Plant Genomics
Follow
Find
11.3K views | +2 today
 
Scooped by Biswapriya Biswavas Misra
onto Plant Genomics
Scoop.it!

Genome Biology | Abstract | Food for thought from plant and animal genomes

A report on the Plant and Animal Genome XXI meeting, held in San Diego, USA, January 12-16, 2013.
more...
No comment yet.
Plant Genomics
Updates on Plant Genomics
Your new post is loading...
Your new post is loading...
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Transcriptome variation along bud development in grapevine (Vitis vinifera L.)

Transcriptome variation along bud development in grapevine (Vitis vinifera L.) | Plant Genomics | Scoop.it

Abstract (provisional)

Background

Vegetative buds provide plants in temperate environments the possibility for growth and reproduction when environmental conditions are favorable. In grapevine, crucial developmental events take place within buds during two growing seasons in consecutive years. The first season, the shoot apical meristem within the bud differentiates all the basic elements of the shoot including flowering transition in lateral primordia and development of inflorescence primordia. These events practically end with bud dormancy. The second season, buds resume shoot growth associated to flower formation and development. Gene expression has been previously monitored at specific stages of bud development but has never been followed along the two growing seasons.

Results

Gene expression changes were analyzed along the bud annual cycle at eight different time points. Principal Components Analysis (PCA) revealed that the main factors explaining the global gene expression differences were the processes of bud dormancy and active growth as well as stress responses. Accordingly, non dormant buds showed an enrichment in functional categories typical of actively proliferating and growing cells together with the over abundance of transcripts belonging to stress response pathways. Differential expression analyses performed between consecutive time points indicated that major transcriptional changes were associated to para/endodormancy, endo/ecodormancy and ecodormancy/bud break transitions. Transcripts encoding key regulators of reproductive development were grouped in three major expression clusters corresponding to: (i) transcripts associated to flowering induction, (ii) transcripts associated to flower meristem specification and initiation and (iii) transcripts putatively involved in dormancy. Within this cluster, a MADS-box gene (VvFLC2) and other transcripts with similar expression patterns could participate in dormancy regulation.

Conclusions

This work provides a global view of major transcriptional changes taking place along bud development in grapevine, highlighting those molecular and biological functions involved in the main events of bud development. As reported in other woody species, the results suggest that genes regulating flowering could also be involved in dormancy regulatory pathways in grapevine.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Plant genetics: Following the early root of plastome degradation

Plant genetics: Following the early root of plastome degradation | Plant Genomics | Scoop.it
Parasitic organisms are often genomically and morphologically reduced. For example, some parasitic plants contain degraded plastid genomes owing to a reduced need to photosynthesize. A new study now shows that coralroot orchids are in the early stages of the transition to a parasitic lifestyle, and that this condition has arisen independently at least twice in the g…
Biswapriya Biswavas Misra's insight:

Parasitic organisms are often genomically and morphologically reduced. For example, some parasitic plants contain degraded plastid genomes owing to a reduced need to photosynthesize. A new study now shows that coralroot orchids are in the early stages of the transition to a parasitic lifestyle, and that this condition has arisen independently at least twice in the g…

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Transcriptional response of soybean to thiamethoxam seed treatment in the presence and absence of drought stress

Abstract (provisional)
Background

Neonicotinoid insecticides are widely known for their broad-spectrum control of arthropod pests. Recently, their effects on plant physiological mechanisms have been characterized as producing a stress shield, which is predicted to enhance tolerance to adverse conditions. Here we investigate the molecular underpinnings of the stress shield concept using the neonicotinoid thiamethoxam in two separate experiments that compare gene expression. We hypothesized that the application of a thiamethoxam seed treatment to soybean would alter the expression of genes involved in plant defensive pathways and general stress response in later vegetative growth. First, we used next-generation sequencing to examine the broad scale transcriptional effects of the thiamethoxam seed treatment at three vegetative stages in soybean. Second, we selected ten target genes associated with plant defense pathways in soybean and examined the interactive effects of thiamethoxam seed treatment and drought stress on expression using qRT-PCR.
Results

Direct comparison of thiamethoxam-treated and untreated soybeans revealed minor transcriptional differences. However, when examined across vegetative stages, the thiamethoxam seed treatment induced substantial transcriptional changes that were not observed in untreated plants. Genes associated with photosynthesis, carbohydrate and lipid metabolism, development of the cell wall and membrane organization were uniquely upregulated between vegetative stages in thiamethoxam-treated plants. In addition, several genes associated with phytohormone and oxidative stress responses were downregulated between vegetative stages. When we examined the expression of a subset of ten genes associated with plant defense and stress response, the application of thiamethoxam was found to interact with drought stress by enhancing or repressing expression. In drought stressed plants, thiamethoxam induced (upregulated) expression of a thiamine biosynthetic enzyme (THIZ2) and gibberellin regulated protein (GRP), but repressed (downregulated) the expression of an apetala 2 (GmDREB2A;2), lipoxygenase (LIP), and SAM dependent carboxyl methyltransferase (SAM).
Conclusions

We found evidence that a thiamethoxam seed treatment alters the expression soybean genes related to plant defense and stress response both in the presence and absence of drought stress. Consistent with the thiamethoxam stress shield concept, several genes associated with phytohormones showed enhanced expression in drought stressed plants.
Biswapriya Biswavas Misra's insight:
Abstract (provisional)Background

Neonicotinoid insecticides are widely known for their broad-spectrum control of arthropod pests. Recently, their effects on plant physiological mechanisms have been characterized as producing a stress shield, which is predicted to enhance tolerance to adverse conditions. Here we investigate the molecular underpinnings of the stress shield concept using the neonicotinoid thiamethoxam in two separate experiments that compare gene expression. We hypothesized that the application of a thiamethoxam seed treatment to soybean would alter the expression of genes involved in plant defensive pathways and general stress response in later vegetative growth. First, we used next-generation sequencing to examine the broad scale transcriptional effects of the thiamethoxam seed treatment at three vegetative stages in soybean. Second, we selected ten target genes associated with plant defense pathways in soybean and examined the interactive effects of thiamethoxam seed treatment and drought stress on expression using qRT-PCR.

