Plant Genomics
Follow
Find
12.5K views | +0 today
 
Scooped by Biswapriya Biswavas Misra
onto Plant Genomics
Scoop.it!

Genome sequence of 90 chickpea lines decoded - Business Mirror

Genome sequence of 90 chickpea lines decoded - Business Mirror | Plant Genomics | Scoop.it
Genome sequence of 90 chickpea lines decoded Business Mirror HYDERABAD, India—In a scientific breakthrough that promises improved grain yields and quality, greater drought tolerance and disease resistance, and enhanced genetic diversity, a global...
more...
No comment yet.
Plant Genomics
Updates on Plant Genomics
Your new post is loading...
Your new post is loading...
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Transcriptome variation along bud development in grapevine (Vitis vinifera L.)

Transcriptome variation along bud development in grapevine (Vitis vinifera L.) | Plant Genomics | Scoop.it

Abstract (provisional)

Background

Vegetative buds provide plants in temperate environments the possibility for growth and reproduction when environmental conditions are favorable. In grapevine, crucial developmental events take place within buds during two growing seasons in consecutive years. The first season, the shoot apical meristem within the bud differentiates all the basic elements of the shoot including flowering transition in lateral primordia and development of inflorescence primordia. These events practically end with bud dormancy. The second season, buds resume shoot growth associated to flower formation and development. Gene expression has been previously monitored at specific stages of bud development but has never been followed along the two growing seasons.

Results

Gene expression changes were analyzed along the bud annual cycle at eight different time points. Principal Components Analysis (PCA) revealed that the main factors explaining the global gene expression differences were the processes of bud dormancy and active growth as well as stress responses. Accordingly, non dormant buds showed an enrichment in functional categories typical of actively proliferating and growing cells together with the over abundance of transcripts belonging to stress response pathways. Differential expression analyses performed between consecutive time points indicated that major transcriptional changes were associated to para/endodormancy, endo/ecodormancy and ecodormancy/bud break transitions. Transcripts encoding key regulators of reproductive development were grouped in three major expression clusters corresponding to: (i) transcripts associated to flowering induction, (ii) transcripts associated to flower meristem specification and initiation and (iii) transcripts putatively involved in dormancy. Within this cluster, a MADS-box gene (VvFLC2) and other transcripts with similar expression patterns could participate in dormancy regulation.

Conclusions

This work provides a global view of major transcriptional changes taking place along bud development in grapevine, highlighting those molecular and biological functions involved in the main events of bud development. As reported in other woody species, the results suggest that genes regulating flowering could also be involved in dormancy regulatory pathways in grapevine.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Physiological and proteomic analysis in chloroplasts of Solanum lycopersicum L. under silicon efficiency and salinity stress.

Int J Mol Sci. 2014 Nov 26;15(12):21803-24. doi: 10.3390/ijms151221803.
Biswapriya Biswavas Misra's insight:

Tomato plants often grow in saline environments in Mediterranean countries where salt accumulation in the soil is a major abiotic stress that limits its productivity. However, silicon (Si) supplementation has been reported to improve tolerance against several forms of abiotic stress. The primary aim of our study was to investigate, using comparative physiological and proteomic approaches, salinity stress in chloroplasts of tomato under silicon supplementation. Tomato seedlings (Solanum lycopersicum L.) were grown in nutrient media in the presence or absence of NaCl and supplemented with silicon for 5 days. Salinity stress caused oxidative damage, followed by a decrease in silicon concentrations in the leaves of the tomato plants. However, supplementation with silicon had an overall protective effect against this stress. The major physiological parameters measured in our studies including total chlorophyll and carotenoid content were largely decreased under salinity stress, but were recovered in the presence of silicon. Insufficient levels of net-photosynthesis, transpiration and stomatal conductance were also largely improved by silicon supplementation. Proteomics analysis of chloroplasts analyzed by 2D-BN-PAGE (second-dimensional blue native polyacrylamide-gel electrophoresis) revealed a high sensitivity of multiprotein complex proteins (MCPs) such as photosystems I (PSI) and II (PSII) to the presence of saline. A significant reduction in cytochrome b6/f and the ATP-synthase complex was also alleviated by silicon during salinity stress, while the complex forms of light harvesting complex trimers and monomers (LHCs) were rapidly up-regulated. Our results suggest that silicon plays an important role in moderating damage to chloroplasts and their metabolism in saline environments. We therefore hypothesize that tomato plants have a greater capacity for tolerating saline stress through the improvement of photosynthetic metabolism and chloroplast proteome expression after silicon supplementation.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Whole transcriptome profiling of the vernalization process in Lilium longiflorum (cultivar White Heaven) bulbs

Vernalization is an obligatory requirement of extended exposure to low temperatures to induce flowering in certain plants. It is the most important factor affecting flowering time and quality in Easter lily (Lilium longiflorum). Exposing the bulbs to 4 °C gradually decreases flowering time up to 50 % compared to non-vernalized plants. We aim to understand the molecular regulation of vernalization in Easter lily, for which we characterized the global expression in lily bulb meristems after 0, 2, 5, 7 and 9 weeks of incubation at 4 °C.
Biswapriya Biswavas Misra's insight:
AbstractBackground

Vernalization is an obligatory requirement of extended exposure to low temperatures to induce flowering in certain plants. It is the most important factor affecting flowering time and quality in Easter lily (Lilium longiflorum). Exposing the bulbs to 4 °C gradually decreases flowering time up to 50 % compared to non-vernalized plants. We aim to understand the molecular regulation of vernalization in Easter lily, for which we characterized the global expression in lily bulb meristems after 0, 2, 5, 7 and 9 weeks of incubation at 4 °C.

Results

We assembled de-novo a transcriptome which, after filtering, yielded 121,572 transcripts and 42,430 genes which hold 15,414 annotated genes, with up to 3,657 GO terms. This extensive annotation was mapped to the more general GO slim plant with a total of 94 terms. The response to cold exposure was summarized in 6 expression clusters, providing useful patterns for dissecting the dynamics of vernalization in lily. The functional annotation (GO and GO slim plant) was used to group transcripts in gene sets. Analysis of these gene sets and profiles revealed that most of the enriched functions among genes up-regulated by cold exposure were related to epigenetic processes and chromatin remodeling. Candidate vernalization genes in lily were selected based on their sequence similarity to known regulators of flowering in other species.

