Plant Genomics
Follow
Find
13.5K views | +6 today
Plant Genomics
Updates on Plant Genomics
Your new post is loading...
Your new post is loading...
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Evolutionary origins, molecular cloning and expression of carotenoid hydroxylases in eukaryotic photosynthetic algae

Xanthophylls, oxygenated derivatives of carotenes, play critical roles in photosynthetic apparatus of cyanobacteria, algae, and higher plants.
Biswapriya Biswavas Misra's insight:

Abstract (provisional)Background

Xanthophylls, oxygenated derivatives of carotenes, play critical roles in photosynthetic apparatus of cyanobacteria, algae, and higher plants. Although the xanthophylls biosynthetic pathway of algae is largely unknown, it is of particular interest because they have a very complicated evolutionary history. Carotenoid hydroxylase (CHY) is an important protein that plays essential roles in xanthophylls biosynthesis. With the availability of 18 sequenced algal genomes, we performed a comprehensive comparative analysis of chy genes and explored their distribution, structure, evolution, origins, and expression.

Results

Overall 60 putative chy genes were identified and classified into two major subfamilies (bch and cyp97) according to their domain structures. Genes in the bch subfamily were found in 10 green algae and 1 red alga, but absent in other algae. In the phylogenetic tree, bch genes of green algae and higher plants share a common ancestor and are of non-cyanobacterial origin, whereas that of red algae is of cyanobacteria. The homologs of cyp97a/c genes were widespread only in green algae, while cyp97b paralogs were seen in most of algae. Phylogenetic analysis on cyp97 genes supported the hypothesis that cyp97b is an ancient gene originated before the formation of extant algal groups. The cyp97a gene is more closely related to cyp97c in evolution than to cyp97b. The two cyp97 genes were isolated from the green alga Haematococcus pluvialis, and transcriptional expression profiles of chy genes were observed under high light stress of different wavelength.

Conclusions

Green algae received a beta-xanthophylls biosynthetic pathway from host organisms. Although red algae inherited the pathway from cyanobacteria during primary endosymbiosis, it remains unclear in Chromalveolates. The alpha-xanthophylls biosynthetic pathway is a common feature in green algae and higher plants. The origination of cyp97a/c is most likely due to gene duplication before divergence of green algae and higher plants. Protein domain structures and expression analyses in green alga H. pluvialis indicate that various chy genes are in different manners response to light. The knowledge of evolution of chy genes in photosynthetic eukaryotes provided information of gene cloning and functional investigation of chy genes in algae in the future.

 

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

A high-resolution cucumber cytogenetic map integrated with the genome assembly

High-resolution cytogenetic map can provide not only important biological information on genome organization but also solid foundation for genetic and genomic research.
Biswapriya Biswavas Misra's insight:
Abstract (provisional)Background

High-resolution cytogenetic map can provide not only important biological information on genome organization but also solid foundation for genetic and genomic research. The progress in the molecular and cytogenetic studies has created the basis for developing the cytogenetic map in cucumber (Cucumis sativus L.).

Results

Here, the cytogenetic maps of four cucumber chromosomes (chromosomes 1, 3--5) were constructed by fluorescence in situ hybridization (FISH) analysis on cucumber pachytene chromosomes. Together with our previously constructed cytogenetic maps of three cucumber chromosomes (chromosomes 2, 6--7), cucumber has a complete cytogenetic map with 76 anchoring points between the genetic, the cytogenetic and the draft genome assembly maps. To compare our pachytene FISH map directly to the genetic linkage and draft genome assembly maps, we used a standardized map unit---relative map position (RMP) to produce the comparative map alignments. The alignments allowed a global view of the relationship of genetic and physical distances along each cucumber chromosome, and accuracy and coverage of the draft genome assembly map.

Conclusions

We demonstrated a good correlation between positions of the markers in the linkage and physical maps, and essentially complete coverage of chromosome arms by the draft genome assembly. Our study not only provides essential information for the improvement of sequence assembly but also offers molecular tools for cucumber genomics research, comparative genomics and evolutionary study.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

The Saccharomyces cerevisiae transcriptome as a mirror of phytochemical variation in complex extracts of Equisetum arvense from America, China, Europe and India

Pattern-oriented chemical profiling is increasingly being used to characterize the phytochemical composition of herbal medicines for quality control purposes.
Biswapriya Biswavas Misra's insight:
Abstract (provisional)Background

Pattern-oriented chemical profiling is increasingly being used to characterize the phytochemical composition of herbal medicines for quality control purposes. Ideally, a fingerprint of the biological effects should complement the chemical fingerprint. For ethical and practical reasons it is not possible to test each herbal extract in laboratory animals or humans. What is needed is a test system consisting of an organism with relevant biology and complexity that can serve as a surrogate in vitro system. The purpose of this study was to test the hypothesis that the Saccharomyces cerevisiae transcriptome might be used as an indicator of phytochemical variation of closely-related yet distinctly different extracts prepared from a single species of a phytogeographically widely distributed medicinal plant. We combined phytochemical profiling using chromatographic methods (HPTLC, HPLC-PDA-MS/MS) and gene expression studies using Affymetrix Yeast 2.0 gene chip with principal component analysis and k-nearest neighbor clustering analysis to test this hypothesis using extracts prepared from the phytogeographically widely distributed medicinal plant Equisetum arvense as a test case.

Results

We found that the Equisetum arvense extracts exhibited qualitative and quantitative differences in their phytochemical composition grouped along their phytogeographical origin. Exposure of yeast to the extracts led to changes in gene expression that reflected both the similarities and differences in the phytochemical composition of the extracts. The Equisetum arvense extracts elicited changes in the expression of genes involved in mRNA translation, drug transport, metabolism of energy reserves, phospholipid metabolism, and the cellular stress response.

