Plant Genomics
14.0K views | +0 today
Follow
Plant Genomics
Updates on Plant Genomics
Your new post is loading...
Your new post is loading...
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Transcriptomic analysis of Camellia ptilophylla and identification of genes associated with flavonoid and caffeine biosynthesis.

Transcriptomic analysis of Camellia ptilophylla and identification of genes associated with flavonoid and caffeine biosynthesis. | Plant Genomics | Scoop.it
Genet Mol Res. 2015 Dec 29;14(4):18731-42. doi: 10.4238/2015.December.28.22.
Biswapriya Biswavas Misra's insight:

Camellia ptilophylla, or cocoa tea, is naturally decaffeinated and its predominant catechins and purine alkaloids are trans-catechins and theobromine Regular tea [Camellia sinensis (L.) O. Ktze.] is evolutionarily close to cocoa tea and produces cis-catechins and caffeine. Here, the transcriptome of C. ptilophylla was sequenced using the 101-bp paired-end technique. The quality of the raw data was assessed to yield 70,227,953 cleaned reads totaling 7.09 Gbp, which were assembled de novo into 56,695 unique transcripts and then clustered into 44,749 unigenes. In catechin biosynthesis, leucoanthocyanidin reductase (LAR) catalyzes the transition of leucoanthocyanidin to trans-catechins, while anthocyanidin synthase (ANS) and anthocyanidin reductase (ANR) catalyze cis-catechin production. Our data demonstrate that two LAR genes (CpLAR1 and CpLAR2) by C. ptilophylla may be advantageous due to the combined effects of this quantitative trait, permitting increased leucoanthocyanidin consumption for the synthesis of trans-catechins. In contrast, the only ANS gene observed in C. sinensis (CsANS) shared high identity (99.2%) to one homolog from C. ptilophylla (CpANS1), but lower identity (~80%) to another (CpANS2). We hypothesized that the diverged CpANS2 might have lost its ability to synthesize cis-catechins. C. ptilophylla and C. sinensis each contain two copies of ANR, which share high identity and may share the same function. Transcriptomic sequencing captured two N-methyl nucleosidase genes named NMT1 and NMT2. NMT2 was highly identical to three orthologous genes TCS2, PCS2, and ICS2, which did not undergo methylation in vitro; in contrast, NMT1 was less identical to TCS, PCS and ICS, indicating that NMT1 may undergo neofunctionalization.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Sugarcane giant borer transcriptome analysis and identification of genes related to digestion. - PubMed - NCBI

PLoS One. 2015 Feb 23;10(2):e0118231. doi: 10.1371/journal.pone.0118231. eCollection 2015. Research Support, Non-U.S. Gov't
Biswapriya Biswavas Misra's insight:

Sugarcane is a widely cultivated plant that serves primarily as a source of sugar and ethanol. Its annual yield can be significantly reduced by the action of several insect pests including the sugarcane giant borer (Telchin licus licus), a lepidopteran that presents a long life cycle and which efforts to control it using pesticides have been inefficient. Although its economical relevance, only a few DNA sequences are available for this species in the GenBank. Pyrosequencing technology was used to investigate the transcriptome of several developmental stages of the insect. To maximize transcript diversity, a pool of total RNA was extracted from whole body insects and used to construct a normalized cDNA database. Sequencing produced over 650,000 reads, which were de novo assembled to generate a reference library of 23,824 contigs. After quality score and annotation, 43% of the contigs had at least one BLAST hit against the NCBI non-redundant database, and 40% showed similarities with the lepidopteran Bombyx mori. In a further analysis, we conducted a comparison with Manduca sexta midgut sequences to identify transcripts of genes involved in digestion. Of these transcripts, many presented an expansion or depletion in gene number, compared to B. mori genome. From the sugarcane giant borer (SGB) transcriptome, a number of aminopeptidase N (APN) cDNAs were characterized based on homology to those reported as Cry toxin receptors. This is the first report that provides a large-scale EST database for the species. Transcriptome analysis will certainly be useful to identify novel developmental genes, to better understand the insect's biology and to guide the development of new strategies for insect-pest control.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Transcriptome profiling of Kentucky bluegrass (Poa pratensis L.) accessions in response to salt stress

Transcriptome profiling of Kentucky bluegrass (Poa pratensis L.) accessions in response to salt stress | Plant Genomics | Scoop.it
BMC Genomics is an open access journal publishing original peer-reviewed research articles in all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work. BMC series - open, inclusive and trusted.
Biswapriya Biswavas Misra's insight:
Background

Kentucky bluegrass (Poa pratensis L.) is a prominent turfgrass in the cool-season regions, but it is sensitive to salt stress. Previously, a relatively salt tolerant Kentucky bluegrass accession was identified that maintained green colour under consistent salt applications. In this study, a transcriptome study between the tolerant (PI 372742) accession and a salt susceptible (PI 368233) accession was conducted, under control and salt treatments, and in shoot and root tissues.

Results

Sample replicates grouped tightly by tissue and treatment, and fewer differentially expressed transcripts were detected in the tolerant PI 372742 samples compared to the susceptible PI 368233 samples, and in root tissues compared to shoot tissues. A de novo assembly resulted in 388,764 transcripts, with 36,587 detected as differentially expressed. Approximately 75 % of transcripts had homology based annotations, with several differences in GO terms enriched between the PI 368233 and PI 372742 samples. Gene expression profiling identified salt-responsive gene families that were consistently down-regulated in PI 372742 and unlikely to contribute to salt tolerance in Kentucky bluegrass. Gene expression profiling also identified sets of transcripts relating to transcription factors, ion and water transport genes, and oxidation-reduction process genes with likely roles in salt tolerance.

Conclusions

The transcript assembly represents the first such assembly in the highly polyploidy, facultative apomictic Kentucky bluegrass. The transcripts identified provide genetic information on how this plant responds to and tolerates salt stress in both shoot and root tissues, and can be used for further genetic testing and introgression.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Comparative genome-wide transcriptome analysis of Vitis vinifera responses to adapted and non-adapted strains of two-spotted spider mite, Tetranyhus urticae

Comparative genome-wide transcriptome analysis of Vitis vinifera responses to adapted and non-adapted strains of two-spotted spider mite, Tetranyhus urticae | Plant Genomics | Scoop.it
BMC Genomics is an open access journal publishing original peer-reviewed research articles in all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work. BMC series - open, inclusive and trusted.
Biswapriya Biswavas Misra's insight:
Abstract
Background

The two-spotted spider mite, Tetranychus urticae, is an extreme generalist plant pest. Even though mites can feed on many plant species, local mite populations form host races that do not perform equally well on all potential hosts. An acquisition of the ability to evade plant defenses is fundamental for mite’s ability to use a particular plant as a host. Thus, understanding the interactions between the plant and mites with different host adaptation status allows the identification of functional plant defenses and ways mites can evolve to avoid them.

