Plant-Microbe Int...
Follow
Find
18.5K views | +24 today
 
Rescooped by Guogen Yang from Effectors and Plant Immunity
onto Plant-Microbe Interaction
Scoop.it!

Science: Copy Number Variation of Multiple Genes at Rhg1 Mediates Nematode Resistance in Soybean (2012)

Science: Copy Number Variation of Multiple Genes at Rhg1 Mediates Nematode Resistance in Soybean (2012) | Plant-Microbe Interaction | Scoop.it

The rhg1-b allele of soybean is widely used for resistance against soybean cyst nematode (SCN), the most economically damaging pathogen of soybeans in the United States. Gene silencing showed that genes in a 31-kilobase segment at rhg1-b, encoding an amino acid transporter, an α-SNAP protein, and a WI12 (wound-inducible domain) protein, each contribute to resistance. There is one copy of the 31-kilobase segment per haploid genome in susceptible varieties, but 10 tandem copies are present in an rhg1-b haplotype. Overexpression of the individual genes in roots was ineffective, but overexpression of the genes together conferred enhanced SCN resistance. Hence, SCN resistance mediated by the soybean quantitative trait locus Rhg1 is conferred by copy number variation that increases the expression of a set of dissimilar genes in a repeated multigene segment.

 

David E. Cook, Tong Geon Lee, Xiaoli Guo, Sara Melito, Kai Wang, Adam M. Bayless, Jianping Wang, Teresa J. Hughes, David K. Willis, Thomas E. Clemente, Brian W. Diers, Jiming Jiang, Matthew E. Hudson, Andrew F. Bent


Via Nicolas Denancé
more...
No comment yet.

From around the web

Plant-Microbe Interaction
plant-microbe interaction
Curated by Guogen Yang
Your new post is loading...
Your new post is loading...
Rescooped by Guogen Yang from Plant Immunity And Microbial Effectors
Scoop.it!

The Arabidopsis Mediator Complex Subunit16 Is a Key Component of Basal Resistance Against the Necrotrophic Fungal Pathogen Sclerotinia sclerotiorum

Although Sclerotinia sclerotiorum (Lib.) de Bary is a devastating necrotrophic fungal plant pathogen in agriculture, the virulence mechanisms utilized by S.

Via IPM Lab
more...
No comment yet.
Rescooped by Guogen Yang from MycorWeb Plant-Microbe Interactions
Scoop.it!

How do Agaricomycetes shape their fruiting bodies? 1. Morphological aspects of development

How do Agaricomycetes shape their fruiting bodies? 1. Morphological aspects of development | Plant-Microbe Interaction | Scoop.it

Fruiting body formation in Agaricomycetes (Agaricomycotina) represents the most complex developmental processes known in the fungal kingdom. Shapes range from simple resupinate forms with open hymenia through to closed puff-balls and false truffles with internally hidden hymenia and include brackets and stiped mushrooms, which may have open caps throughout or which open during development, where the hymenia cover the surfaces of gills or pores. Mushroom shapes and features do not necessarily reflect close or distant phylogenetic relationships. Thus, morphological characteristics have lost some of their former significance in taxonomy. The onset and progress of courses of processes in mushroom formation are determined by the sum of various genetic, physiological and environmental factors. Shapes of mushrooms can be dramatically changed by mutations and by adverse environmental conditions. Events in normal fruiting body formation may run in parallel or behind each other in the form of ‘subroutines’ that have different degrees of independency to each other. Alterations in details or in places and orders of distinct subroutines and omissions can result in abnormal mushrooms. Developmental processes, time courses and tissue structures have been described in more details for a few model species (such as the hemiangiocarpous Coprinopsis cinerea and the gymnocarpous Schizophyllum commune) and some species of commercial interest (e.g. the gymnocarpous Auricularia auricula-judae and the hemiangiocarpous Agaricus bisporus). Morphological descriptions of fruiting body development in these four species are summarized here. Agaricomycetes have relatively large genomes with more than 10,000 different genes, many of which are expressed during the fruiting process in specific pseudoparenchymatous tissues (plectenchyma) or possibly only in individual cells within a tissue and at specific times. To understand the distinct functions of all these genes in space and time will require very fine dissection and analysis of distinct mushroom tissues and cells in future studies.


Via Francis Martin
more...
No comment yet.
Rescooped by Guogen Yang from Plant immunity and legume symbiosis
Scoop.it!