Conclusions

We present a detailed analysis of gene expression dynamics during vernalization in Lilium, covering several time points and accounting for biological variation by the use of replicates. The resulting collection of transcripts and novel isoforms provides a useful resource for studying the changes occurring during vernalization at a fine level. The selected potential candidate genes can shed light on the regulation of this process.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

De Novo Assembly and Annotation of the Chinese Chive ( Allium tuberosum Rottler ex Spr.) Transcriptome Using the Illumina Platform

De Novo  Assembly and Annotation of the Chinese Chive ( Allium tuberosum  Rottler ex Spr.) Transcriptome Using the Illumina Platform | Plant Genomics | Scoop.it
Chinese chive ( A . tuberosum Rottler ex Spr.) is one of the most widely cultivated Allium species in China. However, minimal transcriptomic and genomic data are available to reveal its evolution and genetic diversity. In this study, de novo transcriptome sequencing was performed to produce large transcript sequences using an Illumina HiSeq 2000 instrument. We produced 51,968,882 high-quality clean reads and assembled them into 150,154 contigs. A total of 60,031 unigenes with an average len
Biswapriya Biswavas Misra's insight:

Chinese chive (A. tuberosum Rottler ex Spr.) is one of the most widely cultivated Allium species in China. However, minimal transcriptomic and genomic data are available to reveal its evolution and genetic diversity. In this study, de novo transcriptome sequencing was performed to produce large transcript sequences using an Illumina HiSeq 2000 instrument. We produced 51,968,882 high-quality clean reads and assembled them into 150,154 contigs. A total of 60,031 unigenes with an average length of 631 bp were identified. Of these, 36,523 unigenes were homologous to existing database sequences, 35,648 unigenes were annotated in the NCBI non-redundant (Nr) sequence database, and 23,509 unigenes were annotated in the Swiss-Prot database. A total of 26,798 unigenes were assigned to 57 Gene Ontology (GO) terms, and 13,378 unigenes were assigned to Cluster of Orthologous Group categories. Using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database, we mapped 21,361 unigenes onto 128 pathways. Furthermore, 2,125 sequences containing simple sequence repeats (SSRs) were identified. This new dataset provides the most comprehensive resource currently available for gene expression, gene discovery, and future genomic research on Chinese chive. The sequence resources developed in this study can be used to develop molecular markers that will facilitate further genetic research on Chinese chive and related species.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Proteomic analysis of rice nonhost resistance to Puccinia striiformis f. sp. tritici using two-dimensional electrophoresis.

Rice (Oryza sativa L.) is the only widely cultivated gramineous crops that cannot be infected by rust fungi. To decipher the molecular basis of rice nonhost resistance (NHR) to Puccinia striiformis f. sp. tritici (Pst), the causal agent of wheat stripe rust, proteomic analysis was performed using the two-dimensional electrophoresis (2-DE) technique. The expressed proteins from rice leaves 24 and 48 h post inoculation with Pst and from mock-inoculated leaves were identified. Quantitative analysis revealed a total of 27 differentially expressed proteins in response to Pst inoculation. Most of these proteins fall into the category "response to stimulus" and are involved in basic resistance processes, such as glycerol-3-phosphate and hydrogen peroxide signaling. A homologue of wheat leaf rust resistance protein Lr10 was also identified, implicating multiple layers of plant defense are implicated in rice NHR to Pst. These results demonstrate an intrinsic relationship between host and nonhost resistance. Changes in abundance of these proteins, together with their putative functions reveal a comprehensive profile of rice NHR to Pst and provide new insights into plant immunity.
Biswapriya Biswavas Misra's insight:

Rice (Oryza sativa L.) is the only widely cultivated gramineous crops that cannot be infected by rust fungi. To decipher the molecular basis of rice nonhost resistance (NHR) to Puccinia striiformis f. sp. tritici (Pst), the causal agent of wheat stripe rust, proteomic analysis was performed using the two-dimensional electrophoresis (2-DE) technique. The expressed proteins from rice leaves 24 and 48 h post inoculation with Pst and from mock-inoculated leaves were identified. Quantitative analysis revealed a total of 27 differentially expressed proteins in response to Pst inoculation. Most of these proteins fall into the category "response to stimulus" and are involved in basic resistance processes, such as glycerol-3-phosphate and hydrogen peroxide signaling. A homologue of wheat leaf rust resistance protein Lr10 was also identified, implicating multiple layers of plant defense are implicated in rice NHR to Pst. These results demonstrate an intrinsic relationship between host and nonhost resistance. Changes in abundance of these proteins, together with their putative functions reveal a comprehensive profile of rice NHR to Pst and provide new insights into plant immunity.

more...
No comment yet.
Rescooped by Biswapriya Biswavas Misra from Plant and Seed Biology
Scoop.it!

AtMYB12 expression in tomato leads to large scale differential modulation in transcriptome and flavonoid content in leaf and fruit tissues

AtMYB12 expression in tomato leads to large scale differential modulation in transcriptome and flavonoid content in leaf and fruit tissues | Plant Genomics | Scoop.it

Via Loïc Lepiniec
more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Single-cell transcriptomics using spliced leader PCR: Evidence for multiple losses of photosynthesis in polykrikoid dinoflagellates

Most microbial eukaryotes are uncultivated and thus poorly suited to standard genomic techniques. This is the case for Polykrikos lebouriae, a dinoflagellate with ultrastructurally aberrant plastids. It has been suggested that these plastids stem from a novel symbiosis with either a diatom or haptophyte, but this hypothesis has been difficult to test as P. lebouriae dwells in marine sand rife with potential genetic contaminants.
Biswapriya Biswavas Misra's insight:
AbstractBackground

Most microbial eukaryotes are uncultivated and thus poorly suited to standard genomic techniques. This is the case for Polykrikos lebouriae, a dinoflagellate with ultrastructurally aberrant plastids. It has been suggested that these plastids stem from a novel symbiosis with either a diatom or haptophyte, but this hypothesis has been difficult to test as P. lebouriae dwells in marine sand rife with potential genetic contaminants.

Results

We applied spliced-leader targeted PCR (SLPCR) to obtain dinoflagellate-specific transcriptomes on single-cell isolates of P. lebouriae from marine sediments. Polykrikos lebouriae expressed nuclear-encoded photosynthetic genes that were characteristic of the peridinin-plastids of dinoflagellates, rather than those from a diatom of haptophyte. We confirmed these findings at the genomic level using multiple displacement amplification (MDA) to obtain a partial plastome of P. lebouriae.

Conclusion

From these data, we infer that P. lebouriae has retained the peridinin plastids ancestral for dinoflagellates as a whole, while its closest relatives have lost photosynthesis multiple times independently. We discuss these losses with reference to mixotrophy in polykrikoid dinoflagellates. Our findings demonstrate new levels of variation associated with the peridinin plastids of dinoflagellates and the usefulness of SLPCR approaches on single cell isolates. Unlike other transcriptomic methods, SLPCR has taxonomic specificity, and can in principle be adapted to different splice-leader bearing groups.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Read count-based method for high-throughput allelic genotyping of transposable elements and structural variants

Like other structural variants, transposable element insertions can be highly polymorphic across individuals. Their functional impact, however, remains poorly understood. Current genome-wide approaches for genotyping insertion-site polymorphisms based on targeted or whole-genome sequencing remain very expensive and can lack accuracy, hence new large-scale genotyping methods are needed.
Biswapriya Biswavas Misra's insight:
AbstractBackground

Like other structural variants, transposable element insertions can be highly polymorphic across individuals. Their functional impact, however, remains poorly understood. Current genome-wide approaches for genotyping insertion-site polymorphisms based on targeted or whole-genome sequencing remain very expensive and can lack accuracy, hence new large-scale genotyping methods are needed.