Conclusions

Our data show that functional genomics in S. cerevisiae may be developed as a sensitive bioassay for the scientific investigation of the interplay between phytochemical composition and transcriptional effects of complex mixtures of chemical compounds. S. cerevisiae transcriptomics may also be developed for testing of mixtures of conventional drugs ("polypills") to discover novel antagonistic or synergistic effects of those drug combinations.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

A DArT marker genetic map of perennial ryegrass (Lolium perenne L.) integrated with detailed comparative mapping information; comparison with existing DArT marker genetic ...

Ryegrasses and fescues (genera, Lolium and Festuca) are species of forage and turf grasses which are used widely in agricultural and amenity situations.
Biswapriya Biswavas Misra's insight:
Abstract (provisional)Background

Ryegrasses and fescues (genera, Lolium and Festuca) are species of forage and turf grasses which are used widely in agricultural and amenity situations. They are classified within the sub-family Pooideae and so are closely related to Brachypodium distachyon, wheat, barley, rye and oats. Recently, a DArT array has been developed which can be used in generating marker and mapping information for ryegrasses and fescues. This represents a potential common marker set for ryegrass and fescue researchers which can be linked through to comparative genomic information for the grasses.

Results

A F2 perennial ryegrass genetic map was developed consisting of 7 linkage groups defined by 1316 markers and deriving a total map length of 683 cM. The marker set included 866 DArT and 315 gene sequence-based markers. Comparison with previous DArT mapping studies in perennial and Italian ryegrass (L. multiflorum) identified 87 and 105 DArT markers in common, respectively, of which 94% and 87% mapped to homoeologous linkage groups. A similar comparison with meadow fescue (F. pratensis) identified only 28 DArT markers in common, of which c. 50% mapped to non-homoelogous linkage groups. In L. perenne, the genetic distance spanned by the DArT markers encompassed the majority of the regions that could be described in terms of comparative genomic relationships with rice, Brachypodium distachyon, and Sorghum bicolor.

Conclusions

DArT markers are likely to be a useful common marker resource for ryegrasses and fescues, though the success in aligning different populations through the mapping of common markers will be influenced by degrees of population interrelatedness. The detailed mapping of DArT and gene-based markers in this study potentially allows comparative relationships to be derived in future mapping populations characterised using solely DArT markers.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Tracing Evolutionary Footprints to Identify Novel Gene Functional Linkages

Tracing Evolutionary Footprints to Identify Novel Gene Functional Linkages | Plant Genomics | Scoop.it
PLOS ONE: an inclusive, peer-reviewed, open-access resource from the PUBLIC LIBRARY OF SCIENCE. Reports of well-performed scientific studies from all disciplines freely available to the whole world.
Biswapriya Biswavas Misra's insight:
Abstract

Systematic determination of gene function is an essential step in fully understanding the precise contribution of each gene for the proper execution of molecular functions in the cell. Gene functional linkage is defined as to describe the relationship of a group of genes with similar functions. With thousands of genomes sequenced, there arises a great opportunity to utilize gene evolutionary information to identify gene functional linkages. To this end, we established a computational method (called TRACE) to trace gene footprints through a gene functional network constructed from 341 prokaryotic genomes. TRACE performance was validated and successfully tested to predict enzyme functions as well as components of pathway. A so far undescribed chromosome partitioning-like protein ro03654 of an oleaginous bacteria Rhodococcus sp. RHA1 (RHA1) was predicted and verified experimentally with its deletion mutant showing growth inhibition compared to RHA1 wild type. In addition, four proteins were predicted to act as prokaryotic SNARE-like proteins, and two of them were shown to be localized at the plasma membrane. Thus, we believe that TRACE is an effective new method to infer prokaryotic gene functional linkages by tracing evolutionary events.

 

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Strategies for Wheat Stripe Rust Pathogenicity Identified by Transcriptome Sequencing

Strategies for Wheat Stripe Rust Pathogenicity Identified by Transcriptome Sequencing | Plant Genomics | Scoop.it
PLOS ONE: an inclusive, peer-reviewed, open-access resource from the PUBLIC LIBRARY OF SCIENCE. Reports of well-performed scientific studies from all disciplines freely available to the whole world.
Biswapriya Biswavas Misra's insight:
Abstract

Stripe rust caused by the fungus Puccinia striiformis f.sp. tritici (Pst) is a major constraint to wheat production worldwide. The molecular events that underlie Pst pathogenicity are largely unknown. Like all rusts, Pst creates a specialized cellular structure within host cells called the haustorium to obtain nutrients from wheat, and to secrete pathogenicity factors called effector proteins. We purified Pst haustoria and used next-generation sequencing platforms to assemble the haustorial transcriptome as well as the transcriptome of germinated spores. 12,282 transcripts were assembled from 454-pyrosequencing data and used as reference for digital gene expression analysis to compare the germinated uredinospores and haustoria transcriptomes based on Illumina RNAseq data. More than 400 genes encoding secreted proteins which constitute candidate effectors were identified from the haustorial transcriptome, with two thirds of these up-regulated in this tissue compared to germinated spores. RT-PCR analysis confirmed the expression patterns of 94 effector candidates. The analysis also revealed that spores rely mainly on stored energy reserves for growth and development, while haustoria take up host nutrients for massive energy production for biosynthetic pathways and the ultimate production of spores. Together, these studies substantially increase our knowledge of potential Pst effectors and provide new insights into the pathogenic strategies of this important organism.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Genome-wide association mapping of frost tolerance in barley (Hordeum vulgare L.)

Frost tolerance is a key trait with economic and agronomic importance in barley because it is a major component of winter hardiness, and therefore limits the geographical distribution of the crop and the effective transfer of quality traits between...
Biswapriya Biswavas Misra's insight:
Abstract (provisional)Background

Frost tolerance is a key trait with economic and agronomic importance in barley because it is a major component of winter hardiness, and therefore limits the geographical distribution of the crop and the effective transfer of quality traits between spring and winter crop types. Three main frost tolerance QTL (Fr-H1, Fr-H2 and Fr-H3) have been identified from bi-parental genetic mapping but it can be argued that those mapping populations only capture a portion of the genetic diversity of the species. A genetically broad dataset consisting of 184 genotypes, representative of the barley gene pool cultivated in the Mediterranean basin over an extended time period, was genotyped with 1536 SNP markers. Frost tolerance phenotype scores were collected from two trial sites, Foradada (Spain) and Fiorenzuola (Italy) and combined with the genotypic data in genome wide association analyses (GWAS) using Eigenstrat and kinship approaches to account for population structure.

