Plant Genomics
Follow
Find
10.1K views | +7 today
Scooped by Biswapriya Biswavas Misra
onto Plant Genomics
Scoop.it!

Physiological stressors and invasive plant infections alter the small RNA transcriptome of the rice blast fungus, Magnaporthe oryzae

The rice blast fungus, Magnaporthe oryzae is a destructive pathogen of rice and other related crops, causing significant yield losses worldwide.
Biswapriya Biswavas Misra's insight:
Abstract (provisional)Background

The rice blast fungus, Magnaporthe oryzae is a destructive pathogen of rice and other related crops, causing significant yield losses worldwide. Endogenous small RNAs (sRNAs), including small interfering RNAs (siRNAs) and microRNAs (miRNAs) are critical components of gene regulation in many eukaryotic organisms. Recently several new species of sRNAs have been identified in fungi. This fact along with the availability of genome sequence makes M. oryzae a compelling target for sRNA profiling. We have examined sRNA species and their biosynthetic genes in M. oryzae, and the degree to which these elements regulate fungal stress responses. To this end, we have characterized sRNAs under different physiological stress conditions, which had not yet been examined in this fungus.

Results

The resulting libraries are composed of more than 37 million total genome matched reads mapping to intergenic regions, coding sequences, retrotransposons, inverted, tandem, and other repeated regions of the genome with more than half of the small RNAs arising from intergenic regions. The 24 nucleotide (nt) size class of sRNAs was predominant. A comparison to transcriptional data of M. oryzae undergoing the same physiological stresses indicates that sRNAs play a role in transcriptional regulation for a small subset of genes. Support for this idea comes from generation and characterization of mutants putatively involved in sRNAs biogenesis; our results indicate that the deletion of Dicer-like genes and an RNA-Dependent RNA Polymerase gene increases the transcriptional regulation of this subset of genes, including one involved in virulence.

Conclusions

Various physiological stressors and in planta conditions alter the small RNA profile of the rice blast fungus. Characterization of sRNA biosynthetic mutants helps to clarify the role of sRNAs in transcriptional control.

more...
No comment yet.
Plant Genomics
Updates on Plant Genomics
Your new post is loading...
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Transcriptome variation along bud development in grapevine (Vitis vinifera L.)

Transcriptome variation along bud development in grapevine (Vitis vinifera L.) | Plant Genomics | Scoop.it

Abstract (provisional)

Background

Vegetative buds provide plants in temperate environments the possibility for growth and reproduction when environmental conditions are favorable. In grapevine, crucial developmental events take place within buds during two growing seasons in consecutive years. The first season, the shoot apical meristem within the bud differentiates all the basic elements of the shoot including flowering transition in lateral primordia and development of inflorescence primordia. These events practically end with bud dormancy. The second season, buds resume shoot growth associated to flower formation and development. Gene expression has been previously monitored at specific stages of bud development but has never been followed along the two growing seasons.

Results

Gene expression changes were analyzed along the bud annual cycle at eight different time points. Principal Components Analysis (PCA) revealed that the main factors explaining the global gene expression differences were the processes of bud dormancy and active growth as well as stress responses. Accordingly, non dormant buds showed an enrichment in functional categories typical of actively proliferating and growing cells together with the over abundance of transcripts belonging to stress response pathways. Differential expression analyses performed between consecutive time points indicated that major transcriptional changes were associated to para/endodormancy, endo/ecodormancy and ecodormancy/bud break transitions. Transcripts encoding key regulators of reproductive development were grouped in three major expression clusters corresponding to: (i) transcripts associated to flowering induction, (ii) transcripts associated to flower meristem specification and initiation and (iii) transcripts putatively involved in dormancy. Within this cluster, a MADS-box gene (VvFLC2) and other transcripts with similar expression patterns could participate in dormancy regulation.

Conclusions

This work provides a global view of major transcriptional changes taking place along bud development in grapevine, highlighting those molecular and biological functions involved in the main events of bud development. As reported in other woody species, the results suggest that genes regulating flowering could also be involved in dormancy regulatory pathways in grapevine.

more...
No comment yet.
Rescooped by Biswapriya Biswavas Misra from MycorWeb Plant-Microbe Interactions
Scoop.it!

Comparative Genomic Paleontology across Plant Kingdom Reveals the Dynamics of TE-Driven Genome Evolution

Comparative Genomic Paleontology across Plant Kingdom Reveals the Dynamics of TE-Driven Genome Evolution | Plant Genomics | Scoop.it

Long terminal repeat-retrotransposons (LTR-RTs) are the most abundant class of transposable elements (TEs) in plants. They strongly impact the structure, function, and evolution of their host genome, and, in particular, their role in genome size variation has been clearly established. However, the dynamics of the process through which LTR-RTs have differentially shaped plant genomes is still poorly understood because of a lack of comparative studies. Using a new robust and automated family classification procedure, we exhaustively characterized the LTR-RTs in eight plant genomes for which a high-quality sequence is available (i.e., Arabidopsis thaliana, A. lyrata, grapevine, soybean, rice, Brachypodium dystachion, sorghum, and maize). This allowed us to perform a comparative genome-wide study of the retrotranspositional landscape in these eight plant lineages from both monocots and dicots. We show that retrotransposition has recurrently occurred in all plant genomes investigated, regardless their size, and through bursts, rather than a continuous process. Moreover, in each genome, only one or few LTR-RT families have been active in the recent past, and the difference in genome size among the species studied could thus mostly be accounted for by the extent of the latest transpositional burst(s). Following these bursts, LTR-RTs are efficiently eliminated from their host genomes through recombination and deletion, but we show that the removal rate is not lineage specific. These new findings lead us to propose a new model of TE-driven genome evolution in plants.