Results

We describe a high-throughput method for genotyping transposable element insertions and other types of structural variants that can be assayed by breakpoint PCR. The method relies on next-generation sequencing of multiplex, site-specific PCR amplification products and read count-based genotype calls. We show that this method is flexible, efficient (it does not require rounds of optimization), cost-effective and highly accurate.

Conclusions

This method can benefit a wide range of applications from the routine genotyping of animal and plant populations to the functional study of structural variants in humans.

 
more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Integrating Phosphoproteomics and Bioinformatics to Study Brassinosteroid-Regulated Phosphorylation Dynamics in Arabidopsis

Protein phosphorylation regulated by plant hormone is involved in the coordination of fundamental plant development. Brassinosteroids (BRs), a group of phytohormones, regulated phosphorylation dynamics remains to be delineated in plants. In this study, we performed a mass spectrometry (MS)-based phosphoproteomics to conduct a global and dynamic phosphoproteome profiling across five time points of BR treatment in the period between 5 min and 12 h. MS coupling with phosphopeptide enrichment techniques has become the powerful tool for profiling protein phosphorylation. However, MS-based methods tend to have data consistency and coverage issues. To address these issues, bioinformatics approaches were used to complement the non-detected proteins and recover the dynamics of phosphorylation events.
Biswapriya Biswavas Misra's insight:
AbstractBackground

Protein phosphorylation regulated by plant hormone is involved in the coordination of fundamental plant development. Brassinosteroids (BRs), a group of phytohormones, regulated phosphorylation dynamics remains to be delineated in plants. In this study, we performed a mass spectrometry (MS)-based phosphoproteomics to conduct a global and dynamic phosphoproteome profiling across five time points of BR treatment in the period between 5 min and 12 h. MS coupling with phosphopeptide enrichment techniques has become the powerful tool for profiling protein phosphorylation. However, MS-based methods tend to have data consistency and coverage issues. To address these issues, bioinformatics approaches were used to complement the non-detected proteins and recover the dynamics of phosphorylation events.

Results

A total of 1104 unique phosphorylated peptides from 739 unique phosphoproteins were identified. The time-dependent gene ontology (GO) analysis shows the transition of biological processes from signaling transduction to morphogenesis and stress response. The protein-protein interaction analysis found that most of identified phosphoproteins have strongly connections with known BR signaling components. The analysis by using Motif-X was performed to identify 15 enriched motifs, 11 of which correspond to 6 known kinase families. To uncover the dynamic activities of kinases, the enriched motifs were combined with phosphorylation profiles and revealed that the substrates of casein kinase 2 and mitogen-activated protein kinase were significantly phosphorylated and dephosphorylated at initial time of BR treatment, respectively. The time-dependent kinase-substrate interaction networks were constructed and showed many substrates are the downstream of other signals, such as auxin and ABA signaling. While comparing BR responsive phosphoproteome and gene expression data, we found most of phosphorylation changes were not led by gene expression changes. Our results suggested many downstream proteins of BR signaling are induced by phosphorylation via various kinases, not through transcriptional regulation.

Conclusions

Through a large-scale dynamic profile of phosphoproteome coupled with bioinformatics, a complicated kinase-centered network related to BR-regulated growth was deciphered. The phosphoproteins and phosphosites identified in our study provide a useful dataset for revealing signaling networks of BR regulation, and also expanded our knowledge of protein phosphorylation modification in plants as well as further deal to solve the plant growth problems.

 
more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

The genome of the truffle-parasite Tolypocladium ophioglossoides and the evolution of antifungal peptaibiotics

Two major mycoparasitic lineages, the family Hypocreaceae and the genus Tolypocladium, exist within the fungal order, Hypocreales. Peptaibiotics are a group of secondary metabolites almost exclusively described from Trichoderma species of Hypocreaceae. Peptaibiotics are produced by nonribosomal peptide synthetases (NRPSs) and have antibiotic and antifungal activities. Tolypocladium species are mainly truffle parasites, but a few species are insect pathogens.
Biswapriya Biswavas Misra's insight:
AbstractBackground

Two major mycoparasitic lineages, the family Hypocreaceae and the genus Tolypocladium, exist within the fungal order, Hypocreales. Peptaibiotics are a group of secondary metabolites almost exclusively described from Trichoderma species of Hypocreaceae. Peptaibiotics are produced by nonribosomal peptide synthetases (NRPSs) and have antibiotic and antifungal activities. Tolypocladium species are mainly truffle parasites, but a few species are insect pathogens.

Results

The draft genome sequence of the truffle parasite Tolypocladium ophioglossoides was generated and numerous secondary metabolite clusters were discovered, many of which have no known putative product. However, three large peptaibiotic gene clusters were identified using phylogenetic analyses. Peptaibiotic genes are absent from the predominantly plant and insect pathogenic lineages of Hypocreales, and are therefore exclusive to the largely mycoparasitic lineages. Using NRPS adenylation domain phylogenies and reconciliation of the domain tree with the organismal phylogeny, it is demonstrated that the distribution of these domains is likely not the product of horizontal gene transfer between mycoparasitic lineages, but represents independent losses in insect pathogenic lineages. Peptaibiotic genes are less conserved between species of Tolypocladium and are the product of complex patterns of lineage sorting and module duplication. In contrast, these genes are more conserved within the genus Trichoderma and consistent with diversification through speciation.

Conclusions

Peptaibiotic NRPS genes are restricted to mycoparasitic lineages of Hypocreales, based on current sampling. Phylogenomics and comparative genomics can provide insights into the evolution of secondary metabolite genes, their distribution across a broader range of taxa, and their possible function related to host specificity.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Genomic sequence of the aflatoxigenic filamentous fungus Aspergillus nomius

Aspergillus nomius is an opportunistic pathogen and one of the three most important producers of aflatoxins in section Flavi. This fungus has been reported to contaminate agricultural commodities, but it has also been sampled in non-agricultural areas so the host range is not well known. Having a similar mycotoxin profile as A. parasiticus, isolates of A. nomius are capable of secreting B- and G- aflatoxins.
Biswapriya Biswavas Misra's insight:
AbstractBackground

Aspergillus nomius is an opportunistic pathogen and one of the three most important producers of aflatoxins in section Flavi. This fungus has been reported to contaminate agricultural commodities, but it has also been sampled in non-agricultural areas so the host range is not well known. Having a similar mycotoxin profile as A. parasiticus, isolates of A. nomius are capable of secreting B- and G- aflatoxins.