Extracellular ATP: a potential regulator of plant cell death

Extracellular ATP: a potential regulator of plant cell death | Plant-Microbe Interaction | Scoop.it
Adenosine 5′-triphosphate (ATP) has been regarded as an intracellular energy currency molecule for many years. In recent decades, it has been determined that ATP is released into the extracellular milieu by animal, plant and microbial cells. In animal cells, this extracellular ATP (eATP) functions as a signalling compound to mediate many cellular processes through its interaction with membrane-associated receptor proteins. It has also been reported that eATP is a signalling molecule required for the regulation of plant growth, development and responses to environmental stimuli. Recently, the first plant receptor for eATP was identified in Arabidopsis thaliana. Interestingly, some studies have shown that eATP is of particular importance in the control of plant cell death. In this review article, we summarize and discuss the theoretical and experimental advances that have been made with regard to the roles and mechanisms of eATP in plant cell death. We also make an attempt to address some speculative aspects to help develop and expand future research in this area.

Via Christophe Jacquet
more...
No comment yet.
Rescooped by Guogen Yang from Plant-Microbe Symbioses
Scoop.it!

Plant cutin genesis: unanswered questions

Plant cutin genesis: unanswered questions | Plant-Microbe Interaction | Scoop.it
•Recent advances improved our understanding of how biopolyester cutin is constructed; two main approaches have been reported, as follows.
•Cutin is polymerized by specific extracellular acyltransferase enzymes.
•Cutin is the final result of a nonprotein extracellular self-assembly process of its monomers.
•Both models still need further development and improvement, as critically described in this review.
The genesis of cutin, the main lipid polymer present in the biosphere, has remained elusive for many years. Recently, two main approaches have attempted to explain the process of cutin polymerization. One describes the existence of an acyltransferase cutin synthase enzyme that links activated monomers of cutin in the outer cell wall, while the other shows that plant cutin is the final result of an extracellular nonenzymatic self-assembly and polymerizing process of cutin monomers. In this opinion article, we explain both models and suggest that they could be pieces of a more complex biological scenario. We also highlight their different characteristics and current limitations, and suggest a potential synergism of both hypotheses.

Via Jean-Michel Ané
more...
No comment yet.
Rescooped by Guogen Yang from Plant-microbe interaction
Scoop.it!

Spatial and temporal regulation of biosynthesis of the plant immune signal salicylic acid

Spatial and temporal regulation of biosynthesis of the plant immune signal salicylic acid | Plant-Microbe Interaction | Scoop.it
The plant hormone salicylic acid (SA) is essential for local defense and systemic acquired resistance (SAR). When plants, such as Arabidopsis, are challenged by different pathogens, an increase in SA biosynthesis generally occurs through transcriptional induction of the key synthetic enzyme isochorismate synthase 1 (ICS1). However, the regulatory mechanism for this induction is poorly understood. Using a yeast one-hybrid screen, we identified two transcription factors (TFs), NTM1-LIKE 9 (NTL9) and CCA1 HIKING EXPEDITION (CHE), as activators of ICS1 during specific immune responses. NTL9 is essential for inducing ICS1 and two other SA synthesis-related genes, PHYTOALEXIN-DEFICIENT 4 (PAD4) and ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), in guard cells that form stomata. Stomata can quickly close upon challenge to block pathogen entry. This stomatal immunity requires ICS1 and the SA signaling pathway. In the ntl9 mutant, this response is defective and can be rescued by exogenous application of SA, indicating that NTL9-mediated SA synthesis is essential for stomatal immunity. CHE, the second identified TF, is a central circadian clock oscillator and is required not only for the daily oscillation in SA levels but also for the pathogen-induced SA synthesis in systemic tissues during SAR. CHE may also regulate ICS1 through the known transcription activators CALMODULIN BINDING PROTEIN 60g (CBP60g) and SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD1) because induction of these TF genes is compromised in the che-2 mutant. Our study shows that SA biosynthesis is regulated by multiple TFs in a spatial and temporal manner and therefore fills a gap in the signal transduction pathway between pathogen recognition and SA production.

Via Suayib Üstün
more...
No comment yet.
Rescooped by Guogen Yang from Plant Immunity And Microbial Effectors
Scoop.it!

The maize disease resistance gene Htn1 against northern corn leaf blight encodes a wall-associated receptor-like kinase

Northern corn leaf blight (NCLB) is one of the most devastating fungal diseases of maize. The Htn1 disease resistance gene confers quantitative field resistance against most NCLB isolates. Here we show that Htn1 encodes a putative wall-associated receptor-like kinase (RLK). RLKs act as important components of the first tier of the plant innate immune system by perceiving pathogen- or host-derived elicitors on the cell surface. RLKs are often associated with resistance to nonadapted pathogens and are a component of nonhost resistance. Our work demonstrates that the Htn1-RLK plays an important role in host resistance against adapted fungal pathogens.


Via IPM Lab
more...
No comment yet.
Rescooped by Guogen Yang from Plant immunity and legume symbiosis
Scoop.it!