Results

Direct comparison of thiamethoxam-treated and untreated soybeans revealed minor transcriptional differences. However, when examined across vegetative stages, the thiamethoxam seed treatment induced substantial transcriptional changes that were not observed in untreated plants. Genes associated with photosynthesis, carbohydrate and lipid metabolism, development of the cell wall and membrane organization were uniquely upregulated between vegetative stages in thiamethoxam-treated plants. In addition, several genes associated with phytohormone and oxidative stress responses were downregulated between vegetative stages. When we examined the expression of a subset of ten genes associated with plant defense and stress response, the application of thiamethoxam was found to interact with drought stress by enhancing or repressing expression. In drought stressed plants, thiamethoxam induced (upregulated) expression of a thiamine biosynthetic enzyme (THIZ2) and gibberellin regulated protein (GRP), but repressed (downregulated) the expression of an apetala 2 (GmDREB2A;2), lipoxygenase (LIP), and SAM dependent carboxyl methyltransferase (SAM).

Conclusions

We found evidence that a thiamethoxam seed treatment alters the expression soybean genes related to plant defense and stress response both in the presence and absence of drought stress. Consistent with the thiamethoxam stress shield concept, several genes associated with phytohormones showed enhanced expression in drought stressed plants.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Label-free proteomic analysis to confirm the predicted proteome of Corynebacterium pseudotuberculosis under nitrosative stress mediated by nitric oxide

Corynebacterium pseudotuberculosis biovar ovis is a facultative intracellular pathogen, and the etiological agent of caseous lymphadenitis in small ruminants. During the infection process, the bacterium is subjected to several stress conditions, including nitrosative stress, which is caused by nitric oxide (NO). In silico analysis of the genome of C. pseudotuberculosis ovis 1002 predicted several genes that could influence the resistance of this pathogen to nitrosative stress. Here, we applied high-throughput proteomics using high definition mass spectrometry to characterize the functional genome of C. pseudotuberculosis ovis 1002 in the presence of NO-donor Diethylenetriamine/nitric oxide adduct (DETA/NO), with the aim of identifying proteins involved in nitrosative stress resistance.
Biswapriya Biswavas Misra's insight:
Abstract (provisional)Background

Corynebacterium pseudotuberculosis biovar ovis is a facultative intracellular pathogen, and the etiological agent of caseous lymphadenitis in small ruminants. During the infection process, the bacterium is subjected to several stress conditions, including nitrosative stress, which is caused by nitric oxide (NO). In silico analysis of the genome of C. pseudotuberculosis ovis 1002 predicted several genes that could influence the resistance of this pathogen to nitrosative stress. Here, we applied high-throughput proteomics using high definition mass spectrometry to characterize the functional genome of C. pseudotuberculosis ovis 1002 in the presence of NO-donor Diethylenetriamine/nitric oxide adduct (DETA/NO), with the aim of identifying proteins involved in nitrosative stress resistance.

Results

We characterized 835 proteins, representing approximately 41% of the predicted proteome of C. pseudotuberculosis ovis 1002, following exposure to nitrosative stress. In total, 102 proteins were exclusive to the proteome of DETA/NO-induced cells, and a further 58 proteins were differentially regulated between the DETA/NO and control conditions. An interactomic analysis of the differential proteome of C. pseudotuberculosis in response to nitrosative stress was also performed. Our proteomic data set suggested the activation of both a general stress response and a specific nitrosative stress response, as well as changes in proteins involved in cellular metabolism, detoxification, transcriptional regulation, and DNA synthesis and repair.

Conclusions

Our proteomic analysis validated previously-determined in silico data for C. pseudotuberculosis ovis 1002. In addition, proteomic screening performed in the presence of NO enabled the identification of a set of factors that can influence the resistance and survival of C. pseudotuberculosis during exposure to nitrosative stress.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Recurrent Loss of Specific Introns during Angiosperm Evolution

Recurrent Loss of Specific Introns during Angiosperm Evolution | Plant Genomics | Scoop.it
PLOS Genetics is an open-access
Biswapriya Biswavas Misra's insight:

Numerous instances of presence/absence variations for introns have been documented in eukaryotes, and some cases of recurrent loss of the same intron have been suggested. However, there has been no comprehensive or phylogenetically deep analysis of recurrent intron loss. Of 883 cases of intron presence/absence variation that we detected in five sequenced grass genomes, 93 were confirmed as recurrent losses and the rest could be explained by single losses (652) or single gains (118). No case of recurrent intron gain was observed. Deep phylogenetic analysis often indicated that apparent intron gains were actually numerous independent losses of the same intron. Recurrent loss exhibited extreme non-randomness, in that some introns were removed independently in many lineages. The two larger genomes, maize and sorghum, were found to have a higher rate of both recurrent loss and overall loss and/or gain than foxtail millet, rice or Brachypodium. Adjacent introns and small introns were found to be preferentially lost. Intron loss genes exhibited a high frequency of germ line or early embryogenesis expression. In addition, flanking exon A+T-richness and intron TG/CG ratios were higher in retained introns. This last result suggests that epigenetic status, as evidenced by a loss of methylated CG dinucleotides, may play a role in the process of intron loss. This study provides the first comprehensive analysis of recurrent intron loss, makes a series of novel findings on the patterns of recurrent intron loss during the evolution of the grass family, and provides insight into the molecular mechanism(s) underlying intron loss.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Diversity, expression and mRNA targeting abilities of Argonaute-targeting miRNAs among selected vascular plants

Micro (mi)RNAs are important regulators of plant development. Across plant lineages, Dicer-like 1 (DCL1) proteins process long ds-like structures to produce micro (mi) RNA duplexes in a stepwise manner. These miRNAs are incorporated into Argonaute (AGO) proteins and influence expression of RNAs that have sequence complementarity with miRNAs. Expression of AGOs is greatly regulated by plants in order to minimize unwarranted perturbations using miRNAs to target mRNAs coding for AGOs. AGOs may also have high promoter specificity-sometimes expression of AGO can be limited to just a few cells in a plant. Viral pathogens utilize various means to counter antiviral roles of AGOs including hijacking the host encoded miRNAs to target antiviral AGOs. Two host encoded miRNAs namely miR168 and miR403 that target AGOs have been described in the model plant Arabidopsis and such a mechanism is thought to be well conserved across plants because AGO sequences are well conserved.
Biswapriya Biswavas Misra's insight:
Abstract (provisional)Background

Micro (mi)RNAs are important regulators of plant development. Across plant lineages, Dicer-like 1 (DCL1) proteins process long ds-like structures to produce micro (mi) RNA duplexes in a stepwise manner. These miRNAs are incorporated into Argonaute (AGO) proteins and influence expression of RNAs that have sequence complementarity with miRNAs. Expression of AGOs is greatly regulated by plants in order to minimize unwarranted perturbations using miRNAs to target mRNAs coding for AGOs. AGOs may also have high promoter specificity-sometimes expression of AGO can be limited to just a few cells in a plant. Viral pathogens utilize various means to counter antiviral roles of AGOs including hijacking the host encoded miRNAs to target antiviral AGOs. Two host encoded miRNAs namely miR168 and miR403 that target AGOs have been described in the model plant Arabidopsis and such a mechanism is thought to be well conserved across plants because AGO sequences are well conserved.