Results

GWAS analyses identified twelve and seven positive SNP associations at Foradada and Fiorenzuola, respectively, using Eigenstrat and six and four, respectively, using kinship. Linkage disequilibrium analyses of the significant SNP associations showed they are genetically independent. In the kinship analysis, two of the significant SNP associations were tightly linked to the Fr-H2 and HvBmy loci on chromosomes 5H and 4HL, respectively. The other significant kinship associations were located in genomic regions that have not previously been associated with cold stress.

Conclusions

Haplotype analysis revealed that most of the significant SNP loci are fixed in the winter or facultative types, while they are freely segregating within the un-adapted spring barley genepool. Although there is a major interest in detecting new variation to improve frost tolerance of available winter and facultative types, from a GWAS perspective, working within the un-adapted spring germplasm pool is an attractive alternative strategy which would minimize statistical issues, simplify the interpretation of the data and identify phenology independent genetic determinants of frost tolerance.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

PLOS Genetics: Integrative “Omics”-Approach Discovers Dynamic and Regulatory Features of Bacterial Stress Responses

PLOS Genetics: Integrative “Omics”-Approach Discovers Dynamic and Regulatory Features of Bacterial Stress Responses | Plant Genomics | Scoop.it
PLOS Genetics is an open-access
Biswapriya Biswavas Misra's insight:
Abstract

Bacteria constantly face stress conditions and therefore mount specific responses to ensure adaptation and survival. Stress responses were believed to be predominantly regulated at the transcriptional level. In the phototrophic bacterium Rhodobacter sphaeroides the response to singlet oxygen is initiated by alternative sigma factors. Further adaptive mechanisms include post-transcriptional and post-translational events, which have to be considered to gain a deeper understanding of how sophisticated regulation networks operate. To address this issue, we integrated three layers of regulation: (1) total mRNA levels at different time-points revealed dynamics of the transcriptome, (2) mRNAs in polysome fractions reported on translational regulation (translatome), and (3) SILAC-based mass spectrometry was used to quantify protein abundances (proteome). The singlet oxygen stress response exhibited highly dynamic features regarding short-term effects and late adaptation, which could in part be assigned to the sigma factors RpoE and RpoH2 generating distinct expression kinetics of corresponding regulons. The occurrence of polar expression patterns of genes within stress-inducible operons pointed to an alternative of dynamic fine-tuning upon stress. In addition to transcriptional activation, we observed significant induction of genes at the post-transcriptional level (translatome), which identified new putative regulators and assigned genes of quorum sensing to the singlet oxygen stress response. Intriguingly, the SILAC approach explored the stress-dependent decline of photosynthetic proteins, but also identified 19 new open reading frames, which were partly validated by RNA-seq. We propose that comparative approaches as presented here will help to create multi-layered expression maps on the system level (“expressome”). Finally, intense mass spectrometry combined with RNA-seq might be the future tool of choice to re-annotate genomes in various organisms and will help to understand how they adapt to alternating conditions.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Genome of the red alga Porphyridium purpureum

Biswapriya Biswavas Misra's insight:

The limited knowledge we have about red algal genomes comes from the highly specialized extremophiles, Cyanidiophyceae. Here, we describe the first genome sequence from a mesophilic, unicellular red alga, Porphyridium purpureum. The 8,355 predicted genes in P. purpureum, hundreds of which are likely to be implicated in a history of horizontal gene transfer, reside in a genome of 19.7 Mbp with 235 spliceosomal introns. Analysis of light-harvesting complex proteins reveals a nuclear-encoded phycobiliprotein in the alga. We uncover a complex set of carbohydrate-active enzymes, identify the genes required for the methylerythritol phosphate pathway of isoprenoid biosynthesis, and find evidence of sexual reproduction. Analysis of the compact, function-rich genome of P. purpureum suggests that ancestral lineages of red algae acted as mediators of horizontal gene transfer between prokaryotes and photosynthetic eukaryotes, thereby significantly enriching genomes across the tree of photosynthetic life.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Transcript profiling by microarray and marker analysis of the short cotton (Gossypium hirsutum L.) fiber mutant Ligon lintless-1 (Li1)

Cotton fiber length is very important to the quality of textiles.
Biswapriya Biswavas Misra's insight:
Abstract (provisional)Background

Cotton fiber length is very important to the quality of textiles. Understanding the genetics and physiology of cotton fiber elongation can provide valuable tools to the cotton industry by targeting genes or other molecules responsible for fiber elongation. Ligon Lintless-1 (Li1) is a monogenic mutant in Upland cotton (Gossypium hirsutum) which exhibits an early cessation of fiber elongation resulting in very short fibers (< 6mm) at maturity. This presents an excellent model system for studying the underlying molecular and cellular processes involved with cotton fiber elongation. Previous reports have characterized Li1 at early cell wall elongation and during later secondary cell wall synthesis, however there has been very limited analysis of the transition period between these developmental time points.

Results

Physical and morphological measurements of the Li1 mutant fibers were conducted, including measurement of the cellulose content during development. Affymetrix microarrays were used to analyze transcript profiles at the critical developmental time points of 3 days post anthesis (DPA), the late elongation stage of 12 DPA and the early secondary cell wall synthesis stage of 16 DPA. The results indicated severe disruption to key hormonal and other pathways related to fiber development, especially pertaining to the transition stage from elongation to secondary cell wall synthesis. Gene Ontology enrichment analysis identified several key pathways at the transition stage that exhibited altered regulation. Genes involved in ethylene biosynthesis and primary cell wall rearrangement were affected, and a primary cell wall-related cellulose synthase was transcriptionally repressed. Linkage mapping using a population of 2,553 F2 individuals identified SSR markers associated with the Li1 genetic locus on chromosome 22. Linkage mapping in combination with utilizing the diploid G. raimondii genome sequences permitted additional analysis of the region containing the Li1 gene.