Genome-wide Identification and Expression Analysis of the CDPK Gene Family in Grape, Vitis spp

Genome-wide Identification and Expression Analysis of the CDPK Gene Family in Grape, Vitis spp | Plant-Microbe Interaction | Scoop.it

Background

Calcium-dependent protein kinases (CDPKs) play vital roles in plant growth and development, biotic and abiotic stress responses, and hormone signaling. Little is known about the CDPK gene family in grapevine.

Results

In this study, we performed a genome-wide analysis of the 12X grape genome (Vitis vinifera) and identified nineteen CDPK genes. Comparison of the structures of grape CDPK genes allowed us to examine their functional conservation and differentiation. Segmentally duplicated grape CDPK genes showed high structural conservation and contributed to gene family expansion. Additional comparisons between grape and Arabidopsis thaliana demonstrated that several grape CDPK genes occured in the corresponding syntenic blocks of Arabidopsis, suggesting that these genes arose before the divergence of grapevine and Arabidopsis. Phylogenetic analysis divided the grape CDPK genes into four groups. Furthermore, we examined the expression of the corresponding nineteen homologous CDPK genes in the Chinese wild grape (Vitis pseudoreticulata) under various conditions, including biotic stress, abiotic stress, and hormone treatments. The expression profiles derived from reverse transcription and quantitative PCR suggested that a large number of VpCDPKs responded to various stimuli on the transcriptional level, indicating their versatile roles in the responses to biotic and abiotic stresses. Moreover, we examined the subcellular localization of VpCDPKs by transiently expressing six VpCDPK-GFP fusion proteins in Arabidopsis mesophyll protoplasts; this revealed high variability consistent with potential functional differences.

Conclusions

Taken as a whole, our data provide significant insights into the evolution and function of grape CDPKs and a framework for future investigation of grape CDPK genes.


Via Christophe Jacquet
more...
No comment yet.
Rescooped by Guogen Yang from Plants and Microbes
Scoop.it!

Developmental Cell: Chloroplast Stromules Function during Innate Immunity (2015)

Developmental Cell: Chloroplast Stromules Function during Innate Immunity (2015) | Plant-Microbe Interaction | Scoop.it
Chloroplast stromules are induced during plant immune responsesPro-PCD signals such as SA and H2O2 induce stromulesStromules form dynamic connections with nucleus during immune responsesConstitutively induced stromules enhance PCD during plant immune responses


Inter-organellar communication is vital for successful innate immune responses that confer defense against pathogens. However, little is known about how chloroplasts, which are a major production site of pro-defense molecules, communicate and coordinate with other organelles during defense. Here we show that chloroplasts send out dynamic tubular extensions called stromules during innate immunity or exogenous application of the pro-defense signals, hydrogen peroxide (H2O2) and salicylic acid. Interestingly, numerous stromules surround nuclei during defense response, and these connections correlate with an accumulation of chloroplast-localized NRIP1 defense protein and H2O2 in the nucleus. Furthermore, silencing and knockout of chloroplast unusual positioning 1 (CHUP1) that encodes a chloroplast outer envelope protein constitutively induces stromules in the absence of pathogen infection and enhances programmed cell death. These results support a model in which stromules aid in the amplification and/or transport of pro-defense signals into the nucleus and other subcellular compartments during immunity.


Via Kamoun Lab @ TSL
more...
No comment yet.
Rescooped by Guogen Yang from Plants and Microbes
Scoop.it!

Plant Phys Cover: The WRKY45-Dependent Signaling Pathway Is Required For Resistance against Striga hermonthica Parasitism (2015)

Plant Phys Cover: The WRKY45-Dependent Signaling Pathway Is Required For Resistance against Striga hermonthica Parasitism (2015) | Plant-Microbe Interaction | Scoop.it

The root hemiparasite witchweed (Striga spp.) is a devastating agricultural pest that causes losses of up to $1 billion US annually in sub-Saharan Africa. Development of resistant crops is one of the cost-effective ways to address this problem. However, the molecular mechanisms underlying resistance are not well understood. To understand molecular events upon Striga spp. infection, we conducted genome-scale RNA sequencing expression analysis using Striga hermonthica-infected rice (Oryza sativa) roots. We found that transcripts grouped under the Gene Ontology term defense response were significantly enriched in up-regulated differentially expressed genes. In particular, we found that both jasmonic acid (JA) and salicylic acid (SA) pathways were induced, but the induction of the JA pathway preceded that of the SA pathway. Foliar application of JA resulted in higher resistance. The hebiba mutant plants, which lack the JA biosynthesis gene ALLENE OXIDE CYCLASE, exhibited severe S. hermonthica susceptibility. The resistant phenotype was recovered by application of JA. By contrast, the SA-deficient NahG rice plants were resistant against S. hermonthica, indicating that endogenous SA is not required for resistance. However, knocking down WRKY45, a regulator of the SA/benzothiadiazole pathway, resulted in enhanced susceptibility. Interestingly, NahG plants induced the JA pathway, which was down-regulated in WRKY45-knockdown plants, linking the resistant and susceptible phenotypes to the JA pathway. Consistently, the susceptibility phenotype in the WRKY45-knockdown plants was recovered by foliar JA application. These results point to a model in which WRKY45 modulates a cross talk in resistance against S. hermonthica by positively regulating both SA/benzothiadiazole and JA pathways.