Results

We show that the interaction between AGO mRNAs and miRNAs is species-specific due to the diversity in sequences of two miRNAs that target AGOs, sequence diversity among corresponding target regions in AGO mRNAs and variable expression levels of these miRNAs among vascular plants. We used miRNA sequences from 68 plant species representing 31 plant families for this analysis. Sequences of miR168 and miR403 are not conserved among plant lineages, but surprisingly they differ drastically in their sequence diversity and expression levels even among closely related plants. Variation in miR168 expression among plants correlates well with secondary structures/length of loop sequences of their precursors.

Conclusions

Our data indicates a complex AGO targeting interaction among plant lineages due to miRNA sequence diversity and sequences of miRNA targeting regions among AGO mRNAs, thus leading to the assumption that the perturbations by viruses that use host miRNAs to target antiviral AGOs can only be species-specific. We also show that rapid evolution and likely loss of expression of miR168 isoforms in tobacco is related to the insertion of MITE-like transposons between miRNA and miRNA* sequences, a possible mechanism showing how miRNAs are lost in few plant lineages even though other close relatives have abundantly expressing miRNAs.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Emiliania huxleyi endures N-limitation with an efficient metabolic budgeting and effective ATP synthesis

Global change will affect patterns of nutrient upwelling in marine environments, potentially becoming even stricter regulators of phytoplankton primary productivity. To better understand phytoplankton nutrient utilization on the subcellular basis, we assessed the transcriptomic responses of the life-cycle stages of the biogeochemically important microalgae Emiliania huxleyi to nitrogen limitation. Cells grown in batch cultures were harvested at 'early' and 'full' nitrogen limitation and were compared with non-limited cells. We applied microarray-based transcriptome profilings, covering ~10.000 known E. huxleyi gene models, and screened for expression patterns that indicate the subcellular responses.
Biswapriya Biswavas Misra's insight:
Abstract (provisional)Background

Global change will affect patterns of nutrient upwelling in marine environments, potentially becoming even stricter regulators of phytoplankton primary productivity. To better understand phytoplankton nutrient utilization on the subcellular basis, we assessed the transcriptomic responses of the life-cycle stages of the biogeochemically important microalgae Emiliania huxleyi to nitrogen limitation. Cells grown in batch cultures were harvested at 'early' and 'full' nitrogen limitation and were compared with non-limited cells. We applied microarray-based transcriptome profilings, covering ~10.000 known E. huxleyi gene models, and screened for expression patterns that indicate the subcellular responses.

Results

The diploid life-cycle stage scavenges nitrogen from external organic sources and -like diatoms- uses the ornithine-urea cycle to rapidly turn over cellular nitrogen. The haploid stage reacts similarly, although nitrogen scavenging is less pronounced and lipid oxidation is more prominent. Generally, polyamines and proline appear to constitute major organic pools that back up cellular nitrogen. Both stages induce a malate:quinone-oxidoreductase that efficiently feeds electrons into the respiratory chain and drives ATP generation with reduced respiratory carbon throughput.

Conclusions

The use of the ornithine-urea cycle to budget the cellular nitrogen in situations of limitation resembles the responses observed earlier in diatoms. This suggests that underlying biochemical mechanisms are conserved among distant clades of marine phototrophic protists. The ornithine-urea cycle and proline oxidation appear to constitute a sensory-regulatory system that monitors and controls cellular nitrogen budgets under limitation. The similarity between the responses of the life-cycle stages, despite the usage of different genes, also indicates a strong functional consistency in the responses to nitrogen-limitation that appears to be owed to biochemical requirements. The malate:quinone-oxidoreductase is a genomic feature that appears to be absent from diatom genomes, and it is likely to strongly contribute to the uniquely high endurance of E. huxleyi under nutrient limitation.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Development of EST-based SNP and InDel markers and their utilization in tetraploid cotton genetic mapping

Availability of molecular markers has proven to be an efficient tool in facilitating progress in plant breeding, which is particularly important in the case of less researched crops such as cotton. Considering the obvious advantages of single nucleotide polymorphisms (SNPs) and insertion-deletion polymorphisms (InDels), expressed sequence tags (ESTs) were analyzed in silico to identify SNPs and InDels in this study, aiming to develop more molecular markers in cotton.
Biswapriya Biswavas Misra's insight:
Abstract (provisional)Background

Availability of molecular markers has proven to be an efficient tool in facilitating progress in plant breeding, which is particularly important in the case of less researched crops such as cotton. Considering the obvious advantages of single nucleotide polymorphisms (SNPs) and insertion-deletion polymorphisms (InDels), expressed sequence tags (ESTs) were analyzed in silico to identify SNPs and InDels in this study, aiming to develop more molecular markers in cotton.

Results

A total of 1,349 EST-based SNP and InDel markers were developed by comparing ESTs between Gossypium hirsutum and G. barbadense, mining G. hirsutum unigenes, and analyzing 3[prime] untranslated region (3[prime]UTR) sequences. The marker polymorphisms were investigated using the two parents of the mapping population based on the single-strand conformation polymorphism (SSCP) analysis. Of all the markers, 137 (10.16%) were polymorphic, and revealed 142 loci. Linkage analysis using a BC1 population mapped 133 loci on the 26 chromosomes. Statistical analysis of base variations in SNPs showed that base transitions accounted for 55.78% of the total base variations and gene ontology indicated that cotton genes varied greatly in harboring SNPs ranging from 1.00 to 24.00 SNPs per gene. Sanger sequencing of three randomly selected SNP markers revealed discrepancy between the in silico predicted sequences and the actual sequencing results.

Conclusions

In silico analysis is a double-edged blade to develop EST-SNP/InDel markers. On the one hand, the designed markers can be well used in tetraploid cotton genetic mapping. And it plays a certain role in revealing transition preference and SNP frequency of cotton genes. On the other hand, the developmental efficiency of markers and polymorphism of designed primers are comparatively low.

more...
No comment yet.
Rescooped by Biswapriya Biswavas Misra from MycorWeb Plant-Microbe Interactions
Scoop.it!

Improving the reference eucalyptus (E. grandis) genome

Improving the reference eucalyptus (E. grandis) genome | Plant Genomics | Scoop.it
A team of French researchers developed an array that allowed them to produce high-resolution genetic maps of two eucalyptus species. Comparing these maps to the E. grandis reference genome of eucalyptus produced by a team including DOE JGI researchers in June 2014 led to an improvement in the reference genome assembly.