Conclusions

The early termination of fiber elongation in the Li1 mutant is likely controlled by an early upstream regulatory factor resulting in the altered regulation of hundreds of downstream genes. Several elongation-related genes that exhibited altered expression profiles in the Li1 mutant were identified. Molecular markers closely associated with the Li1 locus were developed. Results presented here will lay the foundation for further investigation of the genetic and molecular mechanisms of fiber elongation.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Transcriptomic Analysis of a Tertiary Relict Plant, Extreme Xerophyte Reaumuria soongorica to Identify Genes Related to Drought Adaptation

Transcriptomic Analysis of a Tertiary Relict Plant, Extreme Xerophyte Reaumuria soongorica to Identify Genes Related to Drought Adaptation | Plant Genomics | Scoop.it
PLOS ONE: an inclusive, peer-reviewed, open-access resource from the PUBLIC LIBRARY OF SCIENCE. Reports of well-performed scientific studies from all disciplines freely available to the whole world.
Biswapriya Biswavas Misra's insight:
AbstractBackground

Reaumuria soongorica is an extreme xerophyte shrub widely distributed in the desert regions including sand dune, Gobi and marginal loess of central Asia which plays a crucial role to sustain and restore fragile desert ecosystems. However, due to the lacking of the genomic sequences, studies on R. soongorica had mainly limited in physiological responses to drought stress. Here, a deep transcriptomic sequencing of R. soongorica will facilitate molecular functional studies and pave the path to understand drought adaptation for a desert plant.

Methodology/Principal Findings

A total of 53,193,660 clean paired-end reads was generated from the Illumina HiSeq™ 2000 platform. By assembly with Trinity, we got 173,700 contigs and 77,647 unigenes with mean length of 677 bp and N50 of 1109 bp. Over 55% (43,054) unigenes were successfully annotated based on sequence similarity against public databases as well as Rfam and Pfam database. Local BLAST and Kyoto Encyclopedia of Genes and Genomes (KEGG) maps were used to further exhausting seek for candidate genes related to drought adaptation and a set of 123 putative candidate genes were identified. Moreover, all the C4 photosynthesis genes existed and were active in R. soongorica, which has been regarded as a typical C3 plant.

Conclusion/Significance

The assembled unigenes in present work provide abundant genomic information for the functional assignments in an extreme xerophyte R. soongorica, and will help us exploit the genetic basis of how desert plants adapt to drought environment in the near future.

 

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Transcriptome analysis reveals unique C4-like photosynthesis and oil body formation in an arachidonic acid-rich microalga Myrmecia incisa Reisigl H4301

Arachidonic acid (ArA) is important for human health because it is one of the major components of mammalian brain membrane phospholipids.
Biswapriya Biswavas Misra's insight:
Abstract (provisional)Background

Arachidonic acid (ArA) is important for human health because it is one of the major components of mammalian brain membrane phospholipids. The interest in ArA inspired the search for a new sustainable source, and the green microalga Myrmecia incisa Reisigl H4301 has been found a potential ArA-producer due to a high content of intracellular ArA. To gain more molecular information about metabolism pathways, including the biosynthesis of ArA in the non-model microalga, a transcriptomic analysis was performed.

Results

The 454 pyrosequencing generated 371,740 high-quality reads, which were assembled into 51,908 unique sequences consisting of 22,749 contigs and 29,159 singletons. A total of 11,873 unique sequences were annotated through BLAST analysis, and 3,733 were assigned to Gene Ontology (GO) categories. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis uncovered a C4-like photosynthesis pathway in M. incisa. The biosynthesis pathways of lipid particularly those of ArA and triacylglycerol (TAG) were analyzed in detail, and TAG was proposed to be accumulated in oil bodies in the cytosol with the help of caleosin or oil globule-associated proteins. In addition, the carotenoid biosynthesis pathways are discussed.

Conclusion

This transcriptomic analysis of M. incisa enabled a global understanding of mechanisms involved in photosynthesis, de novo biosynthesis of ArA, metabolism of carotenoids, and accumulation of TAG in M. incisa. These findings provided a molecular basis for the research and possibly economic exploitation of this ArA-rich microalga.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

An integrated genetic linkage map for white clover (Trifolium repens L.) with alignment to Medicago

White clover (Trifolium repens L.) is a temperate forage legume with an allotetraploid genome (2n=4x=32) estimated at 1093 Mb.
Biswapriya Biswavas Misra's insight:
Abstract (provisional)Background

White clover (Trifolium repens L.) is a temperate forage legume with an allotetraploid genome (2n=4x=32) estimated at 1093 Mb. Several linkage maps of various sizes, marker sources and completeness are available, however, no integrated map and marker set has explored consistency of linkage analysis among unrelated mapping populations. Such integrative analysis requires tools for homoeologue matching among populations. Development of these tools provides for a consistent framework map of the white clover genome, and facilitates in silico alignment with the model forage legume, Medicago truncatula.

Results

This is the first report of integration of independent linkage maps in white clover, and adds to the literature on methyl filtered GeneThresher(R)-derived microsatellite (simple sequence repeat; SSR) markers for linkage mapping. Gene-targeted SSR markers were discovered in a GeneThresher(R) (TrGT) methyl-filtered database of 364,539 sequences, which yielded 15,647 SSR arrays. Primers were designed for 4,038 arrays and of these, 465 TrGT-SSR markers were used for parental consensus genetic linkage analysis in an F1 mapping population (MP2). This was merged with an EST-SSR consensus genetic map of an independent population (MP1), using markers to match homoeologues and develop a multi-population integrated map of the white clover genome. This integrated map (IM) includes 1109 loci based on 804 SSRs over 1274 cM, covering 97% of the genome at a moderate density of one locus per 1.2 cM. Eighteen candidate genes and one morphological marker were also placed on the IM. Despite being derived from disparate populations and marker sources, the component maps and the derived IM had consistent representations of the white clover genome for marker order and genetic length. In silico analysis at an E-value threshold of 1e-20 revealed substantial co-linearity with the Medicago truncatula genome, and indicates a translocation between T. repens groups 2 and 6 relative to M. truncatula.