Via Kamoun Lab @ TSL
more...
No comment yet.
Rescooped by Guogen Yang from Plant immunity and legume symbiosis
Scoop.it!

The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in Catharanthus roseus

The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in Catharanthus roseus | Plant-Microbe Interaction | Scoop.it

Abstract

Plants make specialized bioactive metabolites to defend themselves against attackers. The conserved control mechanisms are based on transcriptional activation of the respective plant species-specific biosynthetic pathways by the phytohormone jasmonate. Knowledge of the transcription factors involved, particularly in terpenoid biosynthesis, remains fragmentary. By transcriptome analysis and functional screens in the medicinal plant Catharanthus roseus (Madagascar periwinkle), the unique source of the monoterpenoid indole alkaloid (MIA)-type anticancer drugs vincristine and vinblastine, we identified a jasmonate-regulated basic helix–loop–helix (bHLH) transcription factor from clade IVa inducing the monoterpenoid branch of the MIA pathway. The bHLH iridoid synthesis 1 (BIS1) transcription factor transactivated the expression of all of the genes encoding the enzymes that catalyze the sequential conversion of the ubiquitous terpenoid precursor geranyl diphosphate to the iridoid loganic acid. BIS1 acted in a complementary manner to the previously characterized ethylene response factor Octadecanoid derivative-Responsive Catharanthus APETALA2-domain 3 (ORCA3) that transactivates the expression of several genes encoding the enzymes catalyzing the conversion of loganic acid to the downstream MIAs. In contrast to ORCA3, overexpression of BIS1 was sufficient to boost production of high-value iridoids and MIAs in C. roseus suspension cell cultures. Hence, BIS1 might be a metabolic engineering tool to produce sustainably high-value MIAs in C. roseus plants or cultures.


Via Christophe Jacquet
more...
No comment yet.
Rescooped by Guogen Yang from Plant immunity and legume symbiosis
Scoop.it!

Identification of nuclear target proteins for S-nitrosylation in pathogen-treated Arabidopsis thaliana cell cultures

Identification of nuclear target proteins for S-nitrosylation in pathogen-treated Arabidopsis thaliana cell cultures | Plant-Microbe Interaction | Scoop.it
Highlights



117 nuclear proteins were identified as targets for S-nitrosylation.


Nuclear proteins involved in protein and RNA metabolism are the dominant targets.


In these target proteins 155 S-nitrosylation sites were predicted.


S-Nitrosylation of plant-specific histone deacetylases was demonstrated.

Abstract

Nitric oxide (NO) is a significant signalling molecule involved in the regulation of many different physiological processes in plants. One of the most imperative regulatory modes of action of NO is protein S-nitrosylation—the covalent attachment of an NO group to the sulfur atom of cysteine residues. In this study, we focus on S-nitrosylation of Arabidopsis nuclear proteins after pathogen infection. After treatment of Arabidopsis suspension cell cultures with pathogens, nuclear proteins were extracted and treated with the S-nitrosylating agent S-nitrosoglutathione (GSNO). A biotin switch assay was performed and biotin-labelled proteins were purified by neutravidin affinity chromatography and identified by mass spectrometry. A total of 135 proteins were identified, whereas nuclear localization has been described for 122 proteins of them. 117 of these proteins contain at least one cysteine residue. Most of the S-nitrosylated candidates were involved in protein and RNA metabolism, stress response, and cell organization and division. Interestingly, two plant-specific histone deacetylases were identified suggesting that nitric oxide regulated epigenetic processes in plants. In sum, this work provides a new collection of targets for protein S-nitrosylation in Arabidopsis and gives insight into the regulatory function of NO in the nucleus during plant defense response. Moreover, our data extend the knowledge on the regulatory function of NO in events located in the nucleus.

Via Christophe Jacquet
more...
No comment yet.
Rescooped by Guogen Yang from Plant immunity and legume symbiosis
Scoop.it!