Via Francis Martin
more...
No comment yet.
Rescooped by Biswapriya Biswavas Misra from MycorWeb Plant-Microbe Interactions
Scoop.it!

Genome of Clathrospora elynae (Dothideomycetes)

Genome of Clathrospora elynae (Dothideomycetes) | Plant Genomics | Scoop.it

Clathrospora is a genus of fungi in the family Diademaceae (Dothideomycetes). Dothideomycetes is the largest and most diverse class of ascomycete fungi. It comprises 11 orders 90 families, 1300 genera and over 19,000 known species.
Clathrospora elynae was found growing on Carex curvula (curved sedge) in St. Moritz, Corviglia, Switzerland. This genome was sequenced as part of the 1000 Fungal Genomes Project.


Via Francis Martin
more...
No comment yet.
Rescooped by Biswapriya Biswavas Misra from TAL effector science
Scoop.it!

Plant genome editing by novel tools: TALEN and other sequence specific nucleases

Plant genome editing by novel tools: TALEN and other sequence specific nucleases | Plant Genomics | Scoop.it

(via T. Schreiber, thx!)

Sprink et al, 2014

Genome editing technologies using sequence specific nucleases (SSNs) became a tremendously powerful and precise tool for reverse genetic approaches and applied biology. Transcription activator-like effector nucleases (TALENs) in particular, consisting of a free designable DNA binding domain and a nuclease, have been exploited today by a huge number of approaches in many different organisms. The convenience of designing the DNA binding domain and straightforward protocols for their assembly, as well as the broad number of applications in different scientific fields made it Natures method of the year 2011. TALENs act as molecular scissors by introducing double strand breaks (DSBs) to the DNA at a given location. The DSBs are subsequently repaired by the cell itself using different repair pathways such as non-homologous end joining (NHEJ) or homologous recombination (HR). These mechanisms can lead to deletions, insertions, replacements or larger chromosomal rearrangements. By offering a template DNA it is possible to channel the repair in direction of HR. In this article we review the recent findings in the field of SSN approaches with emphasis on plants.


Via dromius
more...
No comment yet.
Rescooped by Biswapriya Biswavas Misra from Plant-Microbe Symbioses
Scoop.it!

MTGD: The Medicago truncatula genome database

Medicago truncatula, a close relative of alfalfa (Medicago sativa), is a model legume used for studying symbiotic nitrogen fixation, mycorrhizal interactions and legume genomics. JCVI (formerly TIGR) has been involved in M. truncatula genome sequencing and annotation since 2002 and has maintained a web-based resource providing data to the community for this entire period. The web site (http://www.MedicagoGenome.org) has seen major updates in the past year, where it currently hosts the latest version of the genome (Mt4.0), associated data and legacy project information, presented to users via a rich set of open-source tools. A JBrowse-based genome browser interface exposes tracks for visualization. Mutant gene symbols originally assembled and curated by the Frugoli lab are now hosted at JCVI and tie into our community annotation interface, Medicago EuCAP (to be integrated soon with our implementation of WebApollo). Literature pertinent to M. truncatula is indexed and made searchable via the Textpresso search engine. The site also implements MedicMine, an instance of InterMine that offers interconnectivity with other plant “mines” like ThaleMine and PhytoMine, and other Model Organism Databases (MODs). In addition to these new features, we continue to provide keyword and locus identifier based searches served via a Chado-backed Tripal Instance, a BLAST search interface, and bulk downloads of datasets from the iPlant Data Store (iDS). Finally, we maintain an email helpdesk, facilitated by a JIRA issue tracking system, where we receive and respond to questions about the website and requests for specific datasets from the community.

Via Jean-Michel Ané
Biswapriya Biswavas Misra's insight:

Medicago truncatula, a close relative of alfalfa (Medicago sativa), is a model legume used for studying symbiotic nitrogen fixation, mycorrhizal interactions and legume genomics. JCVI (formerly TIGR) has been involved in M. truncatula genome sequencing and annotation since 2002 and has maintained a web-based resource providing data to the community for this entire period. The web site (http://www.MedicagoGenome.org) has seen major updates in the past year, where it currently hosts the latest version of the genome (Mt4.0), associated data and legacy project information, presented to users via a rich set of open-source tools. A JBrowse-based genome browser interface exposes tracks for visualization. Mutant gene symbols originally assembled and curated by the Frugoli lab are now hosted at JCVI and tie into our community annotation interface, Medicago EuCAP (to be integrated soon with our implementation of WebApollo). Literature pertinent to M. truncatula is indexed and made searchable via the Textpresso search engine. The site also implements MedicMine, an instance of InterMine that offers interconnectivity with other plant “mines” like ThaleMine and PhytoMine, and other Model Organism Databases (MODs). In addition to these new features, we continue to provide keyword and locus identifier based searches served via a Chado-backed Tripal Instance, a BLAST search interface, and bulk downloads of datasets from the iPlant Data Store (iDS). Finally, we maintain an email helpdesk, facilitated by a JIRA issue tracking system, where we receive and respond to questions about the website and requests for specific datasets from the community.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

GWATCH: a web platform for automated gene association discovery analysis

As genome-wide sequence analyses for complex human disease determinants are expanding, it is increasingly necessary to develop strategies to promote discovery and validation of potential disease-gene associations.
Biswapriya Biswavas Misra's insight:
Background

As genome-wide sequence analyses for complex human disease determinants are expanding, it is increasingly necessary to develop strategies to promote discovery and validation of potential disease-gene associations.

Findings

Here we present a dynamic web-based platform – GWATCH – that automates and facilitates four steps in genetic epidemiological discovery: 1) Rapid gene association search and discovery analysis of large genome-wide datasets; 2) Expanded visual display of gene associations for genome-wide variants (SNPs, indels, CNVs), including Manhattan plots, 2D and 3D snapshots of any gene region, and a dynamic genome browser illustrating gene association chromosomal regions; 3) Real-time validation/replication of candidate or putative genes suggested from other sources, limiting Bonferroni genome-wide association study (GWAS) penalties; 4) Open data release and sharing by eliminating privacy constraints (The National Human Genome Research Institute (NHGRI) Institutional Review Board (IRB), informed consent, The Health Insurance Portability and Accountability Act (HIPAA) of 1996 etc.) on unabridged results, which allows for open access comparative and meta-analysis.