Results

In this study we discovered that the A. nomius type strain (NRRL 13137) has a genome size of approximately 36 Mb which is comparable to other Aspergilli whose genomes have been sequenced. Its genome encompasses 11,918 predicted genes, 72 % of which were assigned GO terms using BLAST2GO. More than 1,200 of those predicted genes were identified as unique to A. nomius, and the most significantly enriched GO category among the unique genes was oxidoreducatase activity. Phylogenomic inference shows NRRL 13137 as ancestral to the other aflatoxigenic species examined from section Flavi. This strain contains a single mating-type idiomorph designated as MAT1-1.

Conclusions

This study provides a preliminary analysis of the A. nomius genome. Given the recently discovered potential for A. nomius to undergo sexual recombination, and based on our findings, this genome sequence provides an additional evolutionary reference point for studying the genetics and biology of aflatoxin production.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

DNA methylation and gene expression in Mimulus guttatus

The presence of methyl groups on cytosine nucleotides across an organism’s genome (methylation) is a major regulator of genome stability, crossing over, and gene regulation. The capacity for DNA methylation to be altered by environmental conditions, and potentially passed between generations, makes it a prime candidate for transgenerational epigenetic inheritance. Here we conduct the first analysis of the Mimulus guttatus methylome, with a focus on the relationship between DNA methylation and gene expression.
Biswapriya Biswavas Misra's insight:
AbstractBackground

The presence of methyl groups on cytosine nucleotides across an organism’s genome (methylation) is a major regulator of genome stability, crossing over, and gene regulation. The capacity for DNA methylation to be altered by environmental conditions, and potentially passed between generations, makes it a prime candidate for transgenerational epigenetic inheritance. Here we conduct the first analysis of the Mimulus guttatus methylome, with a focus on the relationship between DNA methylation and gene expression.

Results

We present a whole genome methylome for the inbred line Iron Mountain 62 (IM62). DNA methylation varies across chromosomes, genomic regions, and genes. We develop a model that predicts gene expression based on DNA methylation (R 2 = 0.2). Post hoc analysis of this model confirms prior relationships, and identifies novel relationships between methylation and gene expression. Additionally, we find that DNA methylation is significantly depleted near gene transcriptional start sites, which may explain the recently discovered elevated rate of recombination in these same regions.

Conclusions

The establishment here of a reference methylome will be a useful resource for the continued advancement of M. guttatus as a model system. Using a model-based approach, we demonstrate that methylation patterns are an important predictor of variation in gene expression. This model provides a novel approach for differential methylation analysis that generates distinct and testable hypotheses regarding gene expression.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Deep sequencing-based characterization of transcriptome of trifoliate orange (Poncirus trifoliata (L.) Raf.) in response to cold stress

Trifoliate orange (Poncirus trifoliata (L.) Raf.) is extremely cold hardy after a full acclimation; however the underlying molecular mechanisms underlying this economically valuable trait remain poorly understood. In this study, global transcriptome profiles of trifoliate orange under cold conditions (4 °C) over a time course were generated by high-throughput sequencing.
Biswapriya Biswavas Misra's insight:
AbstractBackground

Trifoliate orange (Poncirus trifoliata (L.) Raf.) is extremely cold hardy after a full acclimation; however the underlying molecular mechanisms underlying this economically valuable trait remain poorly understood. In this study, global transcriptome profiles of trifoliate orange under cold conditions (4 °C) over a time course were generated by high-throughput sequencing.

Results

More than 68 million high-quality reads were produced and assembled into a non-redundant data of 77,292 unigenes with an average length of 1112 bp (N50 = 1778 bp). Of these, 23,846 had significant sequence similarity to known genes and these were assigned to 61 gene ontology (GO) categories and 25 clusters of orthologous groups (COG) involved in 128 KEGG pathways. Sequences derived from cold-treated and control plants were mapped to the assembled transcriptome, resulting in the identification of 5549 differentially expressed genes (DEGs). These comprised 600 (462 up-regulated, 138 down-regulated), 2346 (1631 up-regulated, 715 down-regulated), and 5177 (2702 up-regulated, 2475 down-regulated) genes from the cold-treated samples at 6, 24 and 72 h, respectively. The accuracy of the RNA-seq derived transcript expression data was validated by analyzing the expression patterns of 17 DEGs by qPCR. Plant hormone signal transduction, plant-pathogen interaction, and secondary metabolism were the most significantly enriched GO categories amongst in the DEGs. A total of 60 transcription factors were shown to be cold responsive. In addition, a number of genes involved in the catabolism and signaling of hormones, such as abscisic acid, ethylene and gibberellin, were affected by the cold stress. Meanwhile, levels of putrescine progressively increased under cold, which was consistent with up-regulation of an arginine decarboxylase gene.

Conclusions

This dataset provides valuable information regarding the trifoliate orange transcriptome changes in response to cold stress and may help guide future identification and functional analysis of genes that are importnatn for enhancing cold hardiness.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Transcriptomic differences between day and night in Acropora millepora provide new insights into metabolite exchange and light-enhanced calcificati...

Transcriptomic differences between day and night in Acropora millepora provide new insights into metabolite exchange and light-enhanced calcificati... | Plant Genomics | Scoop.it
The evolutionary success of reef-building corals is often attributed to their symbiotic relationship with photosynthetic dinoflagellates of the genus Symbiodinium, but metabolic interactions between the partners and the molecular bases of light enhanced calcification (LEC) are not well understood. Here the metabolic bases of the interaction between the coral Acropora millepora and its dinoflagellate symbiont were investigated by comparing gene expression levels under light and dark conditions at the whole transcriptome level. Among the 497 differentially expressed genes identified, a suite of genes involved in cholesterol transport was found to be up-regulated under light conditions, confirming the significance of this compound in the coral symbiosis. Although ion transporters likely to have roles in calcification were not differentially expressed in this study, expression levels of many genes associated with skeletal organic matrix composition and organization were higher in light conditions. This implies that the rate of organic matrix synthesis is one factor limiting calcification at night. Thus, LEC during the day is likely to be a consequence of increases in both matrix synthesis and the supply of precursor molecules as a result of photosynthetic activity. This article is protected by copyright. All rights reserved.
Biswapriya Biswavas Misra's insight:

The evolutionary success of reef-building corals is often attributed to their symbiotic relationship with photosynthetic dinoflagellates of the genus Symbiodinium, but metabolic interactions between the partners and the molecular bases of light enhanced calcification (LEC) are not well understood. Here the metabolic bases of the interaction between the coral Acropora millepora and its dinoflagellate symbiont were investigated by comparing gene expression levels under light and dark conditions at the whole transcriptome level. Among the 497 differentially expressed genes identified, a suite of genes involved in cholesterol transport was found to be up-regulated under light conditions, confirming the significance of this compound in the coral symbiosis. Although ion transporters likely to have roles in calcification were not differentially expressed in this study, expression levels of many genes associated with skeletal organic matrix composition and organization were higher in light conditions. This implies that the rate of organic matrix synthesis is one factor limiting calcification at night. Thus, LEC during the day is likely to be a consequence of increases in both matrix synthesis and the supply of precursor molecules as a result of photosynthetic activity. This article is protected by copyright. All rights reserved.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Adaptation of a polyphagous herbivore to a novel host plant extensively shapes the transcriptome of herbivore and host.