Use of enhancer trapping to identify pathogen-induced regulatory events spatially restricted to plant-microbe interaction sites

Use of enhancer trapping to identify pathogen-induced regulatory events spatially restricted to plant-microbe interaction sites | Plant-Microbe Interaction | Scoop.it
Plant genes differentially expressed during plant/pathogen interactions can be important for host immunity or contribute to pathogen virulence. Large-scale transcript profiling studies, such as microarray- or mRNA-seq-based analyses, have revealed hundreds of genes that are differentially expressed during plant/pathogen interactions. However, transcriptional responses limited to a small number of cells at infection sites can be difficult to detect by these approaches, as they are under-represented in the whole tissue data sets typically generated by such methods. This study examined interactions between Arabidopsis thaliana (Arabidopsis) and the pathogenic oomycete Hyaloperonospora arabidopsidis (Hpa) by enhancer trapping to uncover novel plant genes involved in local infection responses. We screened a β-glucoronidase (GUS) reporter-based enhancer-trap population for expression patterns related to Hpa infection. Several independent lines exhibited GUS expression in leaf mesophyll cells surrounding Hpa structures, indicating a regulatory response to pathogen infection. One of these lines contains a single enhancer-trap insertion in an exon of At1g08800 (MyoB1, Myosin Binding Protein 1) and was subsequently found to exhibit reduced susceptibility to Hpa. Two additional Arabidopsis lines with T-DNA insertions in exons of MyoB1 also exhibited approximately 30% fewer spores than wild type plants. This study demonstrates that our enhancer-trapping strategy can result in the identification of functionally-relevant pathogen-responsive genes. Our results further suggest that MyoB1 either positively contributes to Hpa virulence or negatively affects host immunity against this pathogen.

Via Christophe Jacquet
more...
No comment yet.
Rescooped by Guogen Yang from Plants and Microbes
Scoop.it!

Scientific Reports: Function and evolution of Magnaporthe oryzae avirulence gene AvrPib responding to the rice blast resistance gene Pib (2015)

Scientific Reports: Function and evolution of Magnaporthe oryzae avirulence gene AvrPib responding to the rice blast resistance gene Pib (2015) | Plant-Microbe Interaction | Scoop.it

Magnaporthe oryzae (Mo) is the causative pathogen of the damaging disease rice blast. The effector gene AvrPib, which confers avirulence to host carrying resistance gene Pib, was isolated via map-based cloning. The gene encodes a 75-residue protein, which includes a signal peptide. Phenotyping and genotyping of 60 isolates from each of five geographically distinct Mo populations revealed that the frequency of virulent isolates, as well as the sequence diversity within the AvrPib gene increased from a low level in the far northeastern region of China to a much higher one in the southern region, indicating a process of host-driven selection. Resequencing of the AvrPiballele harbored by a set of 108 diverse isolates revealed that there were four pathoways, transposable element (TE) insertion (frequency 81.7%), segmental deletion (11.1%), complete absence (6.7%), and point mutation (0.6%), leading to loss of the avirulence function. The lack of any TE insertion in a sample of non-rice infecting Moisolates suggested that it occurred after the host specialization of Mo. Both the deletions and the functional point mutation were confined to the signal peptide. The reconstruction of 16 alleles confirmed seven functional nucleotide polymorphisms for the AvrPiballeles, which generated three distinct expression profiles.


Via Kamoun Lab @ TSL
more...
No comment yet.
Rescooped by Guogen Yang from Plants and Microbes
Scoop.it!

New Phytologist: RNA–protein interactions in plant disease: hackers at the dinner table (2015)

New Phytologist: RNA–protein interactions in plant disease: hackers at the dinner table (2015) | Plant-Microbe Interaction | Scoop.it

Plants are the source of most of our food, whether directly or as feed for the animals we eat. Our dinner table is a trophic level we share with the microbes that also feed on the primary photosynthetic producers. Microbes that enter into close interactions with plants need to evade or suppress detection and host immunity to access nutrients. They do this by deploying molecular tools – effectors – which target host processes. The mode of action of effector proteins in these events is varied and complex. Recent data from diverse systems indicate that RNA-interacting proteins and RNA itself are delivered by eukaryotic microbes, such as fungi and oomycetes, to host plants and contribute to the establishment of successful interactions. This is evidence that pathogenic microbes can interfere with the host software. We are beginning to see that pathogenic microbes are capable of hacking into the plants' immunity programs.


Via Kamoun Lab @ TSL
more...
No comment yet.
Rescooped by Guogen Yang from Plant Immunity And Microbial Effectors
Scoop.it!

The Medicago sativa gene index 1.2: a web-accessible gene expression atlas for investigating expression differences between Medicago sativa subspecies

Background:
Alfalfa (Medicago sativa L.) is the primary forage legume crop species in the United States and plays essential economic and ecological roles in agricultural systems across the country.