Results

The grapevine genome-wide transcriptional responses to spider mite strains that are non-adapted and adapted to grapevine as a host were examined. Comparative transcriptome analysis of grapevine responses to these mite strains identified the existence of weak responses induced by the feeding of the non-adapted strain. In contrast, strong but ineffective induced defenses were triggered upon feeding of the adapted strain. A comparative meta-analysis of Arabidopsis, tomato and grapevine responses to mite feeding identified a core of 36 highly conserved genes involved in the perception, regulation and metabolism that were commonly induced in all three species by mite herbivory.

Conclusions

This study describes the genome-wide grapevine transcriptional responses to herbivory of mite strains that differ in their ability to use grapevine as a host. It raises hypotheses whose testing will lead to our understanding of grapevine defenses and mite adaptations to them.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Exploring the genomic traits of fungus-feeding bacterial genus Collimonas

Exploring the genomic traits of fungus-feeding bacterial genus Collimonas | Plant Genomics | Scoop.it
Exploring the genomic traits of fungus-feeding bacterial genus Collimonas
Biswapriya Biswavas Misra's insight:
Abstract
Background

Collimonas is a genus belonging to the class of Betaproteobacteria and consists mostly of soil bacteria with the ability to exploit living fungi as food source (mycophagy). Collimonas strains differ in a range of activities, including swimming motility, quorum sensing, extracellular protease activity, siderophore production, and antimicrobial activities.

Results

In order to reveal ecological traits possibly related to Collimonas lifestyle and secondary metabolites production, we performed a comparative genomics analysis based on whole-genome sequencing of six strains representing 3 recognized species. The analysis revealed that the core genome represents 43.1 to 52.7 % of the genomes of the six individual strains. These include genes coding for extracellular enzymes (chitinase, peptidase, phospholipase), iron acquisition and type II secretion systems. In the variable genome, differences were found in genes coding for secondary metabolites (e.g. tripropeptin A and volatile terpenes), several unknown orphan polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS), nonribosomal peptide synthetase (NRPS) gene clusters, a new lipopeptide and type III and type VI secretion systems. Potential roles of the latter genes in the interaction with other organisms were investigated. Mutation of a gene involved in tripropeptin A biosynthesis strongly reduced the antibacterial activity against Staphylococcus aureus, while disruption of a gene involved in the biosynthesis of the new lipopeptide had a large effect on the antifungal/oomycetal activities.

Conclusions

Overall our results indicated that Collimonas genomes harbour many genes encoding for novel enzymes and secondary metabolites (including terpenes) important for interactions with other organisms and revealed genomic plasticity, which reflect the behaviour, antimicrobial activity and lifestylesof Collimonas spp.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Transcriptional profiling of the leaves of near-isogenic rice lines with contrasting drought tolerance at the reproductive stage in response to water deficit

Transcriptional profiling of the leaves of near-isogenic rice lines with contrasting drought tolerance at the reproductive stage in response to water deficit | Plant Genomics | Scoop.it
BMC Genomics is an open access journal publishing original peer-reviewed research articles in all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work. BMC series - open, inclusive and trusted.
Biswapriya Biswavas Misra's insight:
Abstract
Background

Drought tolerance is a complex quantitative trait that involves the coordination of a vast array of genes belonging to different pathways. To identify genes related to the drought-tolerance pathway in rice, we carried out gene-expression profiling of the leaves of near-isogenic lines (NILs) with similar genetic backgrounds and different set of QTLs but contrasting drought tolerance levels in response to long-term drought-stress treatments. This work will help differentiate mechanisms of tolerance in contrasting NILs and accelerate molecular breeding programs to improve drought tolerance in this crop.

Results

The two pairs of rice NILs, developed at the International Rice Research Institute, along with the drought-susceptible parent, IR64, showed distinct gene-expression profiles in leaves under different water-deficit (WD) treatments. Drought tolerance in the highly drought-tolerant NIL (DTN), IR77298-14-1-2-B-10, could be attributed to the up-regulation of genes with calcium ion binding, transferase, hydrolase and transcription factor activities, whereas in the moderate DTN, IR77298-5-6-B-18, genes with transporter, catalytic and structural molecule activities were up-regulated under WD. In IR77298-14-1-2-B-10, the induced genes were characterized by the presence of regulatory motifs in their promoters, including TGGTTAGTACC and ([CT]AAC[GT]G){2}, which are specific to the TFIIIA and Myb transcription factors, respectively. In IR77298-5-6-B-18, promoters containing a GCAC[AG][ACGT][AT]TCCC[AG]A[ACGT]G[CT] motif, common to MADS(AP1), HD-ZIP, AP2 and YABBY, were induced, suggesting that these factors may play key roles in the regulation of drought tolerance in these two DTNs under severe WD.

Conclusions

We report here that the two pairs of NILs with different levels of drought tolerance may elucidate potential mechanisms and pathways through transcriptome data from leaf tissue. The present study serves as a resource for marker discovery and provides detailed insight into the gene-expression profiles of rice leaves, including the main functional categories of drought-responsive genes and the genes that are involved in drought-tolerance mechanisms, to help breeders identify candidate genes (both up- and down-regulated) associated with drought tolerance and suitable targets for manipulating the drought-tolerance trait in rice.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Transcriptome analysis of secondary cell wall development in Medicago truncatula

Transcriptome analysis of secondary cell wall development in Medicago truncatula | Plant Genomics | Scoop.it
BMC Genomics is an open access journal publishing original peer-reviewed research articles in all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work. BMC series - open, inclusive and trusted.
Biswapriya Biswavas Misra's insight:
Background

Legumes are important to humans by providing food, feed and raw materials for industrial utilizations. Some legumes, such as alfalfa, are potential bioenergy crops due to their high biomass productivity. Global transcriptional profiling has been successfully used to identify genes and regulatory pathways in secondary cell wall thickening in Arabidopsis, but such transcriptome data is lacking in legumes.