Adaptation of a polyphagous herbivore to a novel host plant extensively shapes the transcriptome of herbivore and host. | Plant Genomics | Scoop.it
Mol Ecol. 2015 Jul 24. doi: 10.1111/mec.13330. [Epub ahead of print]
Biswapriya Biswavas Misra's insight:

Generalist arthropod herbivores rapidly adapt to a broad range of host plants. However, the extent of transcriptional reprogramming in the herbivore and its hosts associated with adaptation remains poorly understood. Using the spider mite Tetranychus urticae and tomato as models with available genomic resources, we investigated the reciprocal genome-wide transcriptional changes in both spider mite and tomato as a consequence of mite's adaptation to tomato. We transferred a genetically diverse mite population from bean to tomato where triplicated populations were allowed to propagate for 30 generations. Evolving populations greatly increased their reproductive performance on tomato relative to their progenitors when reared under identical conditions, indicative of genetic adaptation. Analysis of transcriptional changes associated with mite adaptation to tomato revealed two main components. First, adaptation resulted in a set of mite genes that were constitutively down-regulated, independently of the host. These genes were mostly of an unknown function. Second, adapted mites mounted an altered transcriptional response that had greater amplitude of changes when re-exposed to tomato, relative to non-adapted mites. This gene set was enriched in genes encoding detoxifying enzymes and xenobiotic transporters. Besides the direct effects on mite gene-expression, adaptation also indirectly affected the tomato transcriptional responses, which were attenuated upon feeding of adapted mites, relative to the induced responses by non-adapted mite feeding. Thus, constitutive down-regulation and increased transcriptional plasticity of genes in a herbivore may play a central role in adaptation to host plants, leading to both a higher detoxification potential and reduced production of plant defense compounds. This article is protected by copyright. All rights reserved.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Transcriptome sequencing of three Pseudo-nitzschia species reveals comparable gene sets and the presence of Nitric Oxide Synthase genes in diatoms.

Transcriptome sequencing of three Pseudo-nitzschia species reveals comparable gene sets and the presence of Nitric Oxide Synthase genes in diatoms. | Plant Genomics | Scoop.it
Sci Rep. 2015 Jul 20;5:12329. doi: 10.1038/srep12329.
Biswapriya Biswavas Misra's insight:

Diatoms are among the most diverse eukaryotic microorganisms on Earth, they are responsible for a large fraction of primary production in the oceans and can be found in different habitats. Pseudo-nitzschia are marine planktonic diatoms responsible for blooms in coastal and oceanic waters. We analyzed the transcriptome of three species, Pseudo-nitzschia arenysensis, Pseudo-nitzschia delicatissima and Pseudo-nitzschia multistriata, with different levels of genetic relatedness. These species have a worldwide distribution and the last one produces the neurotoxin domoic acid. We were able to annotate about 80% of the sequences in each transcriptome and the analysis of the relative functional annotations allowed comparison of the main metabolic pathways, pathways involved in the biosynthesis of isoprenoids (MAV and MEP pathways), and pathways putatively involved in domoic acid synthesis. The search for homologous transcripts among the target species and other congeneric species resulted in the discovery of a sequence annotated as Nitric Oxide Synthase (NOS), found uniquely in Pseudo-nitzschia multistriata. The predicted protein product contained all the domains of the canonical metazoan sequence. Putative NOS sequences were found in other available diatom datasets, supporting a role for nitric oxide as signaling molecule in this group of microalgae.

more...
No comment yet.
Rescooped by Biswapriya Biswavas Misra from MycorWeb Plant-Microbe Interactions
Scoop.it!

Expanding the repertoire of secretory peptides controlling root development with comparative genome analysis and functional assays

Expanding the repertoire of secretory peptides controlling root development with comparative genome analysis and functional assays | Plant Genomics | Scoop.it
Plant genomes encode numerous small secretory peptides (SSPs) whose functions have yet to be explored. Based on structural features that characterize SSP families known to take part in postembryonic development, this comparative genome analysis resulted in the identification of genes coding for oligopeptides potentially involved in cell-to-cell communication. Because genome annotation based on short sequence homology is difficult, the criteria for the de novo identification and aggregation of conserved SSP sequences were first benchmarked across five reference plant species. The resulting gene families were then extended to 32 genome sequences, including major crops. The global phylogenetic pattern common to the functionally characterized SSP families suggests that their apparition and expansion coincide with that of the land plants. The SSP families can be searched online for members, sequences and consensus (http://bioinformatics.psb.ugent.be/webtools/PlantSSP/). Looking for putative regulators of root development, Arabidopsis thaliana SSP genes were further selected through transcriptome meta-analysis based on their expression at specific stages and in specific cell types in the course of the lateral root formation. As an additional indication that formerly uncharacterized SSPs may control development, this study showed that root growth and branching were altered by the application of synthetic peptides matching conserved SSP motifs, sometimes in very specific ways. The strategy used in the study, combining comparative genomics, transcriptome meta-analysis and peptide functional assays in planta, pinpoints factors potentially involved in non-cell-autonomous regulatory mechanisms. A similar approach can be implemented in different species for the study of a wide range of developmental programmes.

Via Jean-Michel Ané, Francis Martin
more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Proteomic LC-MS analysis of Arabidopsis cytosolic ribosomes: Identification of ribosomal protein paralogs and re-annotation of the ribosomal protein genes

Proteomic LC-MS analysis of Arabidopsis cytosolic ribosomes: Identification of ribosomal protein paralogs and re-annotation of the ribosomal protein genes
Biswapriya Biswavas Misra's insight:
Abstract

Arabidopsis thaliana cytosolic ribosomes are large complexes containing eighty-one distinct ribosomal proteins (r-proteins), four ribosomal RNAs (rRNA) and a plethora of associated (non-ribosomal) proteins. In plants, r-proteins of cytosolic ribosomes are each encoded by two to seven different expressed and similar genes, forming an r-protein family.

Distinctions in the r-protein coding sequences of gene family members are a source of variation between ribosomes. We performed proteomic investigation of actively translating cytosolic ribosomes purified using both immunopurification and a classical sucrose cushion centrifugation-based protocol from plants of different developmental stages. Both 1D and 2D LC-MSE with data-independent acquisition as well as conventional data-dependent MS/MS procedures were applied. This approach provided detailed identification of 165 r-protein paralogs with high coverage based on proteotypic peptides. The detected r-proteins were the products of the majority (68%) of the 242 cytosolic r-proteins genes encoded by the genome. A total of 70 distinct r-proteins were identified. Based on these results and information from DNA microarray and ribosome footprint profiling studies a re-annotation of Arabidopsis r-proteins and genes is proposed. This compendium of the cytosolic r-protein proteome will serve as a template for future investigations on the dynamic structure and function of plant ribosomes.