Via IPM Lab
more...
No comment yet.
Rescooped by Guogen Yang from Publications
Scoop.it!

bioRxiv: The two-speed genomes of filamentous pathogens: waltz with plants (2015)

bioRxiv: The two-speed genomes of filamentous pathogens: waltz with plants (2015) | Plant-Microbe Interaction | Scoop.it

Fungi and oomycetes include deep and diverse lineages of eukaryotic plant pathogens. The last 10 years have seen the sequencing of the genomes of a multitude of species of these so-called filamentous plant pathogens. Already, fundamental concepts have emerged. Filamentous plant pathogen genomes tend to harbor large repertoires of genes encoding virulence effectors that modulate host plant processes. Effector genes are not randomly distributed across the genomes but tend to be associated with compartments enriched in repetitive sequences and transposable elements. These findings have led to the “two-speed genome” model in which filamentous pathogen genomes have a bipartite architecture with gene sparse, repeat rich compartments serving as a cradle for adaptive evolution. Here, we review this concept and discuss how plant pathogens are great model systems to study evolutionary adaptations at multiple time scales. We will also introduce the next phase of research on this topic.


Via Kamoun Lab @ TSL
more...
No comment yet.
Rescooped by Guogen Yang from Plant-Microbe Symbioses
Scoop.it!

Pyridine-type alkaloid composition affects bacterial community composition of floral nectar

Pyridine-type alkaloid composition affects bacterial community composition of floral nectar | Plant-Microbe Interaction | Scoop.it
Pyridine-type alkaloids are most common in Nicotiana species. To study the effect of alkaloid composition on bacterial community composition in floral nectar, we compared the nicotine-rich wild type (WT) N. attenuata, the nicotine biosynthesis-silenced N. attenuata that was rich in anatabine and the anabasine-rich WT N. glauca plants. We found that the composition of these secondary metabolites in the floral nectar drastically affected the bacterial community richness, diversity and composition. Significant differences were found between the bacterial community compositions in the nectar of the three plants with a much greater species richness and diversity in the nectar from the transgenic plant. The highest community composition similarity index was detected between the two wild type plants. The different microbiome composition and diversity, caused by the different pyridine-type alkaloid composition, could modify the nutritional content of the nectar and consequently, may contribute to the change in the nectar consumption and visitation. These may indirectly have an effect on plant fitness.

Via Jean-Michel Ané
more...
Jean-Michel Ané's curator insight, July 5, 10:28 AM

Any change in metabolite composition will affect the bacterial community... The biological consequences of this remain to be demonstrated.

Rescooped by Guogen Yang from Rice Blast
Scoop.it!

Systematic characterization of the peroxidase gene family provides new insights into fungal pathogenicity in Magnaporthe oryzae

Systematic characterization of the peroxidase gene family provides new insights into fungal pathogenicity in Magnaporthe oryzae | Plant-Microbe Interaction | Scoop.it
Fungal pathogens have evolved antioxidant defense against reactive oxygen species produced as a part of host innate immunity. Recent studies proposed peroxidases as components of antioxidant defense system. However, the role of fungal peroxidases during interaction with host plants has not been explored at the genomic level. Here, we systematically identified peroxidase genes and analyzed their impact on fungal pathogenesis in a model plant pathogenic fungus, Magnaporthe oryzae. Phylogeny reconstruction placed 27 putative peroxidase genes into 15 clades. Expression profiles showed that majority of them are responsive to in planta condition and in vitro H2O2. Our analysis of individual deletion mutants for seven selected genes including MoPRX1 revealed that these genes contribute to fungal development and/or pathogenesis. We identified significant and positive correlations among sensitivity to H2O2, peroxidase activity and fungal pathogenicity. In-depth analysis of MoPRX1 demonstrated that it is a functional ortholog of thioredoxin peroxidase in Saccharomyces cerevisiae and is required for detoxification of the oxidative burst within host cells. Transcriptional profiling of other peroxidases in ΔMoprx1 suggested interwoven nature of the peroxidase-mediated antioxidant defense system. The results from this study provide insight into the infection strategy built on evolutionarily conserved peroxidases in the rice blast fungus.

Via Elsa Ballini
more...
No comment yet.
Rescooped by Guogen Yang from Plants and Microbes
Scoop.it!