Results

A systematic microarray assay and high through-put real time PCR analysis of secondary cell wall development were performed along stem maturation in Medicago truncatula. More than 11,000 genes were differentially expressed during stem maturation, and were categorized into 10 expression clusters. Among these, 279 transcription factor genes were correlated with lignin/cellulose biosynthesis, therefore representing putative regulators of secondary wall development. The b-ZIP, NAC, WRKY, C2H2 zinc finger (ZF), homeobox, and HSF gene families were over-represented. Gene co-expression network analysis was employed to identify transcription factors that may regulate the biosynthesis of lignin, cellulose and hemicellulose. As a complementary approach to microarray, real-time PCR analysis was used to characterize the expression of 1,045 transcription factors in the stem samples, and 64 of these were upregulated more than 5-fold during stem maturation. Reverse genetics characterization of a cellulose synthase gene in cluster 10 confirmed its function in xylem development.

Conclusions

This study provides a useful transcriptome and expression resource for understanding cell wall development, which is pivotal to enhance biomass production in legumes.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Construction of high resolution genetic linkage maps to improve the soybean genome sequence assembly Glyma1.01

Construction of high resolution genetic linkage maps to improve the soybean genome sequence assembly Glyma1.01 | Plant Genomics | Scoop.it
BMC Genomics is an open access journal publishing original peer-reviewed research articles in all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work. BMC series - open, inclusive and trusted.
Biswapriya Biswavas Misra's insight:
Background

A landmark in soybean research, Glyma1.01, the first whole genome sequence of variety Williams 82 (Glycine max L. Merr.) was completed in 2010 and is widely used. However, because the assembly was primarily built based on the linkage maps constructed with a limited number of markers and recombinant inbred lines (RILs), the assembled sequence, especially in some genomic regions with sparse numbers of anchoring markers, needs to be improved. Molecular markers are being used by researchers in the soybean community, however, with the updating of the Glyma1.01 build based on the high-resolution linkage maps resulting from this research, the genome positions of these markers need to be mapped.

Results

Two high density genetic linkage maps were constructed based on 21,478 single nucleotide polymorphism loci mapped in the Williams 82 x G. soja (Sieb. & Zucc.) PI479752 population with 1083 RILs and 11,922 loci mapped in the Essex x Williams 82 population with 922 RILs. There were 37 regions or single markers where marker order in the two populations was in agreement but was not consistent with the physical position in the Glyma1.01 build. In addition, 28 previously unanchored scaffolds were positioned. Map data were used to identify false joins in the Glyma1.01 assembly and the corresponding scaffolds were broken and reassembled to the new assembly, Wm82.a2.v1. Based upon the plots of the genetic on physical distance of the loci, the euchromatic and heterochromatic regions along each chromosome in the new assembly were delimited. Genomic positions of the commonly used markers contained in BARCSOYSSR_1.0 database and the SoySNP50K BeadChip were updated based upon the Wm82.a2.v1 assembly.

Conclusions

The information will facilitate the study of recombination hot spots in the soybean genome, identification of genes or quantitative trait loci controlling yield, seed quality and resistance to biotic or abiotic stresses as well as other genetic or genomic research.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Pangenome-wide and molecular evolution analyses of the Pseudomonas aeruginosa species

Pangenome-wide and molecular evolution analyses of the Pseudomonas aeruginosa species | Plant Genomics | Scoop.it
BMC Genomics is an open access journal publishing original peer-reviewed research articles in all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work. BMC series - open, inclusive and trusted.
Biswapriya Biswavas Misra's insight:
Abstract
Background

Drug treatments and vaccine designs against the opportunistic human pathogen Pseudomonas aeruginosa have multiple issues, all associated with the diverse genetic traits present in this pathogen, ranging from multi-drug resistant genes to the molecular machinery for the biosynthesis of biofilms. Several candidate vaccines against P. aeruginosa have been developed, which target the outer membrane proteins; however, major issues arise when attempting to establish complete protection against this pathogen due to its presumably genotypic variation at the strain level. To shed light on this concern, we proposed this study to assess the P. aeruginosa pangenome and its molecular evolution across multiple strains.

Results

The P. aeruginosa pangenome was estimated to contain more than 16,000 non-redundant genes, and approximately 15 % of these constituted the core genome. Functional analyses of the accessory genome indicated a wide presence of genetic elements directly associated with pathogenicity. An in-depth molecular evolution analysis revealed the full landscape of selection forces acting on the P. aeruginosa pangenome, in which purifying selection drives evolution in the genome of this human pathogen. We also detected distinctive positive selection in a wide variety of outer membrane proteins, with the data supporting the concept of substantial genetic variation in proteins probably recognized as antigens. Approaching the evolutionary information of genes under extremely positive selection, we designed a new Multi-Locus Sequencing Typing assay for an informative, rapid, and cost-effective genotyping of P. aeruginosa clinical isolates.

Conclusions

We report the unprecedented pangenome characterization of P. aeruginosa on a large scale, which included almost 200 bacterial genomes from one single species and a molecular evolutionary analysis at the pangenome scale. Evolutionary information presented here provides a clear explanation of the issues associated with the use of protein conjugates from pili, flagella, or secretion systems as antigens for vaccine design, which exhibit high genetic variation in terms of non-synonymous substitutions in P. aeruginosa strains.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Discovery and profiling of small RNAs responsive to stress conditions in the plant pathogen Pectobacterium atrosepticum

Discovery and profiling of small RNAs responsive to stress conditions in the plant pathogen Pectobacterium atrosepticum | Plant Genomics | Scoop.it
BMC Genomics is an open access journal publishing original peer-reviewed research articles in all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work. BMC series - open, inclusive and trusted.
Biswapriya Biswavas Misra's insight:
Abstract
Background

Small RNAs (sRNAs) have emerged as important regulatory molecules and have been studied in several bacteria. However, to date, there have been no whole-transcriptome studies on sRNAs in any of the Soft Rot Enterobacteriaceae (SRE) group of pathogens. Although the main ecological niches for these pathogens are plants, a significant part of their life cycle is undertaken outside their host within adverse soil environment. However, the mechanisms of SRE adaptation to this harsh nutrient-deficient environment are poorly understood.

Results

In the study reported herein, by using strand-specific RNA-seq analysis and in silico sRNA predictions, we describe the sRNA pool of Pectobacterium atrosepticum and reveal numerous sRNA candidates, including those that are induced during starvation-activated stress responses. Consequently, strand-specific RNA-seq enabled detection of 137 sRNAs and sRNA candidates under starvation conditions; 25 of these sRNAs were predicted for this bacterium in silico. Functional annotations were computationally assigned to 68 sRNAs. The expression of sRNAs in P. atrosepticum was compared under growth-promoting and starvation conditions: 68 sRNAs were differentially expressed with 47 sRNAs up-regulated under nutrient-deficient conditions. Conservation analysis using BLAST showed that most of the identified sRNAs are conserved within the SRE. Subsequently, we identified 9 novel sRNAs within the P. atrosepticum genome.