Conclusions

This integrated genetic linkage analysis provides a consistent and comprehensive linkage analysis of the white clover genome, with alignment to a model forage legume. Associated marker locus information, particularly the homoeologue-specific markers, offers a new resource for forage legume research to enable genetic analysis and improvement of this forage and grassland species.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Transcriptional profiling of sweetpotato (Ipomoea batatas) roots indicates down-regulation of lignin biosynthesis and up-regulation of starch biosynthesis at an early stag...

The number of fibrous roots that develop into storage roots determines sweetpotato yield.
Biswapriya Biswavas Misra's insight:
Abstract (provisional)Background

The number of fibrous roots that develop into storage roots determines sweetpotato yield. The aim of the present study was to identify the molecular mechanisms involved in the initiation of storage root formation, by performing a detailed transcriptomic analysis of initiating storage roots using next-generation sequencing platforms. A two-step approach was undertaken: (1) generating a database for the sweetpotato root transcriptome using 454-Roche sequencing of a cDNA library created from pooled samples of two root types: fibrous and initiating storage roots; (2) comparing the expression profiles of initiating storage roots and fibrous roots, using the Illumina Genome Analyzer to sequence cDNA libraries of the two root types and map the data onto the root transcriptome database.

Results

Use of the 454-Roche platform generated a total of 524,607 reads, 85.6% of which were clustered into 55,296 contigs that matched 40,278 known genes. The reads, generated by the Illumina Genome Analyzer, were found to map to 31,284 contigs out of the 55,296 contigs serving as the database. A total of 8,353 contigs were found to exhibit differential expression between the two root types (at least 2.5-fold change). The Illumina-based differential expression results were validated for nine putative genes using quantitative real-time PCR. The differential expression profiles indicated down-regulation of classical root functions, such as transport, as well as down-regulation of lignin biosynthesis in initiating storage roots, and up-regulation of carbohydrate metabolism and starch biosynthesis. In addition, data indicated delicate control of regulators of meristematic tissue identity and maintenance, associated with the initiation of storage root formation.

Conclusions

This study adds a valuable resource of sweetpotato root transcript sequences to available data, facilitating the identification of genes of interest. This resource enabled us to identify genes that are involved in the earliest stage of storage root formation, highlighting the reduction in carbon flow toward phenylpropanoid biosynthesis and its delivery into carbohydrate metabolism and starch biosynthesis, as major events involved in storage root initiation. The novel transcripts related to storage root initiation identified in this study provide a starting point for further investigation into the molecular mechanisms underlying this process.

 
more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Multiplexed Illumina sequencing libraries from picogram quantities of DNA

High throughput sequencing is frequently used to discover the location of regulatory interactions on chromatin.
Biswapriya Biswavas Misra's insight:
Abstract (provisional)Background

High throughput sequencing is frequently used to discover the location of regulatory interactions on chromatin. However, techniques that enrich DNA where regulatory activity takes place, such as chromatin immunoprecipitation (ChIP), often yield less DNA than optimal for sequencing library preparation. Existing protocols for picogram-scale libraries require concomitant fragmentation of DNA, pre-amplification, or long overnight steps.

Results

We report a simple and fast library construction method that produces libraries from sub-nanogram quantities of DNA. This protocol yields conventional libraries with barcodes suitable for multiplexed sample analysis on the Illumina platform. We demonstrate the utility of this method by constructing a ChIP-seq library from 100 pg of ChIP DNA that demonstrates equivalent genomic coverage of target regions to a library produced from a larger scale experiment.

Conclusions

Application of this method allows whole genome studies from samples where material or yields are limiting.

 
more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Digital genotyping of sorghum -- a diverse plant species with a large repeat-rich genome

Rapid acquisition of accurate genotyping information is essential for all genetic marker-based studies.
Biswapriya Biswavas Misra's insight:
Abstract (provisional)Background

Rapid acquisition of accurate genotyping information is essential for all genetic marker-based studies. For species with relatively small genomes, complete genome resequencing is a feasible approach for genotyping; however, for species with large and highly repetitive genomes, the acquisition of whole genome sequences for the purpose of genotyping is still relatively inefficient and too expensive to be carried out on a high-throughput basis. Sorghum bicolor is a C4 grass with a sequenced genome size of ~730 Mb, of which ~80% is highly repetitive. We have developed a restriction enzyme targeted genome resequencing method for genetic analysis, termed Digital Genotyping (DG), to be applied to sorghum and other grass species with large repeat-rich genomes.

Results

DG templates are generated using one of three methylation sensitive restriction enzymes that recognize a nested set of 4, 6 or 8 bp GC-rich sequences, enabling varying depth of analysis and integration of results among assays. Variation in sequencing efficiency among DG markers was correlated with template GC-content and length. The expected DG allele sequence was obtained 97.3% of the time with a ratio of expected to alternative allele sequence acquisition of >20:1. A genetic map aligned to the sorghum genome sequence with an average resolution of 1.47 cM was constructed using 1,772 DG markers from 137 recombinant inbred lines. The DG map enhanced the detection of QTL for variation in plant height and precisely aligned QTL such as Dw3 to underlying genes/alleles. Higher-resolution NgoMIV-based DG haplotypes were used to trace the origin of DNA on SBI-06, spanning Ma1 and Dw2 from progenitors to BTx623 and IS3620C. DG marker analysis identified the correct location of two miss-assembled regions and located seven super contigs in the sorghum reference genome sequence.