Journal of Integrative Plant Biology: Viroids: Small Probes for Exploring the Vast Universe of RNA Trafficking in Plants (2010)

Journal of Integrative Plant Biology: Viroids: Small Probes for Exploring the Vast Universe of RNA Trafficking in Plants (2010) | Plant-Microbe Interaction | Scoop.it

Cell-to-cell and long-distance trafficking of RNA is a rapidly evolving frontier of integrative plant biology that broadly impacts studies on plant growth and development, spread of infectious agents and plant defense responses. The fundamental questions being pursued at the forefronts revolve around function, mechanism and evolution. In the present review, we will first use specific examples to illustrate the biological importance of cell-to-cell and long-distance trafficking of RNA. We then focus our discussion on research findings obtained using viroids that have advanced our understanding of the underlying mechanisms involved in RNA trafficking. We further use viroid examples to illustrate the great diversity of trafficking machinery evolved by plants, as well as the promise for new insights in the years ahead. Finally, we discuss the prospect of integrating findings from different experimental systems to achieve a systems-based understanding of RNA trafficking function, mechanism and evolution.


Via Kamoun Lab @ TSL
more...
No comment yet.
Rescooped by Guogen Yang from Effectors and Plant Immunity
Scoop.it!

Front. Plant Sci.: MorTAL Kombat: the story of defense against TAL effectors through loss-of-susceptibility (2015)

Front. Plant Sci.: MorTAL Kombat: the story of defense against TAL effectors through loss-of-susceptibility (2015) | Plant-Microbe Interaction | Scoop.it

Many plant-pathogenic xanthomonads rely on Transcription Activator-Like (TAL) effectors to colonize their host. This particular family of type III effectors functions as specific plant transcription factors via a novel programmable DNA-binding domain. Upon binding to the promoters of plant disease susceptibility genes in a sequence-specific manner, the expression of these host genes is induced. However, plants have evolved specific strategies to counter the action of TAL effectors and confer resistance. One mechanism is to avoid the binding of TAL effectors by mutations of their DNA binding sites, resulting in resistance by loss-of-susceptibility. This article reviews our current knowledge of the susceptibility hubs targeted by Xanthomonas TAL effectors, possible evolutionary scenarios for plants to combat the pathogen with loss-of-function alleles, and how this knowledge can be used overall to develop new pathogen-informed breeding strategies and improve crop resistance.

 

Hutin M, Pérez-Quintero AL, Lopez C and Szurek B


Via Nicolas Denancé
more...
No comment yet.
Rescooped by Guogen Yang from Virology and Bioinformatics from Virology.ca
Scoop.it!

PLOS Computational Biology: Ten Years of PLoS‡ Computational Biology: A Decade of Appreciation and Innovation

PLOS Computational Biology: Ten Years of PLoS‡ Computational Biology: A Decade of Appreciation and Innovation | Plant-Microbe Interaction | Scoop.it

Via Chad Smithson
more...
No comment yet.
Rescooped by Guogen Yang from Plant immunity and legume symbiosis
Scoop.it!

TRANSCRIPTION ACTIVATOR-LIKE EFFECTOR NUCLEASE-Mediated Generation and Metabolic Analysis of Camalexin-Deficient cyp71a12 cyp71a13 Double Knockout Lines

TRANSCRIPTION ACTIVATOR-LIKE EFFECTOR NUCLEASE-Mediated Generation and Metabolic Analysis of Camalexin-Deficient cyp71a12 cyp71a13 Double Knockout Lines | Plant-Microbe Interaction | Scoop.it

In Arabidopsis (Arabidopsis thaliana), a number of defense-related metabolites are synthesized via indole-3-acetonitrile (IAN), including camalexin and indole-3-carboxylic acid (ICOOH) derivatives. Cytochrome P450 71A13 (CYP71A13) is a key enzyme for camalexin biosynthesis and catalyzes the conversion of indole-3-acetaldoxime (IAOx) to IAN. The CYP71A13 gene is located in tandem with its close homolog CYP71A12, also encoding an IAOx dehydratase. However, for CYP71A12, indole-3-carbaldehyde and cyanide were identified as major reaction products. To clarify CYP71A12 function in vivo and to better understand IAN metabolism, we generated two cyp71a12 cyp71a13 double knockout mutant lines. CYP71A12-specific transcription activator-like effector nucleases were introduced into the cyp71a13 background, and very efficient somatic mutagenesis was achieved. We observed stable transmission of the cyp71a12 mutation to the following generations, which is a major challenge for targeted mutagenesis in Arabidopsis. In contrast to cyp71a13 plants, in which camalexin accumulation is partially reduced, double mutants synthesized only traces of camalexin, demonstrating that CYP71A12 contributes to camalexin biosynthesis in leaf tissue. A major role of CYP71A12 was identified for the inducible biosynthesis of ICOOH. Specifically, the ICOOH methyl ester was reduced to 12% of the wild-type level in AgNO3-challenged cyp71a12 leaves. In contrast, indole-3-carbaldehyde derivatives apparently are synthesized via alternative pathways, such as the degradation of indole glucosinolates. Based on these results, we present a model for this surprisingly complex metabolic network with multiple IAN sources and channeling of IAOx-derived IAN into camalexin biosynthesis. In conclusion, transcription activator-like effector nuclease-mediated mutation is a powerful tool for functional analysis of tandem genes in secondary metabolism.