Conclusions

GWATCH is suitable for both GWAS and whole genome sequence association datasets. We illustrate the utility of GWATCH with three large genome-wide association studies for HIV-AIDS resistance genes screened in large multicenter cohorts; however, association datasets from any study can be uploaded and analyzed by GWATCH.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

An evolutionary genomic tale of two rice species

An evolutionary genomic tale of two rice species | Plant Genomics | Scoop.it
The domestication of African rice, Oryza glaberrima, occurred separately from that of the much more widespread Asian rice species Oryza sativa. Analysis of the whole-genome sequence for O. glaberrima shows the extent to which the same genes were involved in these distinct but parallel evolutionary events.
Biswapriya Biswavas Misra's insight:

The domestication of African rice, Oryza glaberrima, occurred separately from that of the much more widespread Asian rice species Oryza sativa. Analysis of the whole-genome sequence for O. glaberrima shows the extent to which the same genes were involved in these distinct but parallel evolutionary events.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

ECOD: An Evolutionary Classification of Protein Domains

ECOD: An Evolutionary Classification of Protein Domains | Plant Genomics | Scoop.it
PLOS Computational Biology is an open-access
Biswapriya Biswavas Misra's insight:

Understanding the evolution of a protein, including both close and distant relationships, often reveals insight into its structure and function. Fast and easy access to such up-to-date information facilitates research. We have developed a hierarchical evolutionary classification of all proteins with experimentally determined spatial structures, and presented it as an interactive and updatable online database. ECOD (Evolutionary Classification of protein Domains) is distinct from other structural classifications in that it groups domains primarily by evolutionary relationships (homology), rather than topology (or “fold”). This distinction highlights cases of homology between domains of differing topology to aid in understanding of protein structure evolution. ECOD uniquely emphasizes distantly related homologs that are difficult to detect, and thus catalogs the largest number of evolutionary links among structural domain classifications. Placing distant homologs together underscores the ancestral similarities of these proteins and draws attention to the most important regions of sequence and structure, as well as conserved functional sites. ECOD also recognizes closer sequence-based relationships between protein domains. Currently, approximately 100,000 protein structures are classified in ECOD into 9,000 sequence families clustered into close to 2,000 evolutionary groups. The classification is assisted by an automated pipeline that quickly and consistently classifies weekly releases of PDB structures and allows for continual updates. This synchronization with PDB uniquely distinguishes ECOD among all protein classifications. Finally, we present several case studies of homologous proteins not recorded in other classifications, illustrating the potential of how ECOD can be used to further biological and evolutionary studies.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

BMC Genomics | Abstract | Metabolic and co-expression network-based analyses associated with nitrate response in rice

Abstract (provisional)
Background

Understanding gene expression and metabolic re-programming that occur in response to limiting nitrogen (N) conditions in crop plants is crucial for the ongoing progress towards the development of varieties with improved nitrogen use efficiency (NUE). To unravel new details on the molecular and metabolic responses to N availability in a major food crop, we conducted analyses on a weighted gene co-expression network and metabolic profile data obtained from leaves and roots of rice plants adapted to sufficient and limiting N as well as after shifting them to limiting (reduction) and sufficient (induction) N conditions.
Results

A gene co-expression network representing clusters of rice genes with similar expression patterns across four nitrogen conditions and two tissue types was generated. The resulting 18 clusters were analyzed for enrichment of significant gene ontology (GO) terms. Four clusters exhibited significant correlation with limiting and reducing nitrate treatments. Among the identified enriched GO terms, those related to nucleoside/nucleotide, purine and ATP binding, defense response, sugar/carbohydrate binding, protein kinase activities, cell-death and cell wall enzymatic activity are enriched. Although a subset of functional categories are more broadly associated with the response of rice organs to limiting N and N reduction, our analyses suggest that N reduction elicits a response distinguishable from that to adaptation to limiting N, particularly in leaves. This observation is further supported by metabolic profiling which shows that several compounds in leaves change proportionally to the nitrate level (i.e. higher in sufficient N vs. imitimg N) and respond with even higher levels when the nitrate level is reduced. Notably, these compounds are directly involved in N assimilation, transport, and storage (glutamine, asparagine, glutamate and allantoin) and extend to most amino acids. Based on these data, we hypothesize that plants respond by rapidly mobilizing stored vacuolar nitrate when N deficit is perceived, and that the response likely involves phosphorylation signal cascades and transcriptional regulation.
Conclusions

The co-expression network analysis and metabolic profiling performed in rice pinpoint the relevance of signal transduction components and regulation of N mobilization in response to limiting N conditions and deepen our understanding of N responses and N use in crops.
Biswapriya Biswavas Misra's insight:
Abstract (provisional)Background

Understanding gene expression and metabolic re-programming that occur in response to limiting nitrogen (N) conditions in crop plants is crucial for the ongoing progress towards the development of varieties with improved nitrogen use efficiency (NUE). To unravel new details on the molecular and metabolic responses to N availability in a major food crop, we conducted analyses on a weighted gene co-expression network and metabolic profile data obtained from leaves and roots of rice plants adapted to sufficient and limiting N as well as after shifting them to limiting (reduction) and sufficient (induction) N conditions.

Results

A gene co-expression network representing clusters of rice genes with similar expression patterns across four nitrogen conditions and two tissue types was generated. The resulting 18 clusters were analyzed for enrichment of significant gene ontology (GO) terms. Four clusters exhibited significant correlation with limiting and reducing nitrate treatments. Among the identified enriched GO terms, those related to nucleoside/nucleotide, purine and ATP binding, defense response, sugar/carbohydrate binding, protein kinase activities, cell-death and cell wall enzymatic activity are enriched. Although a subset of functional categories are more broadly associated with the response of rice organs to limiting N and N reduction, our analyses suggest that N reduction elicits a response distinguishable from that to adaptation to limiting N, particularly in leaves. This observation is further supported by metabolic profiling which shows that several compounds in leaves change proportionally to the nitrate level (i.e. higher in sufficient N vs. imitimg N) and respond with even higher levels when the nitrate level is reduced. Notably, these compounds are directly involved in N assimilation, transport, and storage (glutamine, asparagine, glutamate and allantoin) and extend to most amino acids. Based on these data, we hypothesize that plants respond by rapidly mobilizing stored vacuolar nitrate when N deficit is perceived, and that the response likely involves phosphorylation signal cascades and transcriptional regulation.

