Plant Genomics
Follow
Find
11.9K views | +1 today
 
Scooped by Biswapriya Biswavas Misra
onto Plant Genomics
Scoop.it!

Genome Biology | Full text | Genome Sequencing of the important oilseed crop Sesamum indicum L.

The Sesame Genome Working Group (SGWG) has been formed to sequence and assemble the sesame (Sesamum indicum L.) genome. The status of this project and our planned analyses are described.
Biswapriya Biswavas Misra's insight:
Abstract

The Sesame Genome Working Group (SGWG) has been formed to sequence and assemble the sesame (Sesamum indicum L.) genome. The status of this project and our planned analyses are described.

Keywords:

genomics; sequencing; sesame

more...
No comment yet.

From around the web

Plant Genomics
Updates on Plant Genomics
Your new post is loading...
Your new post is loading...
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Transcriptome variation along bud development in grapevine (Vitis vinifera L.)

Transcriptome variation along bud development in grapevine (Vitis vinifera L.) | Plant Genomics | Scoop.it

Abstract (provisional)

Background

Vegetative buds provide plants in temperate environments the possibility for growth and reproduction when environmental conditions are favorable. In grapevine, crucial developmental events take place within buds during two growing seasons in consecutive years. The first season, the shoot apical meristem within the bud differentiates all the basic elements of the shoot including flowering transition in lateral primordia and development of inflorescence primordia. These events practically end with bud dormancy. The second season, buds resume shoot growth associated to flower formation and development. Gene expression has been previously monitored at specific stages of bud development but has never been followed along the two growing seasons.

Results

Gene expression changes were analyzed along the bud annual cycle at eight different time points. Principal Components Analysis (PCA) revealed that the main factors explaining the global gene expression differences were the processes of bud dormancy and active growth as well as stress responses. Accordingly, non dormant buds showed an enrichment in functional categories typical of actively proliferating and growing cells together with the over abundance of transcripts belonging to stress response pathways. Differential expression analyses performed between consecutive time points indicated that major transcriptional changes were associated to para/endodormancy, endo/ecodormancy and ecodormancy/bud break transitions. Transcripts encoding key regulators of reproductive development were grouped in three major expression clusters corresponding to: (i) transcripts associated to flowering induction, (ii) transcripts associated to flower meristem specification and initiation and (iii) transcripts putatively involved in dormancy. Within this cluster, a MADS-box gene (VvFLC2) and other transcripts with similar expression patterns could participate in dormancy regulation.

Conclusions

This work provides a global view of major transcriptional changes taking place along bud development in grapevine, highlighting those molecular and biological functions involved in the main events of bud development. As reported in other woody species, the results suggest that genes regulating flowering could also be involved in dormancy regulatory pathways in grapevine.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Genome-wide QTL and bulked transcriptomic analysis reveals new candidate genes for the control of tuber carotenoid content in potato (Solanum tuber... - PubMed - NCBI

Genome-wide QTL and bulked transcriptomic analysis reveals new candidate genes for the control of tuber carotenoid content in potato (Solanum tuber... - PubMed - NCBI | Plant Genomics | Scoop.it
Theor Appl Genet. 2014 Sep;127(9):1917-33. doi: 10.1007/s00122-014-2349-0. Epub 2014 Jun 26. Research Support, Non-U.S. Gov't
Biswapriya Biswavas Misra's insight:

Genome-wide QTL analysis of potato tuber carotenoid content was investigated in populations of Solanum tuberosum Group Phureja that segregate for flesh colour, revealing a novel major QTL on chromosome 9. The carotenoid content of edible plant storage organs is a key nutritional and quality trait. Although the structural genes that encode the biosynthetic enzymes are well characterised, much less is known about the factors that determine overall storage organ content. In this study, genome-wide QTL mapping, in concert with an efficient 'genetical genomics' analysis using bulked samples, has been employed to investigate the genetic architecture of potato tuber carotenoid content. Two diploid populations of Solanum tuberosum Group Phureja were genotyped (AFLP, SSR and DArT markers) and analysed for their tuber carotenoid content over two growing seasons. Common to both populations were QTL that explained relatively small proportions of the variation in constituent carotenoids and a major QTL on chromosome 3 explaining up to 71 % of the variation in carotenoid content. In one of the populations (01H15), a second major carotenoid QTL was identified on chromosome 9, explaining up to 20 % of the phenotypic variation. Whereas the major chromosome 3 QTL was likely to be due to an allele of a gene encoding β-carotene hydroxylase, no known carotenoid biosynthetic genes are located in the vicinity of the chromosome 9 QTL. A unique expression profiling strategy using phenotypically distinct bulks comprised individuals with similar carotenoid content provided further support for the QTL mapping to chromosome 9. This study shows the potential of using the potato genome sequence to link genetic maps to data arising from eQTL approaches to enhance the discovery of candidate genes underlying QTLs.

  
more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Construction of a genome-scale metabolic network of the plant pathogen Pectobacterium carotovorum provides new strategies for bactericide discovery.