Conclusions

Since many of the identified sRNAs are starvation-induced, the results of our study suggests that sRNAs play key roles in bacterial adaptive response. Finally, this work provides a basis for future experimental characterization and validation of sRNAs in plant pathogens.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Genome-wide transcriptome analysis of soybean primary root under varying water-deficit conditions

Genome-wide transcriptome analysis of soybean primary root under varying water-deficit conditions | Plant Genomics | Scoop.it
BMC Genomics is an open access journal publishing original peer-reviewed research articles in all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work. BMC series - open, inclusive and trusted.
Biswapriya Biswavas Misra's insight:
Background

Soybean is a major crop that provides an important source of protein and oil to humans and animals, but its production can be dramatically decreased by the occurrence of drought stress. Soybeans can survive drought stress if there is a robust and deep root system at the early vegetative growth stage. However, little is known about the genome-wide molecular mechanisms contributing to soybean root system architecture. This study was performed to gain knowledge on transcriptome changes and related molecular mechanisms contributing to soybean root development under water limited conditions.

Results

The soybean Williams 82 genotype was subjected to very mild stress (VMS), mild stress (MS) and severe stress (SS) conditions, as well as recovery from the severe stress after re-watering (SR). In total, 6,609 genes in the roots showed differential expression patterns in response to different water-deficit stress levels. Genes involved in hormone (Auxin/Ethylene), carbohydrate, and cell wall-related metabolism (XTH/lipid/flavonoids/lignin) pathways were differentially regulated in the soybean root system. Several transcription factors (TFs) regulating root growth and responses under varying water-deficit conditions were identified and the expression patterns of six TFs were found to be common across the stress levels. Further analysis on the whole plant level led to the finding of tissue-specific or water-deficit levels specific regulation of transcription factors. Analysis of the over-represented motif of different gene groups revealed several new cis-elements associated with different levels of water deficit. The expression patterns of 18 genes were confirmed byquantitative reverse transcription polymerase chain reaction method and demonstrated the accuracy and effectiveness of RNA-Seq.

Conclusions

The primary root specific transcriptome in soybean can enable a better understanding of the root response to water deficit conditions. The genes detected in root tissues that were associated with key hormones, carbohydrates, and cell wall-related metabolism could play a vital role in achieving drought tolerance and could be promising candidates for future functional characterization. TFs involved in the soybean root and at the whole plant level could be used for future network analysis between TFs and cis-elements. All of these findings will be helpful in elucidating the molecular mechanisms associated with water stress responses in soybean roots.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Organ-specific regulation of growth-defense tradeoffs by plants

Organ-specific regulation of growth-defense tradeoffs by plants | Plant Genomics | Scoop.it
Biswapriya Biswavas Misra's insight:

Plants grow while also defending themselves against phylogenetically unrelated pathogens. Because defense and growth are both costly programs, a plant's success in colonizing resource-scarce environments requires tradeoffs between the two. Here, we summarize efforts aimed at understanding how plants use iterative tradeoffs to modulate differential organ growth when defenses are elicited. First, we focus on shoots to illustrate how light, in conjunction with the growth hormone gibberellin (GA) and the defense hormone jasmonic acid (JA), act to finely regulate defense and growth programs in this organ. Second, we expand on the regulation of growth-defense trade-offs in the root, a less well-studied topic despite the critical role of this organ in acquiring resources in an environment deeply entrenched with disparate populations of microbes.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Frontiers | Multi-Omics Approach Identifies Molecular Mechanisms of Plant-Fungus Mycorrhizal Interaction

Frontiers | Multi-Omics Approach Identifies Molecular Mechanisms of Plant-Fungus Mycorrhizal Interaction | Plant Genomics | Scoop.it
In mycorrhizal symbiosis, plant roots form close, mutually beneficial interactions with soil fungi. Before this mycorrhizal interaction can be established however, plant roots must be capable of detecting potential beneficial fungal partners and initiating the gene expression patterns necessary to begin symbiosis. To predict a plant root – mycorrhizal fungi sensor systems, we analyzed in vitro experiments of Populus tremuloides (aspen tree) and Laccaria bicolor (mycorrhizal fungi) interaction and leveraged over 200 previously published transcriptomic experimental data sets, 159 experimentally validated plant transcription factor binding motifs, and more than 120-thousand experimentally validated protein-protein interactions to generate models of pre-mycorrhizal sensor systems in aspen root. These sensor mechanisms link extracellular signaling molecules with gene regulation through a network comprised of membrane receptors, signal cascade proteins, transcription factors, and transcription factor biding DNA motifs. Modeling predicted four pre-mycorrhizal sensor complexes in aspen that interact with fifteen transcription factors to regulate the expression of 1184 genes in response to extracellular signals synthesized by Laccaria. Predicted extracellular signaling molecules include common signaling molecules such as phenylpropanoids, salicylate, and, jasmonic acid. This multi-omic computational modeling approach for predicting the complex sensory networks yielded specific, testable biological hypotheses for mycorrhizal interaction signaling compounds, sensor complexes, and mechanisms of gene regulation.
Biswapriya Biswavas Misra's insight:

In mycorrhizal symbiosis, plant roots form close, mutually beneficial interactions with soil fungi. Before this mycorrhizal interaction can be established however, plant roots must be capable of detecting potential beneficial fungal partners and initiating the gene expression patterns necessary to begin symbiosis. To predict a plant root—mycorrhizal fungi sensor systems, we analyzed in vitro experiments of Populus tremuloides (aspen tree) and Laccaria bicolor (mycorrhizal fungi) interaction and leveraged over 200 previously published transcriptomic experimental data sets, 159 experimentally validated plant transcription factor binding motifs, and more than 120-thousand experimentally validated protein-protein interactions to generate models of pre-mycorrhizal sensor systems in aspen root. These sensor mechanisms link extracellular signaling molecules with gene regulation through a network comprised of membrane receptors, signal cascade proteins, transcription factors, and transcription factor biding DNA motifs. Modeling predicted four pre-mycorrhizal sensor complexes in aspen that interact with 15 transcription factors to regulate the expression of 1184 genes in response to extracellular signals synthesized by Laccaria. Predicted extracellular signaling molecules include common signaling molecules such as phenylpropanoids, salicylate, and jasmonic acid. This multi-omic computational modeling approach for predicting the complex sensory networks yielded specific, testable biological hypotheses for mycorrhizal interaction signaling compounds, sensor complexes, and mechanisms of gene regulation.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Transcriptome dynamics of a susceptible wheat upon Fusarium head blight reveals that molecular responses to Fusarium graminearum infection fit over the grain development processes.