Biological significance

Translation is one of the most energy demanding processes in a living cell and is therefore carefully regulated. Translational activity is tightly linked to growth control and growth regulating mechanism. Recently established translational profiling technologies, including the profiling of mRNAs associated with polysomes and the mapping of ribosome footprints on mRNAs, have revealed that the expression of gene expression is often fine-tuned by differential translation of gene transcripts. The eukaryotic ribosome, the hub of these important processes, consists of close to eighty different proteins (depending on species) and four large RNAs assembled into two highly conserved subunits.

In plants and to lesser extent in yeast, the r-proteins are encoded by more than one actively transcribed gene. As r-protein gene paralogs frequently do not encode identical proteins and are regulated by growth conditions and development, in vivo ribosomes are heterogeneous in their protein content. The regulatory and physiological importance of this heterogeneity is unknown. Here, an improved annotation of the more than two hundred rprotein genes of Arabidopsis is presented that combines proteomic and advanced mRNA expression data. This proteomic investigation and re-annotation of Arabidopsis ribosomes establishes a base for future investigations of translational control in plants.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Genomic Resources for Water Yam (Dioscorea alata L.): Analyses of EST-Sequences, De Novo Sequencing and GBS Libraries.

Genomic Resources for Water Yam (Dioscorea alata L.): Analyses of EST-Sequences, De Novo Sequencing and GBS Libraries. | Plant Genomics | Scoop.it
The reducing cost and rapid progress in next-generation sequencing techniques coupled with high performance computational approaches have resulted in large-scale discovery of advanced genomic resources in several model and non-model plant species. Yam (Dioscorea spp.) is a major food and cash crop in many countries but research efforts have been limited to understand the genetics and generate genomic information for the crop. The availability of a large number of genomic resources including genome-wide molecular markers will accelerate the breeding efforts and application of genomic selection in yams. In the present study, several methods including expressed sequence tags (EST)-sequencing, de novo sequencing, and genotyping-by-sequencing (GBS) profiles on two yam (Dioscorea alata L.) genotypes (TDa 95/00328 and TDa 95-310) was performed to generate genomic resources for use in its improvement programs. This includes a comprehensive set of EST-SSRs, genomic SSRs, whole genome SNPs, and reduced representation SNPs. A total of 1,152 EST-SSRs were developed from >40,000 EST-sequences generated from the two genotypes. A set of 388 EST-SSRs were validated as polymorphic showing a polymorphism rate of 34% when tested on two diverse parents targeted for anthracnose disease. In addition, approximately 40X de novo whole genome sequence coverage was generated for each of the two genotypes, and a total of 18,584 and 15,952 genomic SSRs were identified for TDa 95/00328 and TDa 95-310, respectively. A custom made pipeline resulted in the selection of 573 genomic SSRs common across the two genotypes, of which only eight failed, 478 being polymorphic and 62 monomorphic indicating a polymorphic rate of 83.5%. Additionally, 288,505 high quality SNPs were also identified between these two genotypes. Genotyping by sequencing reads on these two genotypes also revealed 36,790 overlapping SNP positions that are distributed throughout the genome. Our efforts in using different approaches in generating genomic resources provides a non-biased glimpse into the publicly available EST-sequences, yam genome, and GBS profiles with affirmation that the genomic complexity can be methodically unraveled and constitute a critical foundation for future studies in linkage mapping, germplasm analysis, and predictive breeding.
Biswapriya Biswavas Misra's insight:

The reducing cost and rapid progress in next-generation sequencing techniques coupled with high performance computational approaches have resulted in large-scale discovery of advanced genomic resources in several model and non-model plant species. Yam (Dioscorea spp.) is a major food and cash crop in many countries but research efforts have been limited to understand the genetics and generate genomic information for the crop. The availability of a large number of genomic resources including genome-wide molecular markers will accelerate the breeding efforts and application of genomic selection in yams. In the present study, several methods including expressed sequence tags (EST)-sequencing, de novo sequencing, and genotyping-by-sequencing (GBS) profiles on two yam (Dioscorea alata L.) genotypes (TDa 95/00328 and TDa 95-310) was performed to generate genomic resources for use in its improvement programs. This includes a comprehensive set of EST-SSRs, genomic SSRs, whole genome SNPs, and reduced representation SNPs. A total of 1,152 EST-SSRs were developed from >40,000 EST-sequences generated from the two genotypes. A set of 388 EST-SSRs were validated as polymorphic showing a polymorphism rate of 34% when tested on two diverse parents targeted for anthracnose disease. In addition, approximately 40X de novo whole genome sequence coverage was generated for each of the two genotypes, and a total of 18,584 and 15,952 genomic SSRs were identified for TDa 95/00328 and TDa 95-310, respectively. A custom made pipeline resulted in the selection of 573 genomic SSRs common across the two genotypes, of which only eight failed, 478 being polymorphic and 62 monomorphic indicating a polymorphic rate of 83.5%. Additionally, 288,505 high quality SNPs were also identified between these two genotypes. Genotyping by sequencing reads on these two genotypes also revealed 36,790 overlapping SNP positions that are distributed throughout the genome. Our efforts in using different approaches in generating genomic resources provides a non-biased glimpse into the publicly available EST-sequences, yam genome, and GBS profiles with affirmation that the genomic complexity can be methodically unraveled and constitute a critical foundation for future studies in linkage mapping, germplasm analysis, and predictive breeding.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Genome-wide identification and Phylogenic analysis of kelch motif containing ACBP in Brassica napus

Acyl-coA binding proteins (ACBPs) bind long chain acyl-CoA esters with very high affinity. Their possible involvement in fatty acid transportation from the plastid to the endoplasmic reticulum, prior to the formation of triacylglycerol has been suggested. Four classes of ACBPs were identified in Arabidopsis thaliana: the small ACBPs, the large ACBPs, the ankyrin repeats containing ACBPs and the kelch motif containing ACBPs. They differed in structure and in size, and showed multiple important functions. In the present study, Brassica napus ACBPs were identified and characterized.
Biswapriya Biswavas Misra's insight:
AbstractBackground

Acyl-coA binding proteins (ACBPs) bind long chain acyl-CoA esters with very high affinity. Their possible involvement in fatty acid transportation from the plastid to the endoplasmic reticulum, prior to the formation of triacylglycerol has been suggested. Four classes of ACBPs were identified in Arabidopsis thaliana: the small ACBPs, the large ACBPs, the ankyrin repeats containing ACBPs and the kelch motif containing ACBPs. They differed in structure and in size, and showed multiple important functions. In the present study, Brassica napus ACBPs were identified and characterized.

