decay. Two species in the insect-associated genus Septobasidium were isolated. The most frequently isolated genera included Bjerkandera, Ceriporia,Phanerochaete, Phlebia, Rigidoporus, Tinctoporellus, Trametes (Polyporales),Peniophora, Stereum (Russulales) and Coprinellus (Agaricales), all of which have been reported as endophytes from a variety of hosts, across wide geographic locations. Literature records on the geographic distribution and host association of these genera revealed that their distribution and substrate affinity could be extended if the endophytic niche was investigated as part of fungal biodiversity surveys.


Via Steve Marek, Håvard Kauserud, Stéphane Hacquard
more...
No comment yet.
Rescooped by Francis Martin from How microbes emerge
Scoop.it!

PLOS Genetics: The Evolution of Fungal Metabolic Pathways (2014)

PLOS Genetics: The Evolution of Fungal Metabolic Pathways (2014) | MycorWeb Plant-Microbe Interactions | Scoop.it

Fungi contain a remarkable range of metabolic pathways, sometimes encoded by gene clusters, enabling them to digest most organic matter and synthesize an array of potent small molecules. Although metabolism is fundamental to the fungal lifestyle, we still know little about how major evolutionary processes, such as gene duplication (GD) and horizontal gene transfer (HGT), have interacted with clustered and non-clustered fungal metabolic pathways to give rise to this metabolic versatility. We examined the synteny and evolutionary history of 247,202 fungal genes encoding enzymes that catalyze 875 distinct metabolic reactions from 130 pathways in 208 diverse genomes. We found that gene clustering varied greatly with respect to metabolic category and lineage; for example, clustered genes in Saccharomycotina yeasts were overrepresented in nucleotide metabolism, whereas clustered genes in Pezizomycotina were more common in lipid and amino acid metabolism. The effects of both GD and HGT were more pronounced in clustered genes than in their non-clustered counterparts and were differentially distributed across fungal lineages; specifically, GD, which was an order of magnitude more abundant than HGT, was most frequently observed in Agaricomycetes, whereas HGT was much more prevalent in Pezizomycotina. The effect of HGT in some Pezizomycotina was particularly strong; for example, we identified 111 HGT events associated with the 15 Aspergillus genomes, which sharply contrasts with the 60 HGT events detected for the 48 genomes from the entire Saccharomycotina subphylum. Finally, the impact of GD within a metabolic category was typically consistent across all fungal lineages, whereas the impact of HGT was variable. These results indicate that GD is the dominant process underlying fungal metabolic diversity, whereas HGT is episodic and acts in a category- or lineage-specific manner. Both processes have a greater impact on clustered genes, suggesting that metabolic gene clusters represent hotspots for the generation of fungal metabolic diversity.


Via Kamoun Lab @ TSL, Niklaus Grunwald
more...
No comment yet.
Scooped by Francis Martin
Scoop.it!

Horizontal gene transfer and gene dosage drives adaptation to wood colonization in a tree pathogen

Horizontal gene transfer and gene dosage drives adaptation to wood colonization in a tree pathogen | MycorWeb Plant-Microbe Interactions | Scoop.it
Some of the most damaging tree pathogens can attack woody stems, causing lesions (cankers) that may be lethal. To identify the genomic determinants of wood colonization leading to canker formation, we sequenced the genomes of the poplar canker pathogen, Mycosphaerella populorum, and the closely related poplar leaf pathogen, M. populicola. A secondary metabolite cluster unique to M. populorum is fully activated following induction by poplar wood and leaves. In addition, genes encoding hemicellulose-degrading enzymes, peptidases, and metabolite transporters were more abundant and were up-regulated in M. populorum growing on poplar wood-chip medium compared with M. populicola. The secondary gene cluster and several of the carbohydrate degradation genes have the signature of horizontal transfer from ascomycete fungi associated with wood decay and from prokaryotes. Acquisition and maintenance of the gene battery necessary for growth in woody tissues and gene dosage resulting in gene expression reconfiguration appear to be responsible for the adaptation of M. populorum to infect, colonize, and cause mortality on poplar woody stems.
more...
No comment yet.
Scooped by Francis Martin
Scoop.it!

Plants, fungi and oomycetes: a 400-million year affair that shapes the biosphere

Plants, fungi and oomycetes: a 400-million year affair that shapes the biosphere | MycorWeb Plant-Microbe Interactions | Scoop.it

In a rare gathering, genomics met palaeontology at the 10th New Phytologist Workshop on the ‘Origin and evolution of plants and their interactions with fungi’. An eclectic group of 17 experts met at The Natural History Museum (London, UK) on 9–10 September 2014 to discuss the latest findings on plant interactions with fungi (Eumycota) and oomycetes (Oomycota = Peronosporomycota), with topics ranging from the fossil record and comparative genomics to symbiosis and phytopathology. The discussions were largely disseminated via social media (Box 1). Highly diverse plant–fungal interactions have formed the backbone of land ecosystems and biogeochemical cycles since the Palaeozoic (see Fig. 1 for geological timeframe). As summarized by Christine Strullu-Derrien and Paul Kenrick (The Natural History Museum, London, UK) the first land plants arose c. 470 million years (Myr) ago (Kenrick et al., 2012; Edwards et al., 2014), at which time fungi and oomycetes had already colonized terrestrial ecosystems. Following their terrestrialization, these microbes began to abound within plant fossils (Taylor et al., 2014, and references therein). Ultimately, biological interactions sculpted the genomes of plants, fungi and oomycetes (e.g. Schmidt & Panstruga, 2011; Kohler et al., 2015). Here we illustrate the picture that has emerged from the discussions at the 10th New Phytologist Workshop, and point to some pending questions.

more...
Pierre-Marc Delaux's curator insight, March 23, 5:54 AM

It was a great workshop indeed!

Peter Buckland's curator insight, March 23, 9:01 AM

The importance of plant-fungal interactions

Scooped by Francis Martin
Scoop.it!

Long-term decline of the Amazon carbon sink

Long-term decline of the Amazon carbon sink | MycorWeb Plant-Microbe Interactions | Scoop.it
Atmospheric carbon dioxide records indicate that the land surface has acted as a strong global carbon sink over recent decades1, 2, with a substantial fraction of this sink probably located in the tropics3, particularly in the Amazon4. Nevertheless, it is unclear how the terrestrial carbon sink will evolve as climate and atmospheric composition continue to change. Here we analyse the historical evolution of the biomass dynamics of the Amazon rainforest over three decades using a distributed network of 321 plots. While this analysis confirms that Amazon forests have acted as a long-term net biomass sink, we find a long-term decreasing trend of carbon accumulation. Rates of net increase in above-ground biomass declined by one-third during the past decade compared to the 1990s. This is a consequence of growth rate increases levelling off recently, while biomass mortality persistently increased throughout, leading to a shortening of carbon residence times. Potential drivers for the mortality increase include greater climate variability, and feedbacks of faster growth on mortality, resulting in shortened tree longevity5. The observed decline of the Amazon sink diverges markedly from the recent increase in terrestrial carbon uptake at the global scale1, 2, and is contrary to expectations based on models6.
more...
No comment yet.