Via Francis Martin
more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Analysis of peptide PSY1 responding transcripts in the two Arabidopsis plant lines: wild type and psy1r receptor mutant

Small-secreted peptides are emerging as important components in cell-cell communication during basic developmental stages of plant cell growth and development. Plant peptide containing sulfated tyrosine 1 (PSY1) has been reported to promote cell expansion and differentiation in the elongation zone of roots. PSY1 action is dependent on a receptor PSY1R that triggers a signaling cascade leading to cell elongation. However little is known about cellular functions and the components involved in PSY1-based signaling cascade.
Biswapriya Biswavas Misra's insight:
Abstract (provisional)Background

Small-secreted peptides are emerging as important components in cell-cell communication during basic developmental stages of plant cell growth and development. Plant peptide containing sulfated tyrosine 1 (PSY1) has been reported to promote cell expansion and differentiation in the elongation zone of roots. PSY1 action is dependent on a receptor PSY1R that triggers a signaling cascade leading to cell elongation. However little is known about cellular functions and the components involved in PSY1-based signaling cascade.

Results

Differentially expressed genes were identified in a wild type plant line and in a psy1r receptor mutant line of Arabidopsis thaliana after treatment with PSY1. Seventy-seven genes were found to be responsive to the PSY1 peptide in wild type plants while 154 genes were responsive in the receptor mutant plants. PSY1 activates the transcripts of genes involved in cell wall modification. Gene enrichment analysis revealed that PSY1-responsive genes are involved in responses to stimuli, metabolic processes and biosynthetic processes. The significant enrichment terms of PSY1-responsive genes were higher in psy1r mutant plants compared to in wild type plants. Two parallel responses to PSY1 were identified, differing in their dependency on the PSY1R receptor. Promoter analysis of the differentially expressed genes identified a light regulatory motif in some of these.

Conclusion

PSY1-responsive genes are involved in cellular functions and stimuli responses suggesting a crosstalk between developmental cues and environmental stimuli. Possibly, two parallel responses to PSY1 exist. A motif involved in light regulation was identified in the promoter region of the differentially expressed genes. Reduced hypocotyl growth was observed in etiolated receptor mutant seedlings.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Comparative genomics of Bradyrhizobium japonicum CPAC 15 and Bradyrhizobium diazoefficiens CPAC 7: elite model strains for understanding symbiotic performance with soybean

The soybean-Bradyrhizobium symbiosis can be highly efficient in fixing nitrogen, but few genomic sequences of elite inoculant strains are available. Here we contribute with information on the genomes of two commercial strains that are broadly applied to soybean crops in the tropics. B. japonicum CPAC 15 (=SEMIA 5079) is outstanding in its saprophytic capacity and competitiveness, whereas B. diazoefficiens CPAC 7 (=SEMIA 5080) is known for its high efficiency in fixing nitrogen. Both are well adapted to tropical soils. The genomes of CPAC 15 and CPAC 7 were compared to each other and also to those of B. japonicum USDA 6T and B. diazoefficiens USDA 110T.
Biswapriya Biswavas Misra's insight:
Abstract (provisional)Background

The soybean-Bradyrhizobium symbiosis can be highly efficient in fixing nitrogen, but few genomic sequences of elite inoculant strains are available. Here we contribute with information on the genomes of two commercial strains that are broadly applied to soybean crops in the tropics. B. japonicum CPAC 15 (=SEMIA 5079) is outstanding in its saprophytic capacity and competitiveness, whereas B. diazoefficiens CPAC 7 (=SEMIA 5080) is known for its high efficiency in fixing nitrogen. Both are well adapted to tropical soils. The genomes of CPAC 15 and CPAC 7 were compared to each other and also to those of B. japonicum USDA 6T and B. diazoefficiens USDA 110T.

Results

Differences in genome size were found between species, with B. japonicum having larger genomes than B. diazoefficiens. Although most of the four genomes were syntenic, genome rearrangements within and between species were observed, including events in the symbiosis island. In addition to the symbiotic region, several genomic islands were identified. Altogether, these features must confer high genomic plasticity that might explain adaptation and differences in symbiotic performance. It was not possible to attribute known functions to half of the predicted genes. About 10% of the genomes was composed of exclusive genes of each strain, but up to 98% of them were of unknown function or coded for mobile genetic elements. In CPAC 15, more genes were associated with secondary metabolites, nutrient transport, iron-acquisition and IAA metabolism, potentially correlated with higher saprophytic capacity and competitiveness than seen with CPAC 7. In CPAC 7, more genes were related to the metabolism of amino acids and hydrogen uptake, potentially correlated with higher efficiency of nitrogen fixation than seen with CPAC 15.

Conclusions

Several differences and similarities detected between the two elite soybean-inoculant strains and between the two species of Bradyrhizobium provide new insights into adaptation to tropical soils, efficiency of N2 fixation, nodulation- and competitiveness.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Anthocyanin biosynthetic genes in Brassica rapa

Anthocyanins are a group of flavonoid compounds. As a group of important secondary metabolites, they perform several key biological functions in plants. Anthocyanins also play beneficial health roles as potentially protective factors against cancer and heart disease. To elucidate the anthocyanin biosynthetic pathway in Brassica rapa, we conducted comparative genomic analyses between Arabidopsis thaliana and B. rapa on a genome-wide level.
Biswapriya Biswavas Misra's insight:
Abstract (provisional)Background

Anthocyanins are a group of flavonoid compounds. As a group of important secondary metabolites, they perform several key biological functions in plants. Anthocyanins also play beneficial health roles as potentially protective factors against cancer and heart disease. To elucidate the anthocyanin biosynthetic pathway in Brassica rapa, we conducted comparative genomic analyses between Arabidopsis thaliana and B. rapa on a genome-wide level.