Conclusion

DG technology provides a cost-effective approach to rapidly generate accurate genotyping data in sorghum. Currently, data derived from DG are used for many marker-based analyses, including marker-assisted breeding, pedigree and QTL analysis, genetic map construction, map-based gene cloning and association studies. DG in combination with whole genome resequencing is dramatically accelerating all aspects of genetic analysis of sorghum, an important genetic reference for C4 grass species.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Global Transcriptome Profiling of Salicornia europaea L. Shoots under NaCl Treatment

Global Transcriptome Profiling of Salicornia europaea L. Shoots under NaCl Treatment | Plant Genomics | Scoop.it
PLOS ONE: an inclusive, peer-reviewed, open-access resource from the PUBLIC LIBRARY OF SCIENCE. Reports of well-performed scientific studies from all disciplines freely available to the whole world.
Biswapriya Biswavas Misra's insight:
AbstractBackground

Soil salinity is a major abiotic stress that limits agriculture productivity worldwide. Salicornia europaea is well adapted to extreme saline environments with more than 1,000 mM NaCl in the soil, so it could serve as an important model species for studying halophilic mechanisms in euhalophytes. To obtain insights into the molecular basis of salt tolerance, we present here the first extensive transcriptome analysis of this species using the Illumina HiSeq™ 2000.

Principal Findings

A total of 41 and 39 million clean reads from the salt-treated (Se200S) and salt-free (SeCKS) tissues of S. europaea shoots were obtained, and de novo assembly produced 97,865 and 101,751 unigenes, respectively. Upon further assembly with EST data from both Se200S and SeCKS, 109,712 high-quality non-redundant unigenes were generated with a mean unigene size of 639 bp. Additionally, a total of 3,979 differentially expressed genes (DEGs) were detected between the Se200S and SeCKS libraries, with 348 unigenes solely expressed in Se200S and 460 unigenes solely expressed in SeCKS. Furthermore, we identified a large number of genes that are involved in ion homeostasis and osmotic adjustment, including cation transporters and proteins for the synthesis of low-molecular compounds. All unigenes were functionally annotated within the COG, GO and KEGG pathways, and 10 genes were validated by qRT-PCR.

Conclusion

Our data contains the extensive sequencing and gene-annotation analysis of S. europaea. This genetic knowledge will be very useful for future studies on the molecular adaptation to abiotic stress in euhalophytes and will facilitate the genetic manipulation of other economically important crops.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Genome-Wide Analysis of Differentially Expressed Genes Relevant to Rhizome Formation in Lotus Root (Nelumbo nucifera Gaertn)

Genome-Wide Analysis of Differentially Expressed Genes Relevant to Rhizome Formation in Lotus Root (Nelumbo nucifera Gaertn) | Plant Genomics | Scoop.it
PLOS ONE: an inclusive, peer-reviewed, open-access resource from the PUBLIC LIBRARY OF SCIENCE. Reports of well-performed scientific studies from all disciplines freely available to the whole world.
Biswapriya Biswavas Misra's insight:
Abstract

Lotus root is a popular wetland vegetable which produces edible rhizome. At the molecular level, the regulation of rhizome formation is very complex, which has not been sufficiently addressed in research. In this study, to identify differentially expressed genes (DEGs) in lotus root, four libraries (L1 library: stolon stage, L2 library: initial swelling stage, L3 library: middle swelling stage, L4: later swelling stage) were constructed from the rhizome development stages. High-throughput tag-sequencing technique was used which is based on Solexa Genome Analyzer Platform. Approximately 5.0 million tags were sequenced, and 4542104, 4474755, 4777919, and 4750348 clean tags including 151282, 137476, 215872, and 166005 distinct tags were obtained after removal of low quality tags from each library respectively. More than 43% distinct tags were unambiguous tags mapping to the reference genes, and 40% were unambiguous tag-mapped genes. From L1, L2, L3, and L4, total 20471, 18785, 23448, and 21778 genes were annotated, after mapping their functions in existing databases. Profiling of gene expression in L1/L2, L2/L3, and L3/L4 libraries were different among most of the selected 20 DEGs. Most of the DEGs in L1/L2 libraries were relevant to fiber development and stress response, while in L2/L3 and L3/L4 libraries, major of the DEGs were involved in metabolism of energy and storage. All up-regulated transcriptional factors in four libraries and 14 important rhizome formation-related genes in four libraries were also identified. In addition, the expression of 9 genes from identified DEGs was performed by qRT-PCR method. In a summary, this study provides a comprehensive understanding of gene expression during the rhizome formation in lotus root.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Transcriptome Profiling of Radish (Raphanus sativus L.) Root and Identification of Genes Involved in Response to Lead (Pb) Stress with Next Generation Sequencing

Transcriptome Profiling of Radish (Raphanus sativus L.) Root and Identification of Genes Involved in Response to Lead (Pb) Stress with Next Generation Sequencing | Plant Genomics | Scoop.it
PLOS ONE: an inclusive, peer-reviewed, open-access resource from the PUBLIC LIBRARY OF SCIENCE. Reports of well-performed scientific studies from all disciplines freely available to the whole world.
Biswapriya Biswavas Misra's insight:
Abstract