Transcriptome dynamics of a susceptible wheat upon Fusarium head blight reveals that molecular responses to Fusarium graminearum infection fit over the grain development processes. | Plant Genomics | Scoop.it
Funct Integr Genomics. 2016 Jan 21. [Epub ahead of print]
Biswapriya Biswavas Misra's insight:

In many plant/pathogen interactions, host susceptibility factors are key determinants of disease development promoting pathogen growth and spreading in plant tissues. In the Fusarium head blight (FHB) disease, the molecular basis of wheat susceptibility is still poorly understood while it could provide new insights into the understanding of the wheat/Fusarium graminearum (Fg) interaction and guide future breeding programs to produce cultivars with sustainable resistance. To identify the wheat grain candidate genes, a genome-wide gene expression profiling was performed in the French susceptible wheat cultivar, Recital. Gene-specific two-way ANOVA of about 40 K transcripts at five grain developmental stages identified 1309 differentially expressed genes. Out of these, 536 were impacted by the Fg effect alone. Most of these Fg-responsive genes belonged to biological and molecular functions related to biotic and abiotic stresses indicating the activation of common stress pathways during susceptibility response of wheat grain to FHB. This analysis revealed also 773 other genes displaying either specific Fg-responsive profiles along with grain development stages or synergistic adjustments with the grain development effect. These genes were involved in various molecular pathways including primary metabolism, cell death, and gene expression reprogramming. An increasingly complex host response was revealed, as was the impact of both Fg infection and grain ontogeny on the transcription of wheat genes. This analysis provides a wealth of candidate genes and pathways involved in susceptibility responses to FHB and depicts new clues to the understanding of the susceptibility determinism in plant/pathogen interactions.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Host-preferential Fusarium graminearum gene expression during infection of wheat, barley, and maize

Biswapriya Biswavas Misra's insight:

Fusarium graminearum is a broad host pathogen threatening cereal crops in temperate regions around the world. To better understand how F. graminearum adapts to different hosts, we have performed a comparison of the transcriptome of a single strain of F. graminearum during early infection (up to 4 d post-inoculation) of barley, maize, and wheat using custom oligomer microarrays. Our results showed high similarity between F. graminearum transcriptomes in infected wheat and barley spike tissues. Quantitative RT-PCR was used to validate the gene expression profiles of 24 genes. Host-specific expression of genes was observed in each of the three hosts. This included expression of distinct sets of genes associated with transport and secondary metabolism in each of the three crops, as well as host-specific patterns for particular gene categories such as sugar transporters, integral membrane protein PTH11-like proteins, and chitinases. This study identified 69 F. graminearum genes as preferentially expressed in developing maize kernels relative to wheat and barley spikes. These host-specific differences showcase the genomic flexibility of F. graminearum to adapt to a range of hosts.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

De novo transcriptome analyses of host-fungal interactions in oil palm (Elaeis guineensis Jacq.)

De novo transcriptome analyses of host-fungal interactions in oil palm (Elaeis guineensis Jacq.) | Plant Genomics | Scoop.it
BMC Genomics is an open access journal publishing original peer-reviewed research articles in all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work. BMC series - open, inclusive and trusted.
Biswapriya Biswavas Misra's insight:
Background

Basal stem rot (BSR) is a fungal disease in oil palm (Elaeis guineensis Jacq.) which is caused by hemibiotrophic white rot fungi belonging to the Ganoderma genus. Molecular responses of oil palm to these pathogens are not well known although this information is crucial to strategize effective measures to eradicate BSR. In order to elucidate the molecular interactions between oil palm and G. boninense and its biocontrol fungus Trichoderma harzianum, we compared the root transcriptomes of untreated oil palm seedlings with those inoculated with G. boninense and T. harzianum, respectively.

Results

Differential gene expression analyses revealed that jasmonate (JA) and salicylate (SA) may act in an antagonistic manner in affecting the hormone biosynthesis, signaling, and downstream defense responses in G. boninense-treated oil palm roots. In addition, G. boninense may compete with the host to control disease symptom through the transcriptional regulation of ethylene (ET) biosynthesis, reactive oxygen species (ROS) production and scavenging. The strengthening of host cell walls and production of pathogenesis-related proteins as well as antifungal secondary metabolites in host plants, are among the important defense mechanisms deployed by oil palm against G. boninense. Meanwhile, endophytic T. harzianum was shown to improve the of nutrition status and nutrient transportation in host plants.

Conclusion

The findings of this analysis have enhanced our understanding on the molecular interactions of G. boninense and oil palm, and also the biocontrol mechanisms involving T. harzianum, thus contributing to future formulations of better strategies for prevention and treatment of BSR.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

A high-density genetic map for anchoring genome sequences and identifying QTLs associated with dwarf vine in pumpkin (Cucurbita maxima Duch.)

A high-density genetic map for anchoring genome sequences and identifying QTLs associated with dwarf vine in pumpkin (Cucurbita maxima Duch.) | Plant Genomics | Scoop.it
BMC Genomics is an open access journal publishing original peer-reviewed research articles in all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work. BMC series - open, inclusive and trusted.
Biswapriya Biswavas Misra's insight:
Abstract
Background

Pumpkin (Cucurbita maxima Duch.) is an economically important crop belonging to the Cucurbitaceae family. However, very few genomic and genetic resources are available for this species. As part of our ongoing efforts to sequence the pumpkin genome, high-density genetic map is essential for anchoring and orienting the assembled scaffolds. In addition, a saturated genetic map can facilitate quantitative trait locus (QTL) mapping.

Results

A set of 186 F2 plants derived from the cross of pumpkin inbred lines Rimu and SQ026 were genotyped using the genotyping-by-sequencing approach. Using the SNPs we identified, a high-density genetic map containing 458 bin-markers was constructed, spanning a total genetic distance of 2,566.8 cM across the 20 linkage groups of C. maxima with a mean marker density of 5.60 cM. Using this map we were able to anchor 58 assembled scaffolds that covered about 194.5 Mb (71.7 %) of the 271.4 Mb assembled pumpkin genome, of which 44 (183.0 Mb; 67.4 %) were oriented. Furthermore, the high-density genetic map was used to identify genomic regions highly associated with an important agronomic trait, dwarf vine. Three QTLs on linkage groups (LGs) 1, 3 and 4, respectively, were recovered. One QTL, qCmB2, which was located in an interval of 0.42 Mb on LG 3, explained 21.4 % phenotypic variations. Within qCmB2, one gene, Cma_004516, encoding the gibberellin (GA) 20-oxidase in the GA biosynthesis pathway, had a 1249-bp deletion in its promoter in bush type lines, and its expression level was significantly increased during the vine growth and higher in vine type lines than bush type lines, supporting Cma_004516 as a possible candidate gene controlling vine growth in pumpkin.