Results

In total, we identified 73 genes in B. rapa as orthologs of 41 anthocyanin biosynthetic genes in A. thaliana. In B. rapa, the anthocyanin biosynthetic genes (ABGs) have expanded and most genes exist in more than one copy. The anthocyanin biosynthetic structural genes have expanded through whole genome and tandem duplication in B. rapa. More structural genes located upstream of the anthocyanin biosynthetic pathway have been retained than downstream. More negative regulatory genes are retained in the anthocyanin biosynthesis regulatory system of B. rapa.

Conclusions

These results will promote an understanding of the genetic mechanism of anthocyanin biosynthesis, as well as help the improvement of the nutritional quality of B. rapa through the breeding of high anthocyanin content varieties.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

An ultra-high density bin-map for rapid QTL mapping for tassel and ear architecture in a large F2 maize population

Understanding genetic control of tassel and ear architecture in maize (Zea mays L. ssp. mays) is important due to their relationship with grain yield. High resolution QTL mapping is critical for understanding the underlying molecular basis of phenotypic variation. Advanced populations, such as recombinant inbred lines, have been broadly adopted for QTL mapping; however, construction of large advanced generation crop populations is time-consuming and costly. The rapidly declining cost of genotyping due to recent advances in next-generation sequencing technologies has generated new possibilities for QTL mapping using large early generation populations.
Biswapriya Biswavas Misra's insight:
Abstract (provisional)Background

Understanding genetic control of tassel and ear architecture in maize (Zea mays L. ssp. mays) is important due to their relationship with grain yield. High resolution QTL mapping is critical for understanding the underlying molecular basis of phenotypic variation. Advanced populations, such as recombinant inbred lines, have been broadly adopted for QTL mapping; however, construction of large advanced generation crop populations is time-consuming and costly. The rapidly declining cost of genotyping due to recent advances in next-generation sequencing technologies has generated new possibilities for QTL mapping using large early generation populations.

Results

A set of 708 F2 progeny derived from inbred Chang7-2 and inbred 787 were generated and genotyped by whole genome low-coverage genotyping-by-sequencing (average 0.04x). A genetic map containing 6,533 bin-markers was constructed based on the parental SNPs and a sliding-window method, spanning a total genetic distance of 1396 cM. The high quality and accuracy of this map was validated by the identification of two well-studied genes, r1, a qualitative trait locus for color of silk (chromosome 10) and ba1 for tassel branch number (chromosome 3). Three traits of tassel and ear architecture were evaluated in this population, a total of 10 QTL were detected using a permutation-based-significance threshold, seven of which overlapped with reported QTL. Three genes (GRMZM2G316366, GRMZM2G492156 and GRMZM5G805008) encoding MADS-box domain proteins and a BTB/POZ domain protein were located in the small intervals of qTBN5 and qTBN7 (~800 Kb and 1.6 Mb in length) and may be involved in patterning of tassel architecture. The small physical intervals of most QTL indicate high-resolution mapping is obtainable with this method.

Conclusions

We constructed an ultra-high-dentisy linkage map for the large early generation population in maize. Our study provides an efficient approach for fast detection of quantitative loci responsible for complex trait variation with high accuracy, thus helping to dissect the underlying molecular basis of phenotypic variation and accelerate improvement of crop breeding in a cost-effective fashion.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

The meiotic transcriptome architecture of plants | Plant Genetics and Genomics

Although a number of genes that play key roles during the meiotic process have been characterized in great detail, the whole process of meiosis is still not completely unraveled. To gain insight into the bigger picture, large-scale approaches like RNA-seq and microarray can help to elucidate the transcriptome landscape during meiosis, discover co-regulated genes, enriched processes, and highly expressed known and unknown genes which might be important for meiosis. These high-throughput studies are gaining more and more popularity, but their beginnings reach back as far as the 1960´s. Frequently whole anthers or post-meiotic pollen were investigated, while less data is available on isolated cells during meiosis and only few studies that addressed the transcriptome of female meiosis. For this review, we compiled studies covering different plant species, and summarized and compared their key findings. Besides pointing to consistent as well as unique discoveries, we finally draw conclusions what can be learned from these studies and how to follow up on them in the future.
Biswapriya Biswavas Misra's insight:

Although a number of genes that play key roles during the meiotic process have been characterized in great detail, the whole process of meiosis is still not completely unraveled. To gain insight into the bigger picture, large-scale approaches like RNA-seq and microarray can help to elucidate the transcriptome landscape during plant meiosis, discover co-regulated genes, enriched processes, and highly expressed known and unknown genes which might be important for meiosis. These high-throughput studies are gaining more and more popularity, but their beginnings in plant systems reach back as far as the 1960's. Frequently, whole anthers or post-meiotic pollen were investigated, while less data is available on isolated cells during meiosis, and only few studies addressed the transcriptome of female meiosis. For this review, we compiled meiotic transcriptome studies covering different plant species, and summarized and compared their key findings. Besides pointing to consistent as well as unique discoveries, we finally draw conclusions what can be learned from these studies so far and what should be addressed next.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Molecular Marker Systems in Plant Breeding and Crop Improvement (Biotechnology in Agriculture and Forestry) by Horst Lörz, Gerhard Wenzel

Molecular Marker Systems in Plant Breeding and Crop Improvement (Biotechnology in Agriculture and Forestry) - Kindle edition by Horst Lörz, Gerhard Wenzel. Download it once and read it on your Kindle device, PC, phones or tablets. Use features like bookmarks, note taking and highlighting while reading Molecular Marker Systems in Plant Breeding and Crop Improvement (Biotechnology in Agriculture and Forestry).
more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Plant evolution at the interface of paleontology and developmental biology: An organism-centered paradigm

Biswapriya Biswavas Misra's insight:

Paleontology yields essential evidence for inferring not only the pattern of evolution, but also the genetic basis of evolution within an ontogenetic framework. Plant fossils provide evidence for the pattern of plant evolution in the form of transformational series of structure through time. Developmentally diagnostic structural features that serve as “fingerprints” of regulatory genetic pathways also are preserved by plant fossils, and here we provide examples of how those fingerprints can be used to infer the mechanisms by which plant form and development have evolved. When coupled with an understanding of variations and systematic distributions of specific regulatory genetic pathways, this approach provides an avenue for testing evolutionary hypotheses at the organismal level that is analogous to employing bioinformatics to explore genetics at the genomic level. The positions where specific genes, gene families, and developmental regulatory mechanisms first appear in phylogenies are correlated with the positions where fossils with the corresponding structures occur on the tree, thereby yielding testable hypotheses that extend our understanding of the role of developmental changes in the evolution of the body plans of vascular plant sporophytes. As a result, we now have new and powerful methodologies for characterizing major evolutionary changes in morphology, anatomy, and physiology that have resulted from combinations of genetic regulatory changes and that have produced the synapomorphies by which we recognize major clades of plants.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Plant Organogenesis: Methods and Protocols (Methods in Molecular Biology)

Plant Organogenesis: Methods and Protocols (Methods in Molecular Biology) | Plant Genomics | Scoop.it
more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

A deep survey of alternative splicing in grape reveals changes in the splicing machinery related to tissue, stress condition and genotype

Alternative splicing (AS) significantly enhances transcriptome complexity. It is differentially regulated in a wide variety of cell types and plays a role in several cellular processes. Here we describe a detailed survey of alternative splicing in grape based on 124 SOLiD RNAseq analyses from different tissues, stress conditions and genotypes.
Biswapriya Biswavas Misra's insight:
AbstractBackground

Alternative splicing (AS) significantly enhances transcriptome complexity. It is differentially regulated in a wide variety of cell types and plays a role in several cellular processes. Here we describe a detailed survey of alternative splicing in grape based on 124 SOLiD RNAseq analyses from different tissues, stress conditions and genotypes.

Results

We used the RNAseq data to update the existing grape gene prediction with 2,258 new coding genes and 3,336 putative long non-coding RNAs. Several gene structures have been improved and alternative splicing was described for about 30% of the genes. A link between AS and miRNAs was shown in 139 genes where we found that AS affects the miRNA target site. A quantitative analysis of the isoforms indicated that most of the spliced genes have one major isoform and tend to simultaneously co-express a low number of isoforms, typically two, with intron retention being the most frequent alternative splicing event.

Conclusions

As described in Arabidopsis, also grape displays a marked AS tissue-specificity, while stress conditions produce splicing changes to a minor extent. Surprisingly, some distinctive splicing features were also observed between genotypes. This was further supported by the observation that the panel of Serine/Arginine-rich splicing factors show a few, but very marked differences between genotypes. The finding that a part the splicing machinery can change in closely related organisms can lead to some interesting hypotheses for evolutionary adaptation, that could be particularly relevant in the response to sudden and strong selective pressures.

 
more...
No comment yet.
Rescooped by Biswapriya Biswavas Misra from Plant pathogenic fungi
Scoop.it!

A multilocus timescale for oomycete evolution estimated under three distinct molecular clock models

A multilocus timescale for oomycete evolution estimated under three distinct molecular clock models | Plant Genomics | Scoop.it

The earliest fossil evidence for oomycetes comes from the Lower Devonian (~400 Ma), however the taxonomic affinities of these fossils are unclear.Complete genome sequences were used to identify orthologous proteins among oomycetes, diatoms, and a brown alga, with a focus on conserved regulators of gene expression such as DNA and histone modifiers and transcription factors. Our molecular clock estimates place the origin of oomycetes by at least the mid-Paleozoic (~430-400 Ma), with the divergence between two major lineages, the peronosporaleans and saprolegnialeans, in the early Mesozoic (~225-190 Ma). Divergence times estimated under the three clock models were similar, although only the strict and random local clock models produced reliable estimates for most parameters.Our molecular timescale suggests that modern pathogenic oomycetes diverged well after the origin of their respective hosts, indicating that environmental conditions or perhaps horizontal gene transfer events, rather than host availability, may have driven lineage diversification. 


Via Steve Marek
more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Uncovering plant-pathogen crosstalk through apoplastic proteomic studies

Plant pathogens have evolved by developing different strategies to infect their host, which in turn have elaborated immune responses to counter the pathogen invasion. The apoplast, including the cell wall and extracellular space outside the plasma membrane, is one of the first compartments where pathogen-host interaction occurs. The plant cell wall is composed of a complex network of polysaccharides polymers and glycoproteins and serves as a natural physical barrier against pathogen invasion. The apoplastic fluid, circulating through the cell wall and intercellular spaces, provides a means for delivering molecules and facilitating intercellular communications. Some plant-pathogen interactions lead to plant cell wall degradation allowing pathogens to penetrate into the cells. In turn, the plant immune system recognizes microbial- or damage-associated molecular patterns (MAMPs or DAMPs) and initiates a set of basal immune responses, including the strengthening of the plant cell wall. The establishment of defense requires the regulation of a wide variety of proteins that are involved at different levels, from receptor perception of the pathogen via signaling mechanisms to the strengthening of the cell wall or degradation of the pathogen itself. A fine regulation of apoplastic proteins is therefore essential for rapid and effective pathogen perception and for maintaining cell wall integrity. This review aims to provide insight into analyses using proteomic approaches of the apoplast to highlight the modulation of the apoplastic protein patterns during pathogen infection and to unravel the key players involved in plant-pathogen interaction.
Biswapriya Biswavas Misra's insight:

Plant pathogens have evolved by developing different strategies to infect their host, which in turn have elaborated immune responses to counter the pathogen invasion. The apoplast, including the cell wall and extracellular space outside the plasma membrane, is one of the first compartments where pathogen-host interaction occurs. The plant cell wall is composed of a complex network of polysaccharides polymers and glycoproteins and serves as a natural physical barrier against pathogen invasion. The apoplastic fluid, circulating through the cell wall and intercellular spaces, provides a means for delivering molecules and facilitating intercellular communications. Some plant-pathogen interactions lead to plant cell wall degradation allowing pathogens to penetrate into the cells. In turn, the plant immune system recognizes microbial- or damage-associated molecular patterns (MAMPs or DAMPs) and initiates a set of basal immune responses, including the strengthening of the plant cell wall. The establishment of defense requires the regulation of a wide variety of proteins that are involved at different levels, from receptor perception of the pathogen via signaling mechanisms to the strengthening of the cell wall or degradation of the pathogen itself. A fine regulation of apoplastic proteins is therefore essential for rapid and effective pathogen perception and for maintaining cell wall integrity. This review aims to provide insight into analyses using proteomic approaches of the apoplast to highlight the modulation of the apoplastic protein patterns during pathogen infection and to unravel the key players involved in plant-pathogen interaction.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

The genome of Eucalyptus grandis

The genome of Eucalyptus grandis | Plant Genomics | Scoop.it
Biswapriya Biswavas Misra's insight:

Eucalypts are the world’s most widely planted hardwood trees. Their outstanding diversity, adaptability and growth have made them a global renewable resource of fibre and energy. We sequenced and assembled >94% of the 640-megabase genome of Eucalyptus grandis. Of 36,376 predicted protein-coding genes, 34% occur in tandem duplications, the largest proportion thus far in plant genomes. Eucalyptus also shows the highest diversity of genes for specialized metabolites such as terpenes that act as chemical defence and provide unique pharmaceutical oils. Genome sequencing of the E. grandis sister species E. globulus and a set of inbred E. grandis tree genomes reveals dynamic genome evolution and hotspots of inbreeding depression. The E. grandis genome is the first reference for the eudicot order Myrtales and is placed here sister to the eurosids. This resource expands our understanding of the unique biology of large woody perennials and provides a powerful tool to accelerate comparative biology, breeding and biotechnology.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Characterization of the lipoxygenase (LOX) gene family in the Chinese white pear (Pyrus bretschneideri) and comparison with other members of the Rosaceae

Lipoxygenases (LOXs), a type of non-haem iron-containing dioxygenase, are ubiquitous enzymes in plants and participate in the formation of fruit aroma which is a very important aspect of fruit quality. Amongst the various aroma volatiles, saturated and unsaturated alcohols and aldehydes provide the characteristic aroma of the fruit. These compounds are formed from unsaturated fatty acids through oxidation, pyrolysis and reduction steps. This biosynthetic pathway involves at least four enzymes, including LOX, the enzyme responsible for lipid oxidation. Although some studies have been conducted on the LOX gene family in several species including Arabidopsis, soybean, cucumber and apple, there is no information from pear; and the evolutionary history of this gene family in the Rosaceae is still not resolved.
Biswapriya Biswavas Misra's insight:
Abstract (provisional)Background

Lipoxygenases (LOXs), a type of non-haem iron-containing dioxygenase, are ubiquitous enzymes in plants and participate in the formation of fruit aroma which is a very important aspect of fruit quality. Amongst the various aroma volatiles, saturated and unsaturated alcohols and aldehydes provide the characteristic aroma of the fruit. These compounds are formed from unsaturated fatty acids through oxidation, pyrolysis and reduction steps. This biosynthetic pathway involves at least four enzymes, including LOX, the enzyme responsible for lipid oxidation. Although some studies have been conducted on the LOX gene family in several species including Arabidopsis, soybean, cucumber and apple, there is no information from pear; and the evolutionary history of this gene family in the Rosaceae is still not resolved.

Results

In this study we identified 107 LOX homologous genes from five Rosaceous species (Pyrus bretschneideri, Malus x domestica, Fragaria vesca, Prunus mume and Prunus persica); 23 of these sequences were from pear. By using structure analysis, phylogenic analysis and collinearity analysis, we identified variation in gene structure and revealed the phylogenetic evolutionary relationship of this gene family. Expression of certain pear LOX genes during fruit development was verified by analysis of transcriptome data.

Conclusions

23 LOX genes were identified in pear and these genes were found to have undergone a duplication 30-45 MYA; most of these 23 genes are functional. Specific gene duplication was found on chromosome4 in the pear genome. Useful information was provided for future research on the evolutionary history and transgenic research on LOX genes.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

OsHUS1 Facilitates Accurate Meiotic Recombination in Rice

OsHUS1 Facilitates Accurate Meiotic Recombination in Rice | Plant Genomics | Scoop.it
PLOS Genetics is an open-access
Biswapriya Biswavas Misra's insight:

Meiotic recombination normally takes place between allelic sequences on homologs. This process can also occur between non-allelic homologous sequences. Such ectopic interaction events can lead to chromosome rearrangements and are normally avoided. However, much remains unknown about how these ectopic interaction events are sensed and eliminated. In this study, using a screen in rice, we characterized a homolog of HUS1 and explored its function in meiotic recombination. In Oshus1 mutants, in conjunction with nearly normal homologous pairing and synapsis, vigorous, aberrant ectopic interactions occurred between nonhomologous chromosomes, leading to multivalent formation and subsequent chromosome fragmentation. These ectopic interactions relied on programed meiotic double strand breaks and were formed in a manner independent of the OsMER3-mediated interference-sensitive crossover pathway. Although early homologous recombination events occurred normally, the number of interference-sensitive crossovers was reduced in the absence of OsHUS1. Together, our results indicate that OsHUS1 might be involved in regulating ectopic interactions during meiosis, probably by forming the canonical RAD9-RAD1-HUS1 (9-1-1) complex.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Genome-wide analysis of the distribution of AP2/ERF transcription factors reveals duplication and CBFs genes elucidate their potential function in Brassica oleracea