Conclusions

The co-expression network analysis and metabolic profiling performed in rice pinpoint the relevance of signal transduction components and regulation of N mobilization in response to limiting N conditions and deepen our understanding of N responses and N use in crops.

 
more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Association Mapping across Numerous Traits Reveals Patterns of Functional Variation in Maize

Association Mapping across Numerous Traits Reveals Patterns of Functional Variation in Maize | Plant Genomics | Scoop.it
PLOS Genetics is an open-access
Biswapriya Biswavas Misra's insight:
Abstract

Phenotypic variation in natural populations results from a combination of genetic effects, environmental effects, and gene-by-environment interactions. Despite the vast amount of genomic data becoming available, many pressing questions remain about the nature of genetic mutations that underlie functional variation. We present the results of combining genome-wide association analysis of 41 different phenotypes in ~5,000 inbred maize lines to analyze patterns of high-resolution genetic association among of 28.9 million single-nucleotide polymorphisms (SNPs) and ~800,000 copy-number variants (CNVs). We show that genic and intergenic regions have opposite patterns of enrichment, minor allele frequencies, and effect sizes, implying tradeoffs among the probability that a given polymorphism will have an effect, the detectable size of that effect, and its frequency in the population. We also find that genes tagged by GWAS are enriched for regulatory functions and are ~50% more likely to have a paralog than expected by chance, indicating that gene regulation and gene duplication are strong drivers of phenotypic variation. These results will likely apply to many other organisms, especially ones with large and complex genomes like maize.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Genomic selection accuracies within and between environments and small breeding groups in white spruce

Genomic selection (GS) may improve selection response over conventional pedigree-based selection if markers capture more detailed information than pedigrees in recently domesticated tree species and/or make it more cost effective. Genomic prediction accuracies using 1748 trees and 6932 SNPs representative of as many distinct gene loci were determined for growth and wood traits in white spruce, within and between environments and breeding groups (BG), each with an effective size of Ne [almost equal to] 20. Marker subsets were also tested.
Biswapriya Biswavas Misra's insight:
Abstract (provisional)Background

Genomic selection (GS) may improve selection response over conventional pedigree-based selection if markers capture more detailed information than pedigrees in recently domesticated tree species and/or make it more cost effective. Genomic prediction accuracies using 1748 trees and 6932 SNPs representative of as many distinct gene loci were determined for growth and wood traits in white spruce, within and between environments and breeding groups (BG), each with an effective size of Ne [almost equal to] 20. Marker subsets were also tested.

Results

Model fits and/or cross-validation (CV) prediction accuracies for ridge regression (RR) and the least absolute shrinkage and selection operator models approached those of pedigree-based models. With strong relatedness between CV sets, prediction accuracies for RR within environment and BG were high for wood (r = 0.71-0.79) and moderately high for growth (r = 0.52-0.69) traits, in line with trends in heritabilities. For both classes of traits, these accuracies achieved between 83% and 92% of those obtained with phenotypes and pedigree information. Prediction into untested environments remained moderately high for wood (r >= 0.61) but dropped significantly for growth (r >= 0.24) traits, emphasizing the need to phenotype in all test environments and model genotype-by-environment interactions for growth traits. Removing relatedness between CV sets sharply decreased prediction accuracies for all traits and subpopulations, falling near zero between BGs with no known shared ancestry. For marker subsets, similar patterns were observed but with lower prediction accuracies.

Conclusions

Given the need for high relatedness between CV sets to obtain good prediction accuracies, we recommend to build GS models for prediction within the same breeding population only. Breeding groups could be merged to build genomic prediction models as long as the total effective population size does not exceed 50 individuals in order to obtain high prediction accuracy such as that obtained in the present study. A number of markers limited to a few hundred would not negatively impact prediction accuracies, but these could decrease more rapidly over generations. The most promising short-term approach for genomic selection would likely be the selection of superior individuals within large full-sib families vegetatively propagated to implement multiclonal forestry.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Gene expression profiles responses to aphid feeding in chrysanthemum (Chrysanthemum morifolium)

Chrysanthemum is an important ornamental plant all over the world. It is easily attacked by aphid, Macrosiphoniella sanbourni. The molecular mechanisms of plant defense responses to aphid are only partially understood. Here, we investigate the gene expression changes in response to aphid feeding in chrysanthemum leaf by RNA-Seq technology.
Biswapriya Biswavas Misra's insight:
Abstract (provisional)Background

Chrysanthemum is an important ornamental plant all over the world. It is easily attacked by aphid, Macrosiphoniella sanbourni. The molecular mechanisms of plant defense responses to aphid are only partially understood. Here, we investigate the gene expression changes in response to aphid feeding in chrysanthemum leaf by RNA-Seq technology.

Results

Three libraries were generated from pooled leaf tissues of Chrysanthemum morifolium 'nannongxunzhang' that were collected at different time points with (Y) or without (CK) aphid infestations and mock puncture treatment (Z), and sequenced using an Illumina HiSeqTM 2000 platform. A total of 7,363,292, 7,215,860 and 7,319,841 clean reads were obtained in library CK, Y and Z, respectively. The proportion of clean reads was >97.29% in each library. Approximately 76.35% of the clean reads were mapped to a reference gene database including all known chrysanthemum unigene sequences. 1,157, 527 and 340 differentially expressed genes (DEGs) were identified in the comparison of CK-VS-Y, CK-VS-Z and Z-VS-Y, respectively. These DEGs were involved in phytohormone signaling, cell wall biosynthesis, photosynthesis, reactive oxygen species (ROS) pathway and transcription factor regulatory networks, and so on.

Conclusions

Changes in gene expression induced by aphid feeding are shown to be multifaceted. There are various forms of crosstalk between different pathways those genes belonging to, which would allow plants to fine-tune its defense responses.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Transcriptome structure variability in Saccharomyces cerevisiae strains determined with a newly developed assembly software

RNA-seq studies have an important role for both large-scale analysis of gene expression and for transcriptome reconstruction. However, the lack of software specifically developed for the analysis of the transcriptome structure in lower eukaryotes, has so far limited the comparative studies among different species and strains.
Biswapriya Biswavas Misra's insight:
Abstract (provisional)Background

RNA-seq studies have an important role for both large-scale analysis of gene expression and for transcriptome reconstruction. However, the lack of software specifically developed for the analysis of the transcriptome structure in lower eukaryotes, has so far limited the comparative studies among different species and strains.

Results

In order to fill this gap, an innovative software called ORA (Overlapped Reads Assembler) was developed. This software allows a simple and reliable analysis of the transcriptome structure in organisms with a low number of introns. It can also determine the size and the position of the untranslated regions (UTR) and of polycistronic transcripts. As a case study, we analyzed the transcriptional landscape of six S. cerevisiae strains in two different key steps of the fermentation process. This comparative analysis revealed differences in the UTR regions of transcripts. By extending the transcriptome analysis to yeast species belonging to the Saccharomyces genus, it was possible to examine the conservation level of unknown non-coding RNAs and their putative functional role.