Results

Eight copies of kelch motif ACBPs were cloned, it showed that B. napus ACBPs shared high amino acid sequence identity with A. thaliana, Brassica rapa and Brassica oleracea. Furthermore, phylogeny based on domain structure and comparison map showed the relationship and the evolution of ACBPs within Brassicaceae family: ACBPs evolved into four separate classes with different structure. Chromosome locations comparison showed conserved syntenic blocks.

Conclusions

ACBPs were highly conserved in Brassicaceae. They evolved from a common ancestor, but domain duplication and rearrangement might separate them into four distinct classes, with different structure and functions. Otherwise, B. napus inherited kelch motif ACBPs from ancestor conserving chromosomal location, emphasizing preserved synteny block region. This study provided a first insight for exploring ACBPs in B. napus, which supplies a valuable tool for crop improvement in agriculture.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Genome-wide characterisation and analysis of bHLH transcription factors related to tanshinone biosynthesis in Salvia miltiorrhiza

Genome-wide characterisation and analysis of bHLH transcription factors related to tanshinone biosynthesis in Salvia miltiorrhiza | Plant Genomics | Scoop.it
Biswapriya Biswavas Misra's insight:

Salvia miltiorrhiza Bunge (Labiatae) is an emerging model plant for traditional medicine, and tanshinones are among the pharmacologically active constituents of this plant. Although extensive chemical and pharmaceutical studies of these compounds have been performed, studies on the basic helix-loop-helix (bHLH) transcription factors that regulate tanshinone biosynthesis are limited. In our study, 127 bHLH transcription factor genes were identified in the genome of S. miltiorrhiza, and phylogenetic analysis indicated that these SmbHLHs could be classified into 25 subfamilies. A total of 19 sequencing libraries were constructed for expression pattern analyses using RNA-Seq. Based on gene-specific expression patterns and up-regulated expression patterns in response to MeJA treatment, 7 bHLH genes were revealed as potentially involved in the regulation of tanshinone biosynthesis. Among them, the gene expression of SmbHLH37, SmbHLH74 and SmbHLH92 perfectly matches the accumulation pattern of tanshinone biosynthesis in S. miltiorrhiza. Our results provide a foundation for understanding the molecular basis and regulatory mechanisms of bHLH transcription factors in S. miltiorrhiza.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Use of the de novo transcriptome analysis of silver-leaf nightshade (Solanum elaeagnifolium) to identify gene expression changes associated with wounding and terpene biosynthesis

Solanum elaeagnifolium, an invasive weed of the Solanaceae family, is poorly studied although it poses a significant threat to crops. Here the analysis of the transcriptome of S. elaeagnifolium is presented, as a means to explore the biology of this species and to identify genes related to its adaptation to environmental stress. One of the basic mechanisms by which plants respond to environmental stress is through the synthesis of specific secondary metabolites that protect the plant from herbivores and microorganisms, or serve as signaling molecules. One important such group of secondary metabolites are terpenes.
Biswapriya Biswavas Misra's insight:
AbstractBackground

Solanum elaeagnifolium, an invasive weed of the Solanaceae family, is poorly studied although it poses a significant threat to crops. Here the analysis of the transcriptome of S. elaeagnifolium is presented, as a means to explore the biology of this species and to identify genes related to its adaptation to environmental stress. One of the basic mechanisms by which plants respond to environmental stress is through the synthesis of specific secondary metabolites that protect the plant from herbivores and microorganisms, or serve as signaling molecules. One important such group of secondary metabolites are terpenes.

Results

By next-generation sequencing, the flower/leaf transcriptome of S. elaeagnifolium was sequenced and de novo assembled into 75,618 unigenes. Among the unigenes identified, several corresponded to genes involved in terpene biosynthesis; these included terpene synthases (TPSs) and genes of the mevalonate (MVA) and the methylerythritol phosphate (MEP) pathways. Functional characterization of two of the TPSs showed that one produced the sesquiterpene (E)-caryophyllene and the second produced the monoterpene camphene. Analysis of wounded S. elaeagnifolium leaves has shown significant increase of the concentration of (E)-caryophyllene and geranyl linalool, two terpenes implicated in stress responses. The increased production of (E)-caryophyllene was matched to the induced expression of the corresponding TPS gene. Wounding also led to the increased expression of the putative 1-deoxy-D-xylulose-5-phosphate synthase 2 (DXS2) gene, a key enzyme of the MEP pathway, corroborating the overall increased output of terpene biosynthesis.

Conclusions

The reported S. elaeagnifolium de novo transcriptome provides a valuable sequence database that could facilitate study of this invasive weed and contribute to our understanding of the highly diverse Solanaceae family. Analysis of genes and pathways involved in the plant’s interaction with the environment will help to elucidate the mechanisms that underly the intricate features of this unique Solanum species.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Evolutionary insights from de novo transcriptome assembly and SNP discovery in California white oaks

Reference transcriptomes provide valuable resources for understanding evolution within and among species. We de novo assembled and annotated a reference transcriptome for Quercus lobata and Q. garryana and identified single-nucleotide polymorphisms (SNPs) to provide resources for forest genomicists studying this ecologically and economically important genus. We further performed preliminary analyses of genes important in interspecific divergent (positive) selection that might explain ecological differences among species, estimating rates of nonsynonymous to synonymous substitutions (d

N
/d

S
) and Fay and Wu’s H. Functional classes of genes were tested for unusually high d

N
/d

S
or low H consistent with divergent positive selection.
Biswapriya Biswavas Misra's insight:
AbstractBackground

Reference transcriptomes provide valuable resources for understanding evolution within and among species. We de novo assembled and annotated a reference transcriptome for Quercus lobata and Q. garryana and identified single-nucleotide polymorphisms (SNPs) to provide resources for forest genomicists studying this ecologically and economically important genus. We further performed preliminary analyses of genes important in interspecific divergent (positive) selection that might explain ecological differences among species, estimating rates of nonsynonymous to synonymous substitutions (dN /dS ) and Fay and Wu’s H. Functional classes of genes were tested for unusually high dN /dS or low H consistent with divergent positive selection.

Results

Our draft transcriptome is among the most complete for oaks, including 83,644 contigs (23,329 ≥ 1 kbp), 14,898 complete and 13,778 partial gene models, and functional annotations for 9,431 Arabidopsis orthologs and 19,365 contigs with Pfam hits. We identified 1.7 million possible sequence variants including 1.1 million high-quality diallelic SNPs — among the largest sets identified in any tree. 11 of 18 functional categories with significantly elevated dN /dS are involved in disease response, including 50+ genes with dN /dS > 1. Other high-dN /dS genes are involved in biotic response, flowering and growth, or regulatory processes. In contrast, median dN /dS was low (0.22), suggesting that purifying selection influences most genes. No functional categories have unusually low H.