Cabbage (Brassica oleracea) is one of the most important leaf vegetables grown worldwide. The entire cabbage genome sequence and more than fifty thousand proteins have been obtained to date. However a high degree of sequence similarity and conserved genome structure remain between cabbage and Arabidopsis; therefore, Arabidopsis is a viable reference species for comparative genomics studies. Transcription factors (TFs) are important regulators involved in plant development and physiological processes and the AP2/ERF protein family contains transcriptional factors that play a crucial role in plant growth and development, as well as response to biotic and abiotic stress conditions in plants. However, no detailed expression profile of AP2/ERF-like genes is available for B. oleracea.
Biswapriya Biswavas Misra's insight:
Background

Cabbage (Brassica oleracea) is one of the most important leaf vegetables grown worldwide. The entire cabbage genome sequence and more than fifty thousand proteins have been obtained to date. However a high degree of sequence similarity and conserved genome structure remain between cabbage and Arabidopsis; therefore, Arabidopsis is a viable reference species for comparative genomics studies. Transcription factors (TFs) are important regulators involved in plant development and physiological processes and the AP2/ERF protein family contains transcriptional factors that play a crucial role in plant growth and development, as well as response to biotic and abiotic stress conditions in plants. However, no detailed expression profile of AP2/ERF-like genes is available for B. oleracea.

Results

In the present study, 226 AP2/ERF TFs were identified from B. oleracea based on the available genome sequence. Based on sequence similarity, the AP2/ERF superfamily was classified into five groups (DREB, ERF, AP2, RAV and Soloist) and 15 subgroups. The identification, classification, phylogenetic construction, conserved motifs, chromosome distribution, functional annotation, expression patterns and interaction network were then predicted and analyzed. AP2/ERF transcription factor expression levels exhibited differences in response to varying abiotic stresses based on expressed sequence tags (ESTs). BoCBF1a, 1b, 2, 3 and 4, which were highly conserved in Arabidopsis and B. rapa CBF/DREB genes families were well characterized. Expression analysis enabled elucidation of the molecular and genetic level expression patterns of cold tolerance (CT) and susceptible lines (CS) of cabbage and indicated that all BoCBF genes responded to abiotic stresses.

Conclusions

Comprehensive analysis of the physiological functions and biological roles of AP2/ERF superfamily genes and BoCBF family genes in B. oleracea is required to fully elucidate AP2/ERF, which will provide rich resources and opportunities to understand abiotic stress tolerance in crops.

 
more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Genome-wide analysis of alternative splicing of pre-mRNA under salt stress in Arabidopsis

Alternative splicing (AS) of precursor mRNA (pre-mRNA) is an important gene regulation process that potentially regulates many physiological processes in plants, including the response to abiotic stresses such as salt stress.
Biswapriya Biswavas Misra's insight:
Background

Alternative splicing (AS) of precursor mRNA (pre-mRNA) is an important gene regulation process that potentially regulates many physiological processes in plants, including the response to abiotic stresses such as salt stress.

Results

To analyze global changes in AS under salt stress, we obtained high-coverage (~200 times) RNA sequencing data from Arabidopsis thaliana seedlings that were treated with different concentrations of NaCl. We detected that ~49% of all intron-containing genes were alternatively spliced under salt stress, 10% of which experienced significant differential alternative splicing (DAS). Furthermore, AS increased significantly under salt stress compared with under unstressed conditions. We demonstrated that most DAS genes were not differentially regulated by salt stress, suggesting that AS may represent an independent layer of gene regulation in response to stress. Our analysis of functional categories suggested that DAS genes were associated with specific functional pathways, such as the pathways for the responses to stresses and RNA splicing. We revealed that serine/arginine-rich (SR) splicing factors were frequently and specifically regulated in AS under salt stresses, suggesting a complex loop in AS regulation for stress adaptation. We also showed that alternative splicing site selection (SS) occurred most frequently at 4 nucleotides upstream or downstream of the dominant sites and that exon skipping tended to link with alternative SS.

Conclusions

Our study provided a comprehensive view of AS under salt stress and revealed novel insights into the potential roles of AS in plant response to salt stress.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Transcriptome analysis of rice mature root tissue and root tips in early development by massive parallel sequencing.

PubMed comprises more than 23 million citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.
Biswapriya Biswavas Misra's insight:

Despite the major physiological dissimilarities between mature root regions and their tips, differences in their gene expression profiles remain largely unexplored. In this research, the transcriptome of rice (Oryza sativa L. subsp. japonica) mature root tissue and root tips was monitored using mRNA-Seq at two time points. Almost 50 million 76 bp reads were mapped onto the rice genome sequence, expression patterns for different tissues and time points were investigated, and at least 1106 novel transcriptionally active regions (nTARs) expressed in rice root tissue were detected. More than 30 000 genes were found to be expressed in rice roots, among which were 1761 root-enriched and 306 tip-enriched transcripts. Mature root tissue appears to respond more strongly to external stimuli than tips, showing a higher expression of, for instance, auxin-responsive and abscisic acid-responsive genes, as well as the phenylpropanoid pathway and photosynthesis upon light. The root tip-enriched transcripts are mainly involved in mitochondrial electron transport, organelle development, secondary metabolism, DNA replication and metabolism, translation, and cellular component organization. During root maturation, genes involved in cell wall biosynthesis and modification, response to oxidative stress, and secondary metabolism were activated. For some nTARs, a potential role in root development can be put forward based on homology to genes involved in CLAVATA signalling, cell cycle regulators, and hormone signalling. A subset of differentially expressed genes and novel transcripts was confirmed using (quantitative) reverse transcription-PCR. These results uncover previously unrecognized tissue-specific expression profiles and provide an interesting starting point to study the different regulation of transcribed regions of these tissues.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

The Reference Genome of the Halophytic Plant Eutrema salsugineum.