Conclusions

By comparing the results obtained using ORA with previous studies and with the transcriptome structure determined with other software, it was proven that ORA has a remarkable reliability. The results obtained from the training set made it possible to detect the presence of transcripts with variable UTRs between S. cerevisiae strains. Finally, we propose a regulatory role for some non-coding transcripts conserved within the Saccharomyces genus and localized in the antisense strand to genes involved in meiosis and cell wall biosynthesis.

more...
No comment yet.
Rescooped by Biswapriya Biswavas Misra from Plant-microbe interactions (on the plant's side)
Scoop.it!

Transcriptome Analysis Reveals Genes Commonly Induced by Botrytis cinerea Infection, Cold, Drought and Oxidative Stresses in Arabidopsis

Transcriptome Analysis Reveals Genes Commonly Induced by Botrytis cinerea Infection, Cold, Drought and Oxidative Stresses in Arabidopsis | Plant Genomics | Scoop.it

Signaling pathways controlling biotic and abiotic stress responses may interact synergistically or antagonistically. To identify the similarities and differences among responses to diverse stresses, we analyzed previously published microarray data on the transcriptomic responses of Arabidopsis to infection with Botrytis cinerea (a biotic stress), and to cold, drought, and oxidative stresses (abiotic stresses). Our analyses showed that at early stages after B. cinerea inoculation, 1498 genes were up-regulated (B. cinerea up-regulated genes; BUGs) and 1138 genes were down-regulated (B. cinerea down-regulated genes; BDGs). We showed a unique program of gene expression was activated in response each biotic and abiotic stress, but that some genes were similarly induced or repressed by all of the tested stresses. Of the identified BUGs, 25%, 6% and 12% were also induced by cold, drought and oxidative stress, respectively; whereas 33%, 7% and 5.5% of the BDGs were also down-regulated by the same abiotic stresses. Coexpression and protein-protein interaction network analyses revealed a dynamic range in the expression levels of genes encoding regulatory proteins. Analysis of gene expression in response to electrophilic oxylipins suggested that these compounds are involved in mediating responses to B. cinerea infection and abiotic stress through TGA transcription factors. Our results suggest an overlap among genes involved in the responses to biotic and abiotic stresses in Arabidopsis. Changes in the transcript levels of genes encoding components of the cyclopentenone signaling pathway in response to biotic and abiotic stresses suggest that the oxylipin signal transduction pathway plays a role in plant defense. Identifying genes that are commonly expressed in response to environmental stresses, and further analyzing the functions of their encoded products, will increase our understanding of the plant stress response. This information could identify targets for genetic modification to improve plant resistance to multiple stresses.


Via Christophe Jacquet
more...
No comment yet.
Rescooped by Biswapriya Biswavas Misra from MycorWeb Plant-Microbe Interactions
Scoop.it!

Genome of Tothia fuscella (Venturiaceae)

Genome of Tothia fuscella (Venturiaceae) | Plant Genomics | Scoop.it

Tothia is a genus of fungi in the Venturiaceae family whose placement in the Dothideomycetes class is uncertain. Dothideomycetes is the largest and most diverse class of ascomycete fungi. It comprises 11 orders 90 families, 1300 genera and over 19,000 known species.
This is a monotypic genus, containing the single species Tothia fuscella. Its ascospores resemble Microthyrium in being one-septate, guttulate, and slightly asymmetrical but differ in their dilute brown color. This genome was sequenced as part of the 1000 Fungal Genomes Project.


Via Francis Martin
more...
No comment yet.
Rescooped by Biswapriya Biswavas Misra from Plant-microbe interactions (on the plant's side)
Scoop.it!

Genome-wide association study of blast resistance in indica rice

Genome-wide association study of blast resistance in indica rice | Plant Genomics | Scoop.it
Background

Rice blast disease is one of the most serious and recurrent problems in rice-growing regions worldwide. Most resistance genes were identified by linkage mapping using genetic populations. We extensively examined 16 rice blast strains and a further genome-wide association study based on genotyping 0.8 million single nucleotide polymorphism variants across 366 diverse indica accessions.
Results

Totally, thirty associated loci were identified. The strongest signal (Chr11_6526998, P =1.17 × 10−17) was located within the gene Os11g0225100, one of the rice Pia-blast resistance gene. Another association signal (Chr11_30606558) was detected around the QTL Pif. Our study identified the gene Os11g0704100, a disease resistance protein containing nucleotide binding site-leucine rich repeat domain, as the main candidate gene of Pif. In order to explore the potential mechanism underlying the blast resistance, we further examined a locus in chromosome 12, which was associated with CH149 (P =7.53 × 10−15). The genes, Os12g0424700 and Os12g0427000, both described as kinase-like domain containing protein, were presumed to be required for the full function of this locus. Furthermore, we found some association on chromosome 3, in which it has not been reported any loci associated with rice blast resistance. In addition, we identified novel functional candidate genes, which might participate in the resistance regulation.
Conclusions

This work provides the basis of further study of the potential function of these candidate genes. A subset of true associations would be weakly associated with outcome in any given GWAS; therefore, large-scale replication is necessary to confirm our results. Future research will focus on validating the effects of these candidate genes and their functional variants using genetic transformation and transferred DNA insertion mutant screens, to verify that these genes engender resistance to blast disease in rice.

Via Christophe Jacquet
more...
No comment yet.
Rescooped by Biswapriya Biswavas Misra from MycorWeb Plant-Microbe Interactions
Scoop.it!

Genome of Phyllosticta citriasiana (Dothideomycetes)

Genome of Phyllosticta citriasiana (Dothideomycetes) | Plant Genomics | Scoop.it

Phyllosticta is an Ascomycete fungus in the Dothideomycetes clade. Dothideomycetes is the largest and most diverse class of ascomycete fungi. It comprises 11 orders 90 families, 1300 genera and over 19,000 known species.
Phyllosticta citricarpa (Synonym: Guignardia citricarpa) is a plant pathogen, some strains of which cause a leaf condition called black spot on citrus plants. This fungus affects citrus plants throughout subtropical climates, causing a reduction in both fruit quantity and quality. Symptoms include both fruit and leaf lesions, the latter being critical to inter-tree dispersal.
This genome was sequenced as part of the 1000 Fungal Genomes Project.


Via Francis Martin
more...
khalida baseri's curator insight, December 4, 10:58 PM

Phyllosticta is an ascomycete and a plant pathogen. Can cause black spot on the leaf of citrus plant

Rescooped by Biswapriya Biswavas Misra from Plant-Microbe Symbioses
Scoop.it!