Conclusions

A high-density pumpkin genetic map was constructed, which was used to successfully anchor and orient the assembled genome scaffolds, and to identify QTLs highly associated with pumpkin vine length. The map provided a valuable resource for gene cloning and marker assisted breeding in pumpkin and other related species. The identified vine length QTLs would help to dissect the underlying molecular basis regulating pumpkin vine growth.

Keywords
more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Genome-wide analysis of WRKY transcription factors in white pear (Pyrus bretschneideri) reveals evolution and patterns under drought stress

Genome-wide analysis of WRKY transcription factors in white pear (Pyrus bretschneideri) reveals evolution and patterns under drought stress | Plant Genomics | Scoop.it
BMC Genomics is an open access journal publishing original peer-reviewed research articles in all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work. BMC series - open, inclusive and trusted.
Biswapriya Biswavas Misra's insight:
Abstract
Background

WRKY transcription factors (TFs) constitute one of the largest protein families in higher plants, and its members contain one or two conserved WRKY domains, about 60 amino acid residues with the WRKYGQK sequence followed by a C2H2 or C2HC zinc finger motif. WRKY proteins play significant roles in plant development, and in responses to biotic and abiotic stresses. Pear (Pyrus bretschneideri) is one of the most important fruit crops in the world and is frequently threatened by abiotic stress, such as drought, affecting growth, development and productivity. Although the pear genome sequence has been released, little is known about the WRKY TFs in pear, especially in respond to drought stress at the genome-wide level.

Results

We identified a total of 103 WRKY TFs in the pear genome. Based on the structural features of WRKY proteins and topology of the phylogenetic tree, the pear WRKY (PbWRKY) family was classified into seven groups (Groups 1, 2a–e, and 3). The microsyteny analysis indicated that 33 (32 %) PbWRKY genes were tandemly duplicated and 57 genes (55.3 %) were segmentally duplicated. RNA-seq experiment data and quantitative real-time reverse transcription PCR revealed that PbWRKY genes in different groups were induced by drought stress, and Group 2a and 3 were mainly involved in the biological pathways in response to drought stress. Furthermore, adaptive evolution analysis detected a significant positive selection for Pbr001425 in Group 3, and its expression pattern differed from that of other members in this group. The present study provides a solid foundation for further functional dissection and molecular evolution of WRKY TFs in pear, especially for improving the water-deficient resistance of pear through manipulation of the PbWRKYs.

Keywords
more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Transcriptome profiling of a Rhizobium leguminosarum bv. trifolii rosR mutant reveals the role of the transcriptional regulator RosR in motility, synthesis of cell-surface components, and other cel...

Transcriptome profiling of a Rhizobium leguminosarum bv. trifolii rosR mutant reveals the role of the transcriptional regulator RosR in motility, synthesis of cell-surface components, and other cel... | Plant Genomics | Scoop.it
BMC Genomics is an open access journal publishing original peer-reviewed research articles in all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work. BMC series - open, inclusive and trusted.
Biswapriya Biswavas Misra's insight:
Abstract
Background

Rhizobium leguminosarum bv. trifolii is a soil bacterium capable of establishing a symbiotic relationship with red clover (Trifolium pratense). The presence of surface polysaccharides and other extracellular components as well as motility and competitiveness are essential traits for both adaptation of this bacterium to changing environmental conditions and successful infection of host plant roots. The R. leguminosarum bv. trifolii rosR gene encodes a protein belonging to the family of Ros/MucR transcriptional regulators, which contain a Cys2His2-type zinc-finger motif and are involved in the regulation of exopolysaccharide synthesis in several rhizobial species. Previously, it was established that a mutation in the rosR gene significantly decreased exopolysaccharide synthesis, increased bacterial sensitivity to some stress factors, and negatively affected infection of clover roots.

Results

RNA-Seq analysis performed for the R. leguminosarum bv. trifolii wild-type strain Rt24.2 and its derivative Rt2472 carrying a rosR mutation identified a large number of genes which were differentially expressed in these two backgrounds. A considerable majority of these genes were up-regulated in the mutant (63.22 %), indicating that RosR functions mainly as a repressor. Transcriptome profiling of the rosR mutant revealed a role of this regulator in several cellular processes, including the synthesis of cell-surface components and polysaccharides, motility, and bacterial metabolism. Moreover, it was established that the Rt2472 strain was characterized by a longer generation time and showed an increased aggregation ability, but was impaired in motility as a result of considerably reduced flagellation of its cells.

Conclusions

The comparative transcriptome analysis of R. leguminosarum bv. trifolii wild-type Rt24.2 and the Rt2472 mutant identified a set of genes belonging to the RosR regulon and confirmed the important role of RosR in the regulatory network. The data obtained in this study indicate that this protein affects several cellular processes and plays an important role in bacterial adaptation to environmental conditions.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

De novo comparative transcriptome analysis provides new insights into sucrose induced somatic embryogenesis in camphor tree (Cinnamomum camphora L.)

De novo comparative transcriptome analysis provides new insights into sucrose induced somatic embryogenesis in camphor tree (Cinnamomum camphora L.) | Plant Genomics | Scoop.it
BMC Genomics is an open access journal publishing original peer-reviewed research articles in all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work. BMC series - open, inclusive and trusted.
Biswapriya Biswavas Misra's insight:
Abstract
Background

Somatic embryogenesis is a notable illustration of cell totipotency, by which somatic cells undergo dedifferentiation and then differentiate into somatic embryos. Our previous work demonstrated that pretreatment of immature zygotic embryos with 0.5 M sucrose solution for 72 h efficiently induced somatic embryo initiation in camphor tree. To better understand the molecular basis of somatic embryogenesis induced by osmotic stress, de novo transcriptome sequencing of three tissues of camphor tree (immature zygotic embryos, sucrose-pretreated immature zygotic embryos, and somatic embryos induced from sucrose-pretreated zygotic embryos) were conducted using Illumina Hiseq 2000 platform.

Results

A total of 30.70 G high quality clean reads were obtained from cDNA libraries of the three samples. The overall de novo assembly of cDNA sequence data generated 205592 transcripts, with an average length of 998 bp. 114229 unigenes (55.56 % of all transcripts) with an average length of 680 bp were annotated with gene descriptions, gene ontology terms or metabolic pathways based on Blastx search against Nr, Nt, Swissprot, GO, COG/KOG, and KEGG databases. CEGMA software identified 237 out of 248 ultra-conserved core proteins as ‘complete’ in the transcriptome assembly, showing a completeness of 95.6 %. A total of 897 genes previously annotated to be potentially involved in somatic embryogenesis were identified. Comparative transcriptome analysis showed that a total of 3335 genes were differentially expressed in the three samples. The differentially expressed genes were divided into six groups based on K-means clustering. Expression level analysis of 52 somatic embryogenesis-related genes indicated a high correlation between RNA-seq and qRT-PCR data. Gene enrichment analysis showed significantly differential expression of genes responding to stress and stimulus.