PubMed comprises more than 23 million citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.
Biswapriya Biswavas Misra's insight:
The Reference Genome of the Halophytic Plant Eutrema salsugineum.
more...
No comment yet.
Rescooped by Biswapriya Biswavas Misra from Plant and Seed Biology
Scoop.it!

Epigenetics; more than chromatin modifications and complex gene regulatory systems.

Epigenetics; more than chromatin modifications and complex gene regulatory systems. | Plant Genomics | Scoop.it

Chromatin modifications and epigenetics play important roles in a number of plant processes including developmental regulation, responses to environmental stimuli and adaptation. The concept of ‘chromatin modifications’ describes biochemical changes to chromatin state such as the specific type or placement of histones, modifications of DNA or histones, or changes in the specific proteins or RNA that is associated with a region. The term ‘epigenetic’ is often used to describe a variety of unexpected patterns of gene regulation or inheritance. Key aspects of this definition are the concept of heritability (stable transmission of gene expression states through mitotic or meiotic cell divisions) and an independence from DNA sequence changes. Although many examples of epigenetics involve chromatin changes, those changes including histone variants, histone modifications and DNA methylation are not always heritable or are influenced by genetic changes leading to complications in generically equating chromatin and epigenetics. A more conservative use of the terms ‘chromatin modifications’ and ‘epigenetics’ can be useful in delineating biochemical mechanisms of regulation from inheritance patterns for altered chromatin states. Here we highlight examples in which chromatin modifications and/or epigenetics contribute to important plant processes.


Via Jennifer Mach, Loïc Lepiniec
Biswapriya Biswavas Misra's insight:

Chromatin modifications and epigenetics play important roles in a number of plant processes including developmental regulation, responses to environmental stimuli and adaptation. The concept of ‘chromatin modifications’ describes biochemical changes to chromatin state such as the specific type or placement of histones, modifications of DNA or histones, or changes in the specific proteins or RNA that is associated with a region. The term ‘epigenetic’ is often used to describe a variety of unexpected patterns of gene regulation or inheritance. Key aspects of this definition are the concept of heritability (stable transmission of gene expression states through mitotic or meiotic cell divisions) and an independence from DNA sequence changes. Although many examples of epigenetics involve chromatin changes, those changes including histone variants, histone modifications and DNA methylation are not always heritable or are influenced by genetic changes leading to complications in generically equating chromatin and epigenetics. A more conservative use of the terms ‘chromatin modifications’ and ‘epigenetics’ can be useful in delineating biochemical mechanisms of regulation from inheritance patterns for altered chromatin states. Here we highlight examples in which chromatin modifications and/or epigenetics contribute to important plant processes.

more...
No comment yet.
Rescooped by Biswapriya Biswavas Misra from Molecular Biology and Life Science
Scoop.it!

mRNA and Small RNA Transcriptomes Reveal Insights into Dynamic Homoeolog Regulation of Allopolyploid Heterosis in Nascent Hexaploid Wheat

mRNA and Small RNA Transcriptomes Reveal Insights into Dynamic Homoeolog Regulation of Allopolyploid Heterosis in Nascent Hexaploid Wheat | Plant Genomics | Scoop.it

"Allohexaploid common wheat (Triticum aestivum) arose as a hybrid between allo-tetraploid Triticum turgidum and diploid Aegilops tauschii and is known to out-compete its progenitors in a number of traits, including broader adaptability to various conditions and enhanced resis- tance to biotic and abiotic stresses. It is also possible to create newly synthesized wheat allopolyploids, as hybridizations between species may be followed by spontaneous chromosome doubling. These nascent allohexaploid wheat lines, which also show heterosis and adaptive traits (see figure), may to some extent recapitulate the original genetic status of ancient wheat hybrids.

Li et al. (2014) apply this notion to an analysis of nascent allohexaploid wheat in comparison with its progenitor lines and common wheat."


Via Mary Williams, Shaikhul Islam
more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Phylogenetic analysis of pectin-related gene families in Physcomitrella patens and nine other plant species yields evolutionary insights into cell walls

Pectins are acidic sugar-containing polysaccharides that are universally conserved components of the primary cell walls of plants and modulate both tip and diffuse cell growth. However, many of their specific functions and the evolution of the genes responsible for producing and modifying them are incompletely understood. The moss Physcomitrella patens is emerging as a powerful model system for the study of plant cell walls. To identify deeply conserved pectin-related genes in Physcomitrella, we generated phylogenetic trees for 16 pectin-related gene families using sequences from ten plant genomes and analyzed the evolutionary relationships within these families.
Biswapriya Biswavas Misra's insight:
Background

Pectins are acidic sugar-containing polysaccharides that are universally conserved components of the primary cell walls of plants and modulate both tip and diffuse cell growth. However, many of their specific functions and the evolution of the genes responsible for producing and modifying them are incompletely understood. The moss Physcomitrella patens is emerging as a powerful model system for the study of plant cell walls. To identify deeply conserved pectin-related genes in Physcomitrella, we generated phylogenetic trees for 16 pectin-related gene families using sequences from ten plant genomes and analyzed the evolutionary relationships within these families.

Results

Contrary to our initial hypothesis that a single ancestral gene was present for each pectin-related gene family in the common ancestor of land plants, five of the 16 gene families, including homogalacturonan galacturonosyltransferases, polygalacturonases, pectin methylesterases, homogalacturonan methyltransferases, and pectate lyase-like proteins, show evidence of multiple members in the early land plant that gave rise to the mosses and vascular plants. Seven of the gene families, the UDP-rhamnose synthases, UDP-glucuronic acid epimerases, homogalacturonan galacturonosyltransferase-like proteins, β-1,4-galactan β-1,4-galactosyltransferases, rhamnogalacturonan II xylosyltransferases, and pectin acetylesterases appear to have had a single member in the common ancestor of land plants. We detected no Physcomitrella members in the xylogalacturonan xylosyltransferase, rhamnogalacturonan I arabinosyltransferase, pectin methylesterase inhibitor, or polygalacturonase inhibitor protein families.