Conclusions

These results offer preliminary support for the hypothesis that divergent selection at pathogen resistance are important factors in species divergence in these hybridizing California oaks. Our transcriptome provides a solid foundation for future studies of gene expression, natural selection, and speciation in Quercus.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Whole transcriptome profiling of the vernalization process in Lilium longiflorum (cultivar White Heaven) bulbs

Vernalization is an obligatory requirement of extended exposure to low temperatures to induce flowering in certain plants. It is the most important factor affecting flowering time and quality in Easter lily (Lilium longiflorum). Exposing the bulbs to 4 °C gradually decreases flowering time up to 50 % compared to non-vernalized plants. We aim to understand the molecular regulation of vernalization in Easter lily, for which we characterized the global expression in lily bulb meristems after 0, 2, 5, 7 and 9 weeks of incubation at 4 °C.
Biswapriya Biswavas Misra's insight:
AbstractBackground

Vernalization is an obligatory requirement of extended exposure to low temperatures to induce flowering in certain plants. It is the most important factor affecting flowering time and quality in Easter lily (Lilium longiflorum). Exposing the bulbs to 4 °C gradually decreases flowering time up to 50 % compared to non-vernalized plants. We aim to understand the molecular regulation of vernalization in Easter lily, for which we characterized the global expression in lily bulb meristems after 0, 2, 5, 7 and 9 weeks of incubation at 4 °C.

Results

We assembled de-novo a transcriptome which, after filtering, yielded 121,572 transcripts and 42,430 genes which hold 15,414 annotated genes, with up to 3,657 GO terms. This extensive annotation was mapped to the more general GO slim plant with a total of 94 terms. The response to cold exposure was summarized in 6 expression clusters, providing useful patterns for dissecting the dynamics of vernalization in lily. The functional annotation (GO and GO slim plant) was used to group transcripts in gene sets. Analysis of these gene sets and profiles revealed that most of the enriched functions among genes up-regulated by cold exposure were related to epigenetic processes and chromatin remodeling. Candidate vernalization genes in lily were selected based on their sequence similarity to known regulators of flowering in other species.

Conclusions

We present a detailed analysis of gene expression dynamics during vernalization in Lilium, covering several time points and accounting for biological variation by the use of replicates. The resulting collection of transcripts and novel isoforms provides a useful resource for studying the changes occurring during vernalization at a fine level. The selected potential candidate genes can shed light on the regulation of this process.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Daytime soybean transcriptome fluctuations during water deficit stress

Since drought can seriously affect plant growth and development and little is known about how the oscillations of gene expression during the drought stress-acclimation response in soybean is affected, we applied Illumina technology to sequence 36 cDNA libraries synthesized from control and drought-stressed soybean plants to verify the dynamic changes in gene expression during a 24-h time course. Cycling variables were measured from the expression data to determine the putative circadian rhythm regulation of gene expression.
Biswapriya Biswavas Misra's insight:
AbstractBackground

Since drought can seriously affect plant growth and development and little is known about how the oscillations of gene expression during the drought stress-acclimation response in soybean is affected, we applied Illumina technology to sequence 36 cDNA libraries synthesized from control and drought-stressed soybean plants to verify the dynamic changes in gene expression during a 24-h time course. Cycling variables were measured from the expression data to determine the putative circadian rhythm regulation of gene expression.

Results

We identified 4866 genes differentially expressed in soybean plants in response to water deficit. Of these genes, 3715 were differentially expressed during the light period, from which approximately 9.55 % were observed in both light and darkness. We found 887 genes that were either up- or down-regulated in different periods of the day. Of 54,175 predicted soybean genes, 35.52 % exhibited expression oscillations in a 24 h period. This number increased to 39.23 % when plants were submitted to water deficit. Major differences in gene expression were observed in the control plants from late day (ZT16) until predawn (ZT20) periods, indicating that gene expression oscillates during the course of 24 h in normal development. Under water deficit, dissimilarity increased in all time-periods, indicating that the applied stress influenced gene expression. Such differences in plants under stress were primarily observed in ZT0 (early morning) to ZT8 (late day) and also from ZT4 to ZT12. Stress-related pathways were triggered in response to water deficit primarily during midday, when more genes were up-regulated compared to early morning. Additionally, genes known to be involved in secondary metabolism and hormone signaling were also expressed in the dark period.

Conclusions

Gene expression networks can be dynamically shaped to acclimate plant metabolism under environmental stressful conditions. We have identified putative cycling genes that are expressed in soybean leaves under normal developmental conditions and genes whose expression oscillates under conditions of water deficit. These results suggest that time of day, as well as light and temperature oscillations that occur considerably affect the regulation of water deficit stress response in soybean plants.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

The Pkn22 Ser/Thr kinase in Nostoc PCC 7120: role of FurA and NtcA regulators and transcript profiling under nitrogen starvation and oxidative stress

The filamentous cyanobacterium Nostoc sp. strain PCC 7120 can fix N
2
when combined nitrogen is not available. Furthermore, it has to cope with reactive oxygen species generated as byproducts of photosynthesis and respiration. We have previously demonstrated the synthesis of Ser/Thr kinase Pkn22 as an important survival response of Nostoc to oxidative damage. In this study we wished to investigate the possible involvement of this kinase in signalling peroxide stress and nitrogen deprivation.
Biswapriya Biswavas Misra's insight:
AbstractBackground

The filamentous cyanobacterium Nostoc sp. strain PCC 7120 can fix N 2 when combined nitrogen is not available. Furthermore, it has to cope with reactive oxygen species generated as byproducts of photosynthesis and respiration. We have previously demonstrated the synthesis of Ser/Thr kinase Pkn22 as an important survival response of Nostoc to oxidative damage. In this study we wished to investigate the possible involvement of this kinase in signalling peroxide stress and nitrogen deprivation.

Results

Quantitative RT-PCR experiments revealed that the pkn22 gene is induced in response to peroxide stress and to combined nitrogen starvation. Electrophoretic motility assays indicated that the pkn22 promoter is recognized by the global transcriptional regulators FurA and NtcA. Transcriptomic analysis comparing a pkn22-insertion mutant and the wild type strain indicated that this kinase regulates genes involved in important cellular functions such as photosynthesis, carbon metabolism and iron acquisition. Since metabolic changes may lead to oxidative stress, we investigated whether this is the case with nitrogen starvation. Our results rather invalidate this hypothesis thereby suggesting that the function of Pkn22 under nitrogen starvation is independent of its role in response to peroxide stress.

Conclusions

Our analyses have permitted a more complete functional description of Ser/Thr kinase in Nostoc. We have decrypted the transcriptional regulation of the pkn22 gene, and analysed the whole set of genes under the control of this kinase in response to the two environmental changes often encountered by cyanobacteria in their natural habitat: oxidative stress and nitrogen deprivation.

 
more...
No comment yet.