Conclusions

The present work reported a de novo transcriptome assembly and global analysis focused on gene expression changes during initiation and formation of somatic embryos in camphor tree. Differential expression of somatic embryogenesis-related genes indicates that sucrose induced somatic embryogenesis may share or partly share the mechanisms of somatic embryogenesis induced by plant hormones. This study provides comprehensive transcript information and gene expression data for camphor tree. It could also serve as an important platform resource for further functional studies in plant embryogenesis.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Genome-wide analysis of tomato NF-Y factors and their role in fruit ripening

Genome-wide analysis of tomato NF-Y factors and their role in fruit ripening | Plant Genomics | Scoop.it
BMC Genomics is an open access journal publishing original peer-reviewed research articles in all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work. BMC series - open, inclusive and trusted.
Biswapriya Biswavas Misra's insight:
Abstract
Background

Fruit ripening is a complex developmental process that depends on a coordinated regulation of numerous genes, including ripening-related transcription factors (TFs), fruit-related microRNAs, DNA methylation and chromatin remodeling. It is known that various TFs, such as MADS-domain, MYB, AP2/ERF and SBP/SPL family proteins play key roles in modulating ripening. However, little attention has been given to members of the large NF-Y TF family in this regard, although genes in this family are known to have important functions in regulating plant growth, development, and abiotic or biotic stress responses.

Results

In this study, the evolutionary relationship between Arabidopsis thaliana and tomato (Solanum lycopersicum) NF-Y genes was examined to predict similarities in function. Furthermore, through gene expression analysis, 13 tomato NF-Y genes were identified as candidate regulators of fruit ripening. Functional studies involving suppression of NF-Y gene expression using virus induced gene silencing (VIGS) indicated that five NF-Y genes, including two members of the NF-YB subgroup (Solyc06g069310, Solyc07g065500) and three members of the NF-YA subgroup (Solyc01g087240, Solyc08g062210, Solyc11g065700), influence ripening. In addition, subcellular localization analyses using NF-Y proteins fused to a green fluorescent protein (GFP) reporter showed that the three NF-YA proteins accumulated in the nucleus, while the two NF-YB proteins were observed in both the nucleus and cytoplasm.

Conclusions

In this study, we identified tomato NF-Y genes by analyzing the tomato genome sequence using bioinformatics approaches, and characterized their chromosomal distribution, gene structures, phylogenetic relationship and expression patterns. We also examined their biological functions in regulating tomato fruit via VIGS and subcellular localization analyses. The results indicated that five NF-Y transcription factors play roles in tomato fruit ripening. This information provides a platform for further investigation of their biological functions.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Transcriptomic analysis reveals the gene expression profile that specifically responds to IBA during adventitious rooting in mung bean seedlings

Transcriptomic analysis reveals the gene expression profile that specifically responds to IBA during adventitious rooting in mung bean seedlings | Plant Genomics | Scoop.it
BMC Genomics is an open access journal publishing original peer-reviewed research articles in all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work. BMC series - open, inclusive and trusted.
Biswapriya Biswavas Misra's insight:
Abstract
Background

Auxin plays a critical role in inducing adventitious rooting in many plants. Indole-3-butyric acid (IBA) is the most widely employed auxin for adventitious rooting. However, the molecular mechanisms by which auxin regulate the process of adventitious rooting are less well known.

Results

The RNA-Seq data analysis indicated that IBA treatment greatly increased the amount of clean reads and the amount of expressed unigenes by 24.29 % and 27.42 % and by 4.3 % and 5.04 % at two time points, respectively, and significantly increased the numbers of unigenes numbered with RPKM = 10-100 and RPKM = 500-1000 by 13.04 % and 3.12 % and by 24.66 % and 108.2 % at two time points, respectively. Gene Ontology (GO) enrichment analysis indicated that the enrichment of down-regulated GOs was 2.87-fold higher than that of up-regulated GOs at stage 1, suggesting that IBA significantly down-regulated gene expression at 6 h. The GO functional category indicated that IBA significantly up- or down-regulated processes associated with auxin signaling, ribosome assembly and protein synthesis, photosynthesis, oxidoreductase activity and extracellular region, secondary cell wall biogenesis, and the cell wall during the development process. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment indicated that ribosome biogenesis, plant hormone signal transduction, pentose and glucuronate interconversions, photosynthesis, phenylpropanoid biosynthesis, sesquiterpenoid and triterpenoid biosynthesis, ribosome, cutin, flavonoid biosynthesis, and phenylalanine metabolism were the pathways most highly regulated by IBA. A total of 6369 differentially expressed (2-fold change > 2) unigenes (DEGs) with 3693 (58 %) that were up-regulated and 2676 (42 %) down-regulated, 5433 unigenes with 2208 (40.6 %) that were up-regulated and 3225 (59.4 %) down-regulated, and 7664 unigenes with 3187 (41.6 %) that were up-regulated and 4477 (58.4 %) down-regulated were detected at stage 1, stage 2, and between stage 1 and stage 2, respectively, suggesting that IBA treatment increased the number of DEGs. A total of 143 DEGs specifically involved in plant hormone signaling and 345 transcription factor (TF) genes were also regulated by IBA. qRT-PCR validation of the 36 genes with known functions indicated a strong correlation with the RNA-Seq data.

Conclusions

The changes in GO functional categories, KEGG pathways, and global DEG profiling during adventitious rooting induced by IBA were analyzed. These results provide valuable information about the molecular traits of IBA regulation of adventitious rooting.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

CANEapp: a user-friendly application for automated next generation transcriptomic data analysis

CANEapp: a user-friendly application for automated next generation transcriptomic data analysis | Plant Genomics | Scoop.it
BMC Genomics is an open access journal publishing original peer-reviewed research articles in all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work. BMC series - open, inclusive and trusted.
Biswapriya Biswavas Misra's insight:
Background

Next generation sequencing (NGS) technologies are indispensable for molecular biology research, but data analysis represents the bottleneck in their application. Users need to be familiar with computer terminal commands, the Linux environment, and various software tools and scripts. Analysis workflows have to be optimized and experimentally validated to extract biologically meaningful data. Moreover, as larger datasets are being generated, their analysis requires use of high-performance servers.