Conclusions

Several gene families related to the production and modification of pectins in plants appear to have multiple members that are conserved as far back as the common ancestor of mosses and vascular plants. The presence of multiple members of these families even before the divergence of other important cell wall-related genes, such as cellulose synthases, suggests a more complex role than previously suspected for pectins in the evolution of land plants. The presence of relatively small pectin-related gene families in Physcomitrella as compared to Arabidopsis makes it an attractive target for analysis of the functions of pectins in cell walls. In contrast, the absence of genes in Physcomitrella for some families suggests that certain pectin modifications, such as homogalacturonan xylosylation, arose later during land plant evolution.

 
more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Expression-based network biology identifies immune-related functional modules involved in plant defense.

PubMed comprises more than 23 million citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.
Biswapriya Biswavas Misra's insight:
AbstractBACKGROUND:

Plants respond to diverse environmental cues including microbial perturbations by coordinated regulation of thousands of genes. These intricate transcriptional regulatory interactions depend on the recognition of specific promoter sequences by regulatory transcription factors. The combinatorial and cooperative action of multiple transcription factors defines a regulatory network that enables plant cells to respond to distinct biological signals. The identification of immune-related modules in large-scale transcriptional regulatory networks can reveal the mechanisms by which exposure to a pathogen elicits a precise phenotypic immune response.

RESULTS:

We have generated a large-scale immune co-expression network using a comprehensive set of Arabidopsis thaliana (hereafter Arabidopsis) transcriptomic data, which consists of a wide spectrum of immune responses to pathogens or pathogen-mimicking stimuli treatments. We employed both linear and non-linear models to generate Arabidopsis immune co-expression regulatory (AICR) network. We computed network topological properties and ascertained that this newly constructed immune network is densely connected, possesses hubs, exhibits high modularity, and displays hallmarks of a "real" biological network. We partitioned the network and identified 156 novel modules related to immune functions. Gene Ontology (GO) enrichment analyses provided insight into the key biological processes involved in determining finely tuned immune responses. We also developed novel software called OCCEAN (One Click Cis-regulatory Elements ANalysis) to discover statistically enriched promoter elements in the upstream regulatory regions of Arabidopsis at a whole genome level. We demonstrated that OCCEAN exhibits higher precision than the existing promoter element discovery tools. In light of known and newly discovered cis-regulatory elements, we evaluated biological significance of two key immune-related functional modules and proposed mechanism(s) to explain how large sets of diverse GO genes coherently function to mount effective immune responses.

CONCLUSIONS:

We used a network-based, top-down approach to discover immune-related modules from transcriptomic data in Arabidopsis. Detailed analyses of these functional modules reveal new insight into the topological properties of immune co-expression networks and a comprehensive understanding of multifaceted plant defense responses. We present evidence that our newly developed software, OCCEAN, could become a popular tool for Arabidopsis research community as well as potentially expand to analyze other eukaryotic genomes.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

SNP discovery by illumina-based transcriptome sequencing of the olive and the genetic characterization of Turkish olive genotypes revealed by AFLP, SSR and SNP markers.

PubMed comprises more than 23 million citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.
Biswapriya Biswavas Misra's insight:

AbstractBACKGROUND:

The olive tree (Olea europaea L.) is a diploid (2n = 2x = 46) outcrossing species mainly grown in the Mediterranean area, where it is the most important oil-producing crop. Because of its economic, cultural and ecological importance, various DNA markers have been used in the olive to characterize and elucidate homonyms, synonyms and unknown accessions. However, a comprehensive characterization and a full sequence of its transcriptome are unavailable, leading to the importance of an efficient large-scale single nucleotide polymorphism (SNP) discovery in olive. The objectives of this study were (1) to discover olive SNPs using next-generation sequencing and to identify SNP primers for cultivar identification and (2) to characterize 96 olive genotypes originating from different regions of Turkey.

METHODOLOGY/PRINCIPAL FINDINGS:

Next-generation sequencing technology was used with five distinct olive genotypes and generated cDNA, producing 126,542,413 reads using an Illumina Genome Analyzer IIx. Following quality and size trimming, the high-quality reads were assembled into 22,052 contigs with an average length of 1,321 bases and 45 singletons. The SNPs were filtered and 2,987 high-quality putative SNP primers were identified. The assembled sequences and singletons were subjected to BLAST similarity searches and annotated with a Gene Ontology identifier. To identify the 96 olive genotypes, these SNP primers were applied to the genotypes in combination with amplified fragment length polymorphism (AFLP) and simple sequence repeats (SSR) markers.

CONCLUSIONS/SIGNIFICANCE:

This study marks the highest number of SNP markers discovered to date from olive genotypes using transcriptome sequencing. The developed SNP markers will provide a useful source for molecular genetic studies, such as genetic diversity and characterization, high density quantitative trait locus (QTL) analysis, association mapping and map-based gene cloning in the olive. High levels of genetic variation among Turkish olive genotypes revealed by SNPs, AFLPs and SSRs allowed us to characterize the Turkish olive genotype.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Complete plastid genome assembly of invasive plant, Centaurea diffusa

Complete plastid genome assembly of invasive plant, Centaurea diffusa | Plant Genomics | Scoop.it
bioRxiv - the preprint server for biology, operated by Cold Spring Harbor Laboratory, a research and educational institution
Biswapriya Biswavas Misra's insight:

Invasive plants present both problems and possibilities for discovery, which may be addressed utilizing new genomic tools. Here we present the completed plastome assembly for the problematic invasive weed, Centaurea diffusa. This new tool represents a significant contribution to future studies of the ecological genomics of invasive plants, particularly this weedy genus, and studies of the Asteraceae in general.

more...
No comment yet.