Lead (Pb), one of the most toxic heavy metals, can be absorbed and accumulated by plant roots and then enter the food chain resulting in potential health risks for human beings. The radish (Raphanus sativus L.) is an important root vegetable crop with fleshy taproots as the edible parts. Little is known about the mechanism by which radishes respond to Pb stress at the molecular level. In this study, Next Generation Sequencing (NGS)–based RNA-seq technology was employed to characterize the de novo transcriptome of radish roots and identify differentially expressed genes (DEGs) during Pb stress. A total of 68,940 assembled unique transcripts including 33,337 unigenes were obtained from radish root cDNA samples. Based on the assembled de novo transcriptome, 4,614 DEGs were detected between the two libraries of untreated (CK) and Pb-treated (Pb1000) roots. Gene Ontology (GO) and pathway enrichment analysis revealed that upregulated DEGs under Pb stress are predominately involved in defense responses in cell walls and glutathione metabolism-related processes, while downregulated DEGs were mainly involved in carbohydrate metabolism-related pathways. The expression patterns of 22 selected genes were validated by quantitative real-time PCR, and the results were highly accordant with the Solexa analysis. Furthermore, many candidate genes, which were involved in defense and detoxification mechanisms including signaling protein kinases, transcription factors, metal transporters and chelate compound biosynthesis related enzymes, were successfully identified in response to heavy metal Pb. Identification of potential DEGs involved in responses to Pb stress significantly reflected alterations in major biological processes and metabolic pathways. The molecular basis of the response to Pb stress in radishes was comprehensively characterized. Useful information and new insights were provided for investigating the molecular regulation mechanism of heavy metal Pb accumulation and tolerance in root vegetable crops.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Global transcriptome profiles of Camellia sinensis during cold acclimation

Tea is the most popular non-alcoholic health beverage in the world. The tea plant (Camellia sinensis (L.) O. Kuntze) needs to undergo a cold acclimation process to enhance its freezing tolerance in winter.
Biswapriya Biswavas Misra's insight:
Abstract (provisional)Background

Tea is the most popular non-alcoholic health beverage in the world. The tea plant (Camellia sinensis (L.) O. Kuntze) needs to undergo a cold acclimation process to enhance its freezing tolerance in winter. Changes that occur at the molecular level in response to low temperatures are poorly understood in tea plants. To elucidate the molecular mechanisms of cold acclimation, we employed RNA-Seq and digital gene expression (DGE) technologies to the study of genome-wide expression profiles during cold acclimation in tea plants.

Results

Using the Illumina sequencing platform, we obtained approximately 57.35 million RNA-Seq reads. These reads were assembled into 216,831 transcripts, with an average length of 356 bp and an N50 of 529 bp. In total, 1,770 differentially expressed transcripts were identified, of which 1,168 were up-regulated and 602 down-regulated. These include a group of cold sensor or signal transduction genes, cold-responsive transcription factor genes, plasma membrane stabilization related genes, osmosensing-responsive genes, and detoxification enzyme genes. DGE and quantitative RT-PCR analysis further confirmed the results from RNA-Seq analysis. Pathway analysis indicated that the "carbohydrate metabolism pathway" and the "calcium signaling pathway" might play a vital role in tea plants' responses to cold stress.

Conclusions

Our study presents a global survey of transcriptome profiles of tea plants in response to low, non-freezing temperatures and yields insights into the molecular mechanisms of tea plants during the cold acclimation process. It could also serve as a valuable resource for relevant research on cold-tolerance and help to explore the cold-related genes in improving the understanding of low-temperature tolerance and plant-environment interactions.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Global transcriptome profiles of Camellia sinensis during cold acclimation

Tea is the most popular non-alcoholic health beverage in the world. The tea plant (Camellia sinensis (L.) O. Kuntze) needs to undergo a cold acclimation process to enhance its freezing tolerance in winter.
Biswapriya Biswavas Misra's insight:
Abstract (provisional)Background

Tea is the most popular non-alcoholic health beverage in the world. The tea plant (Camellia sinensis (L.) O. Kuntze) needs to undergo a cold acclimation process to enhance its freezing tolerance in winter. Changes that occur at the molecular level in response to low temperatures are poorly understood in tea plants. To elucidate the molecular mechanisms of cold acclimation, we employed RNA-Seq and digital gene expression (DGE) technologies to the study of genome-wide expression profiles during cold acclimation in tea plants.

Results

Using the Illumina sequencing platform, we obtained approximately 57.35 million RNA-Seq reads. These reads were assembled into 216,831 transcripts, with an average length of 356 bp and an N50 of 529 bp. In total, 1,770 differentially expressed transcripts were identified, of which 1,168 were up-regulated and 602 down-regulated. These include a group of cold sensor or signal transduction genes, cold-responsive transcription factor genes, plasma membrane stabilization related genes, osmosensing-responsive genes, and detoxification enzyme genes. DGE and quantitative RT-PCR analysis further confirmed the results from RNA-Seq analysis. Pathway analysis indicated that the "carbohydrate metabolism pathway" and the "calcium signaling pathway" might play a vital role in tea plants' responses to cold stress.

Conclusions

Our study presents a global survey of transcriptome profiles of tea plants in response to low, non-freezing temperatures and yields insights into the molecular mechanisms of tea plants during the cold acclimation process. It could also serve as a valuable resource for relevant research on cold-tolerance and help to explore the cold-related genes in improving the understanding of low-temperature tolerance and plant-environment interactions.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

The early days of late blight

Biswapriya Biswavas Misra's insight:

Large-scale DNA sequencing of samples of foliage collected in the 19th century from plants infected with late blight has shown that the potato famines of the 1840s were triggered by a single clonal lineage of Phytophthora infestans, called HERB-1, which persisted for at least 50 years.

- See more at: http://elife.elifesciences.org/content/2/e00954#sthash.AmgBpEVd.dpuf

Large-scale DNA sequencing of samples of foliage collected in the 19th century from plants infected with late blight has shown that the potato famines of the 1840s were triggered by a single clonal lineage of Phytophthora infestans, called HERB-1, which persisted for at least 50 years.

- See more at: http://elife.elifesciences.org/content/2/e00954#sthash.AmgBpEVd.dpuf

Large-scale DNA sequencing of samples of foliage collected in the 19th century from plants infected with late blight has shown that the potato famines of the 1840s were triggered by a single clonal lineage of Phytophthora infestans, called HERB-1, which persisted for at least 50 years.