Results

To address these needs, we developed CANEapp (application for Comprehensive automated Analysis of Next-generation sequencing Experiments), a unique suite that combines a Graphical User Interface (GUI) and an automated server-side analysis pipeline that is platform-independent, making it suitable for any server architecture. The GUI runs on a PC or Mac and seamlessly connects to the server to provide full GUI control of RNA-sequencing (RNA-seq) project analysis. The server-side analysis pipeline contains a framework that is implemented on a Linux server through completely automated installation of software components and reference files. Analysis with CANEapp is also fully automated and performs differential gene expression analysis and novel noncoding RNA discovery through alternative workflows (Cuffdiff and R packages edgeR and DESeq2). We compared CANEapp to other similar tools, and it significantly improves on previous developments. We experimentally validated CANEapp’s performance by applying it to data derived from different experimental paradigms and confirming the results with quantitative real-time PCR (qRT-PCR). CANEapp adapts to any server architecture by effectively using available resources and thus handles large amounts of data efficiently. CANEapp performance has been experimentally validated on various biological datasets. CANEapp is available free of charge at http://psychiatry.med.miami.edu/research/laboratory-of-translational-rna-genomics/CANE-app.

Conclusions

We believe that CANEapp will serve both biologists with no computational experience and bioinformaticians as a simple, timesaving but accurate and powerful tool to analyze large RNA-seq datasets and will provide foundations for future development of integrated and automated high-throughput genomics data analysis tools. Due to its inherently standardized pipeline and combination of automated analysis and platform-independence, CANEapp is an ideal for large-scale collaborative RNA-seq projects between different institutions and research groups.

 
more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

MicroRNA-mediated susceptible poplar gene expression regulation associated with the infection of virulent Melampsora larici-populina

MicroRNA-mediated susceptible poplar gene expression regulation associated with the infection of virulent Melampsora larici-populina | Plant Genomics | Scoop.it
BMC Genomics is an open access journal publishing original peer-reviewed research articles in all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work. BMC series - open, inclusive and trusted.
Biswapriya Biswavas Misra's insight:
Abstract
Background

Rust caused by Melampsora larici-populina is one of the most damaging diseases of poplars. Rust is considered to be a model pathogen for genetic studies because both pathogen and host genomes are available. The poplar ‘Robusta’, whose general rust resistance is defeated by virulent rust E4, provides suitable host material for studies of the gene regulation involved in rust resistance/susceptibility. In this study, we investigated the microRNA-mediated susceptible poplar gene expression regulation associated with the infection of virulent rust. We were particularly interested in delineating the host-pathogen interactions with a specific focus on microRNAs (miRNAs).

Results

To study the susceptibility of poplar to M. larici-populina, small RNA (sRNA) libraries, a degradome cDNA library and digital gene expression libraries were constructed for rust-inoculated and rust-free susceptible poplar ‘Robusta’ leaves through high-throughput sequencing. Altogether, 12,722 regulating interactions were identified. The results delineated the framework of post-transcriptional regulation of gene expression in the susceptible poplar, which was infected by the virulent rust. The results indicated that pathogen-associated molecular patterns (PAMPs) and PAMP-triggered immunity were induced by the infection of virulent rust E4 and that miRNAs still functioned at this stage. After this stage, miRNA-regulated R genes, such as TIR-NBS-LRR and CC-NBS-LRR, were not fully functional. Additionally, the rust-responsive miRNAs did not regulate the signaling component genes related to the salicylic acid pathway or the hypersensitive response.

Conclusions

We found that the defense-related post-transcriptional regulation of the susceptible poplar ‘Robusta’ functions normally only at the stage of PAMPs and PAMP-triggered immunity (PTI). More importantly, the miRNA-mediated post-transcriptional regulation of defense signal pathway genes were inactivated by the infection of virulent rust at the stage of effector-triggered susceptibility and during the following stages of salicylic acid and hypersensitive responses. This inactivation was the major characteristic of ‘Robusta’ susceptibility.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Evolution of the Plant Reproduction Master Regulators LFY and the MADS Transcription Factors: The Role of Protein Structure in the Evolutionary Development of the Flower | Plant Evoluti...

Evolution of the Plant Reproduction Master Regulators LFY and the MADS Transcription Factors: The Role of Protein Structure in the Evolutionary Development of the Flower | Plant Evoluti... | Plant Genomics | Scoop.it
Understanding the evolutionary leap from non-flowering (gymnosperms) to flowering (angiosperms) plants and the origin and vast diversification of the floral form has been one of the focuses of plant evolutionary developmental biology. The evolving diversity and increasing complexity of organisms is often due to relatively small changes in genes that direct development. These “developmental control genes” and the transcription factors (TF) they encode, are at the origin of most morphological changes. TFs such as LEAFY (LFY) and the MADS-domain TFs act as central regulators in key developmental processes of plant reproduction including the floral transition in angiosperms and the specification of the male and female organs in both gymnosperms and angiosperms. In addition to advances in genome wide profiling and forward and reverse genetic screening, structural techniques are becoming important tools in unravelling TF function by providing atomic and molecular level information that was lacking in purely genetic approaches. Here we summarise previous structural work and present additional biophysical and biochemical studies of the key master regulators of plant reproduction – LEAFY and the MADS-domain TFs SEPALLATA3 and AGAMOUS. We discuss the impact of structural biology on our understanding of the complex evolutionary process leading to the development of the bisexual flower.
Biswapriya Biswavas Misra's insight:

Understanding the evolutionary leap from non-flowering (gymnosperms) to flowering (angiosperms) plants and the origin and vast diversification of the floral form has been one of the focuses of plant evolutionary developmental biology. The evolving diversity and increasing complexity of organisms is often due to relatively small changes in genes that direct development. These “developmental control genes” and the transcription factors (TFs) they encode, are at the origin of most morphological changes. TFs such as LEAFY (LFY) and the MADS-domain TFs act as central regulators in key developmental processes of plant reproduction including the floral transition in angiosperms and the specification of the male and female organs in both gymnosperms and angiosperms. In addition to advances in genome wide profiling and forward and reverse genetic screening, structural techniques are becoming important tools in unraveling TF function by providing atomic and molecular level information that was lacking in purely genetic approaches. Here, we summarize previous structural work and present additional biophysical and biochemical studies of the key master regulators of plant reproduction – LEAFY and the MADS-domain TFs SEPALLATA3 and AGAMOUS. We discuss the impact of structural biology on our understanding of the complex evolutionary process leading to the development of the bisexual flower.

more...
No comment yet.