Via Christophe Jacquet
more...
No comment yet.
Rescooped by Guogen Yang from Plant immunity and legume symbiosis
Scoop.it!

Homeologs of the Nicotiana benthamiana Antiviral ARGONAUTE1 Show Different Susceptibilities to microRNA168-Mediated Control

Homeologs of the Nicotiana benthamiana Antiviral ARGONAUTE1 Show Different Susceptibilities to microRNA168-Mediated Control | Plant-Microbe Interaction | Scoop.it
The plant ARGONAUTE1 protein (AGO1) is a central functional component of the posttranscriptional regulation of gene expression and the RNA silencing-based antiviral defense. By genomic and molecular approaches, we here reveal the presence of two homeologs of the AGO1-like gene in Nicotiana benthamiana, NbAGO1-1H and NbAGO1-1L. Both homeologs retain the capacity to transcribe messenger RNAs (mRNAs), which mainly differ in one 18-nucleotide insertion/deletion (indel). The indel does not modify the frame of the open reading frame, and it is located eight nucleotides upstream of the target site of a microRNA, miR168, which is an important modulator of AGO1 expression. We demonstrate that there is a differential accumulation of the two NbAGO1-1 homeolog mRNAs at conditions where miR168 is up-regulated, such as during a tombusvirus infection. The data reported suggest that the indel affects the miR168-guided regulation of NbAGO1 mRNA. The two AGO1 homeologs show full functionality in reconstituted, catalytically active RNA-induced silencing complexes following the incorporation of small interfering RNAs. Virus-induced gene silencing experiments suggest a specific involvement of the NbAGO1 homeologs in symptom development. The results provide an example of the diversity of microRNA target regions in NbAGO1 homeolog genes, which has important implications for improving resilience measures of the plant during viral infections.

Via Christophe Jacquet
more...
No comment yet.
Rescooped by Guogen Yang from How microbes emerge
Scoop.it!

Fungal Traits That Drive Ecosystem Dynamics on Land

Fungal Traits That Drive Ecosystem Dynamics on Land | Plant-Microbe Interaction | Scoop.it

Fungi contribute extensively to a wide range of ecosystem processes, including decomposition of organic carbon, deposition of recalcitrant carbon, and transformations of nitrogen and phosphorus. In this review, we discuss the current knowledge about physiological and morphological traits of fungi that directly influence these processes, and we describe the functional genes that encode these traits. In addition, we synthesize information from 157 whole fungal genomes in order to determine relationships among selected functional genes within fungal taxa. Ecosystem-related traits varied most at relatively coarse taxonomic levels. For example, we found that the maximum amount of variance for traits associated with carbon mineralization, nitrogen and phosphorus cycling, and stress tolerance could be explained at the levels of order to phylum. Moreover, suites of traits tended to co-occur within taxa. Specifically, the genetic capacities for traits that improve stress tolerance—β-glucan synthesis, trehalose production, and cold-induced RNA helicases—were positively related to one another, and they were more evident in yeasts. Traits that regulate the decomposition of complex organic matter—lignin peroxidases, cellobiohydrolases, and crystalline cellulases—were also positively related, but they were more strongly associated with free-living filamentous fungi. Altogether, these relationships provide evidence for two functional groups: stress tolerators, which may contribute to soil carbon accumulation via the production of recalcitrant compounds; and decomposers, which may reduce soil carbon stocks. It is possible that ecosystem functions, such as soil carbon storage, may be mediated by shifts in the fungal community between stress tolerators and decomposers in response to environmental changes, such as drought and warming.


Via Steve Marek, Niklaus Grunwald
more...
No comment yet.
Rescooped by Guogen Yang from Plant-Microbe Symbioses
Scoop.it!

Maternal effects on tree phenotypes: considering the microbiome

Maternal effects on tree phenotypes: considering the microbiome | Plant-Microbe Interaction | Scoop.it
The biotic and abiotic environmental experience of plants can influence the offspring without any changes in DNA sequence. These effects can modulate the development of the progeny and their interaction with microorganisms. This interaction includes fungal endophytic communities which have significant effects on trees and their associated ecosystems. In this opinion article, we highlight potential maternal mechanisms through which endophytes could influence the progeny. We argue that a better understanding of these interactions might help to predict the response of trees to stress conditions and enhance the efficiency of tree breeding programs.

Via Christophe Jacquet, Jean-Michel Ané
more...
No comment yet.