Plant root transcriptome profiling reveals a strain-dependent response during Azospirillum-rice cooperation

Plant root transcriptome profiling reveals a strain-dependent response during Azospirillum-rice cooperation | Plant Genomics | Scoop.it
Cooperation involving Plant Growth-Promoting Rhizobacteria results in improvements of plant growth and health. While pathogenic and symbiotic interactions are known to induce transcriptional changes for genes related to plant defense and development, little is known about the impact of phytostimulating rhizobacteria on plant gene expression. This study aims at identifying genes significantly regulated in rice roots upon Azospirillum inoculation, considering possible favored interaction between a strain and its original host cultivar. Genome-wide analyzes of Oryza sativa japonica cultivars Cigalon and Nipponbare were performed, by using microarrays, seven days post-inoculation with Azospirillum lipoferum 4B (isolated from Cigalon) or Azospirillum sp. B510 (isolated from Nipponbare) and compared to the respective non-inoculated condition. A total of 7384 genes were significantly regulated, which represent about 16% of total rice genes. A set of 34 genes is regulated by both Azospirillum strains in both cultivars, including a gene orthologous to PR10 of Brachypodium, and these could represent plant markers of Azospirillum-rice interactions. The results highlight a strain-dependent response of rice, with 83% of the differentially expressed genes being classified as combination-specific. Whatever the combination, most of the differentially expressed genes are involved in primary metabolism, transport, regulation of transcription and protein fate. When considering genes involved in response to stress and plant defense, it appears that strain B510, a strain displaying endophytic properties, leads to the repression of a wider set of genes than strain 4B. Individual genotypic variations could be the most important driving force of rice roots gene expression upon Azospirillum inoculation. Strain-dependent transcriptional changes observed for genes related to auxin and ethylene signaling highlight the complexity of hormone signaling networks in the Azospirillum-rice cooperation.

Via Jean-Michel Ané
Biswapriya Biswavas Misra's insight:

Cooperation involving Plant Growth-Promoting Rhizobacteria results in improvements of plant growth and health. While pathogenic and symbiotic interactions are known to induce transcriptional changes for genes related to plant defense and development, little is known about the impact of phytostimulating rhizobacteria on plant gene expression. This study aims at identifying genes significantly regulated in rice roots upon Azospirillum inoculation, considering possible favored interaction between a strain and its original host cultivar. Genome-wide analyzes of Oryza sativa japonica cultivars Cigalon and Nipponbare were performed, by using microarrays, seven days post-inoculation with Azospirillum lipoferum 4B (isolated from Cigalon) or Azospirillum sp. B510 (isolated from Nipponbare) and compared to the respective non-inoculated condition. A total of 7384 genes were significantly regulated, which represent about 16% of total rice genes. A set of 34 genes is regulated by both Azospirillum strains in both cultivars, including a gene orthologous to PR10 of Brachypodium, and these could represent plant markers of Azospirillum-rice interactions. The results highlight a strain-dependent response of rice, with 83% of the differentially expressed genes being classified as combination-specific. Whatever the combination, most of the differentially expressed genes are involved in primary metabolism, transport, regulation of transcription and protein fate. When considering genes involved in response to stress and plant defense, it appears that strain B510, a strain displaying endophytic properties, leads to the repression of a wider set of genes than strain 4B. Individual genotypic variations could be the most important driving force of rice roots gene expression upon Azospirillum inoculation. Strain-dependent transcriptional changes observed for genes related to auxin and ethylene signaling highlight the complexity of hormone signaling networks in the Azospirillum-rice cooperation.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

A comprehensive resource of genomic, epigenomic and transcriptomic sequencing data for the black truffle Tuber melanosporum

Abstract
Background

Tuber melanosporum, also known in the gastronomic community as “truffle”, features one of the largest fungal genomes (125 Mb) with an exceptionally high transposable element (TE) and repetitive DNA content (>58%). The main purpose of DNA methylation in fungi is TE silencing. As obligate outcrossing organisms, truffles are bound to a sexual mode of propagation, which together with TEs is thought to represent a major force driving the evolution of DNA methylation. Thus, it was of interest to examine if and how T. melanosporum exploits DNA methylation to maintain genome integrity.
Findings

We performed whole-genome DNA bisulfite sequencing and mRNA sequencing on different developmental stages of T. melanosporum; namely, fruitbody (“truffle”), free-living mycelium and ectomycorrhiza. The data revealed a high rate of cytosine methylation (>44%), selectively targeting TEs rather than genes with a strong preference for CpG sites. Whole genome DNA sequencing uncovered multiple TE-enriched, copy number variant regions bearing a significant fraction of hypomethylated and expressed TEs, almost exclusively in free-living mycelium propagated in vitro. Treatment of mycelia with 5-azacytidine partially reduced DNA methylation and increased TE transcription. Our transcriptome assembly also resulted in the identification of a set of novel transcripts from 614 genes.
Conclusions

The datasets presented here provide valuable and comprehensive (epi)genomic information that can be of interest for evolutionary genomics studies of multicellular (filamentous) fungi, in particular Ascomycetes belonging to the subphylum, Pezizomycotina. Evidence derived from comparative methylome and transcriptome analyses indicates that a non-exhaustive and partly reversible methylation process operates in truffles.
Biswapriya Biswavas Misra's insight:
AbstractBackground

Tuber melanosporum, also known in the gastronomic community as “truffle”, features one of the largest fungal genomes (125 Mb) with an exceptionally high transposable element (TE) and repetitive DNA content (>58%). The main purpose of DNA methylation in fungi is TE silencing. As obligate outcrossing organisms, truffles are bound to a sexual mode of propagation, which together with TEs is thought to represent a major force driving the evolution of DNA methylation. Thus, it was of interest to examine if and how T. melanosporum exploits DNA methylation to maintain genome integrity.

Findings

We performed whole-genome DNA bisulfite sequencing and mRNA sequencing on different developmental stages of T. melanosporum; namely, fruitbody (“truffle”), free-living mycelium and ectomycorrhiza. The data revealed a high rate of cytosine methylation (>44%), selectively targeting TEs rather than genes with a strong preference for CpG sites. Whole genome DNA sequencing uncovered multiple TE-enriched, copy number variant regions bearing a significant fraction of hypomethylated and expressed TEs, almost exclusively in free-living mycelium propagated in vitro. Treatment of mycelia with 5-azacytidine partially reduced DNA methylation and increased TE transcription. Our transcriptome assembly also resulted in the identification of a set of novel transcripts from 614 genes.

Conclusions

The datasets presented here provide valuable and comprehensive (epi)genomic information that can be of interest for evolutionary genomics studies of multicellular (filamentous) fungi, in particular Ascomycetes belonging to the subphylum, Pezizomycotina. Evidence derived from comparative methylome and transcriptome analyses indicates that a non-exhaustive and partly reversible methylation process operates in truffles.

more...
No comment yet.