- See more at: http://elife.elifesciences.org/content/2/e00954#sthash.AmgBpEVd.dpuf

Large-scale DNA sequencing of samples of foliage collected in the 19th century from plants infected with late blight has shown that the potato famines of the 1840s were triggered by a single clonal lineage of Phytophthora infestans, called HERB-1, which persisted for at least 50 years.

- See more at: http://elife.elifesciences.org/content/2/e00954#sthash.AmgBpEVd.dpuf
more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Genome Size Variation among and within Camellia Species by Using Flow Cytometric Analysis

Genome Size Variation among and within Camellia Species by Using Flow Cytometric Analysis | Plant Genomics | Scoop.it
PLOS ONE: an inclusive, peer-reviewed, open-access resource from the PUBLIC LIBRARY OF SCIENCE. Reports of well-performed scientific studies from all disciplines freely available to the whole world.
Biswapriya Biswavas Misra's insight:
AbstractBackground

The genus Camellia, belonging to the family Theaceae, is economically important group in flowering plants. Frequent interspecific hybridization together with polyploidization has made them become taxonomically “difficult taxa”. The DNA content is often used to measure genome size variation and has largely advanced our understanding of plant evolution and genome variation. The goals of this study were to investigate patterns of interspecific and intraspecific variation of DNA contents and further explore genome size evolution in a phylogenetic context of the genus.

Methodology/Principal Findings

The DNA amount in the genus was determined by using propidium iodide flow cytometry analysis for a total of 139 individual plants representing almost all sections of the two subgenera, Camellia and Thea. An improved WPB buffer was proven to be suitable for the Camellia species, which was able to counteract the negative effects of secondary metabolite and generated high-quality results with low coefficient of variation values (CV) <5%. Our results showed trivial effects on different tissues of flowers, leaves and buds as well as cytosolic compounds on the estimation of DNA amount. The DNA content of C. sinensis var. assamica was estimated to be 1C = 3.01 pg by flow cytometric analysis, which is equal to a genome size of about 2940 Mb.

Conclusion

Intraspecific and interspecific variations were observed in the genus Camellia, and as expected, the latter was larger than the former. Our study suggests a directional trend of increasing genome size in the genus Camellia probably owing to the frequent polyploidization events.

 

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Web-based visual analysis for high-throughput genomics

Visualization plays an essential role in genomics research by making it possible to observe correlations and trends in large datasets as well as communicate findings to others.
Biswapriya Biswavas Misra's insight:
Abstract (provisional)Background

Visualization plays an essential role in genomics research by making it possible to observe correlations and trends in large datasets as well as communicate findings to others. Visual analysis, which combines visualization with analysis tools to enable seamless use of both approaches for scientific investigation, offers a powerful method for performing complex genomic analyses. However, there are numerous challenges that arise when creating rich, interactive Web-based visualizations/visual analysis applications for high-throughput genomics. These challenges include managing data flow from Web server to Web browser, integrating analysis tools and visualizations, and sharing visualizations with colleagues.

Results

We have created a platform simplifies the creation of Web-based visualization/visual analysis applications for high-throughput genomics. This platform provides components that make it simple to efficiently query very large datasets, draw common representations of genomic data, integrate with analysis tools, and share or publish fully interactive visualizations. Using this platform, we have created a Circos-style genome-wide viewer, a generic scatter plot for correlation analysis, an interactive phylogenetic tree, a scalable genome browser for next-generation sequencing data, and an application for systematically exploring tool parameter spaces to find good parameter values. All visualizations are interactive and fully customizable. The platform is integrated with the Galaxy (http://galaxyproject.org) genomics workbench, making it easy to integrate new visual applications into Galaxy.

Conclusions

Visualization and visual analysis play an important role in high-throughput genomics experiments, and approaches are needed to make it easier to create applications for these activities. Our framework provides a foundation for creating Web-based visualizations and integrating them into Galaxy. Finally, the visualizations we have created using the framework are useful tools for high-throughput genomics experiments.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Novel genomic approaches unravel genetic architecture of complex traits in apple

Understanding the genetic architecture of quantitative traits is important for developing genome-based crop improvement methods. Genome-wide association study (GWAS) is a powerful technique for mining novel functional variants.
Biswapriya Biswavas Misra's insight:
Abstract (provisional)Background

Understanding the genetic architecture of quantitative traits is important for developing genome-based crop improvement methods. Genome-wide association study (GWAS) is a powerful technique for mining novel functional variants. Using a family-based design involving 1,200 apple (Malus x domestica Borkh.) seedlings genotyped for an 8K SNP array, we report the first systematic evaluation of the relative contributions of different genomic regions to various traits related to eating quality and susceptibility to some physiological disorders. Single-SNP analyses models that accounted for population structure, or not, were compared with models fitting all markers simultaneously. The patterns of linkage disequilibrium (LD) were also investigated.

Results

A high degree of LD even at longer distances between markers was observed, and the patterns of LD decay were similar across successive generations. Genomic regions were identified, some of which coincided with known candidate genes, with significant effects on various traits. Phenotypic variation explained by the loci identified through a whole-genome scan ranged from 3% to 25% across different traits, while fitting all markers simultaneously generally provided heritability estimates close to those from pedigree-based analysis. Results from 'Q+K' and 'K' models were very similar, suggesting that the SNP-based kinship matrix captures most of the underlying population structure. Correlations between allele substitution effects obtained from single-marker and all-marker analyses were about 0.90 for all traits. Use of SNP-derived realized relationships in linear mixed models provided a better goodness-of-fit than pedigree-based expected relationships. Genomic regions with probable pleiotropic effects were supported by the corresponding higher linkage group (LG) level estimated genetic correlations.

Conclusions

The accuracy of artificial selection in plants species can be increased by using more precise marker-derived estimates of realized coefficients of relationships. All-marker analyses that indirectly account for population- and pedigree structure will be a credible alternative to single-SNP analyses in GWAS. This study revealed large differences in the genetic architecture of apple fruit traits, and the marker-trait associations identified here will help develop genome-based breeding methods for apple cultivar development.

more...
No comment yet.