Construction of a genome-scale metabolic network of the plant pathogen Pectobacterium carotovorum provides new strategies for bactericide discovery. | Plant Genomics | Scoop.it
We reconstructed the first genome-scale metabolic network of the plant pathogen Pectobacterium carotovorum subsp. carotovorum PC1 based on its genomic sequence, annotation, and physiological data. Metabolic characteristics were analyzed using flux balance analysis (FBA), and the results were afterwards validated by phenotype microarray (PM) experiments. The reconstructed genome-scale metabolic model, iPC1209, contains 2235 reactions, 1113 metabolites and 1209 genes. We identified 19 potential bactericide targets through a comprehensive in silico gene-deletion study. Next, we performed virtual screening to identify candidate inhibitors for an important potential drug target, alkaline phosphatase, and experimentally verified that three lead compounds were able to inhibit both bacterial cell viability and the activity of alkaline phosphatase in vitro. This study illustrates a new strategy for the discovery of agricultural bactericides.
Biswapriya Biswavas Misra's insight:

We reconstructed the first genome-scale metabolic network of the plant pathogen Pectobacterium carotovorum subsp. carotovorum PC1 based on its genomic sequence, annotation, and physiological data. Metabolic characteristics were analyzed using flux balance analysis (FBA), and the results were afterwards validated by phenotype microarray (PM) experiments. The reconstructed genome-scale metabolic model, iPC1209, contains 2235 reactions, 1113 metabolites and 1209 genes. We identified 19 potential bactericide targets through a comprehensive in silico gene-deletion study. Next, we performed virtual screening to identify candidate inhibitors for an important potential drug target, alkaline phosphatase, and experimentally verified that three lead compounds were able to inhibit both bacterial cell viability and the activity of alkaline phosphatase in vitro. This study illustrates a new strategy for the discovery of agricultural bactericides.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

SNP genotyping and population genomics from expressed sequences – current advances and future possibilities

SNP genotyping and population genomics from expressed sequences – current advances and future possibilities | Plant Genomics | Scoop.it
Biswapriya Biswavas Misra's insight:

With the rapid increase in production of genetic data from new sequencing technologies, a myriad of new ways to study genomic patterns in nonmodel organisms are currently possible. Because genome assembly still remains a complicated procedure, and because the functional role of much of the genome is unclear, focusing on SNP genotyping from expressed sequences provides a cost-effective way to reduce complexity while still retaining functionally relevant information. This review summarizes current methods, identifies ways that using expressed sequence data benefits population genomic inference and explores how current practitioners evaluate and overcome challenges that are commonly encountered. We focus particularly on the additional power of functional analysis provided by expressed sequence data and how these analyses push beyond allele pattern data available from nonfunction genomic approaches. The massive data sets generated by these approaches create opportunities and problems as well – especially false positives. We discuss methods available to validate results from expressed SNP genotyping assays, new approaches that sidestep use of mRNA and review follow-up experiments that can focus on evolutionary mechanisms acting across the genome.

 
more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Visualization of Single RNA Transcripts in Situ

Biswapriya Biswavas Misra's insight:

Fluorescence in situ hybridization (FISH) and digital imaging microscopy were modified to allow detection of single RNA molecules. Oligodeoxynucleotide probes were synthesized with five fluorochromes per molecule, and the light emitted by a single probe was calibrated. Points of light in exhaustively deconvolved images of hybridized cells gave fluorescent intensities and distances between probes consistent with single messenger RNA molecules. Analysis of β-actin transcription sites after serum induction revealed synchronous and cyclical transcription from single genes. The rates of transcription initiation and termination and messenger RNA processing could be determined by positioning probes along the transcription unit. This approach extends the power of FISH to yield quantitative molecular information on a single cell.

 
more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Transcriptomic analysis of Sinorhizobium meliloti and Medicago truncatula symbiosis using nitrogen fixation deficient nodules

Transcriptomic analysis of Sinorhizobium meliloti and Medicago truncatula symbiosis using nitrogen fixation deficient nodules | Plant Genomics | Scoop.it
The bacterium Sinorhizobium meliloti interacts symbiotically with legume plant hosts such as Medicago truncatula to form nitrogen-fixing root nodules. During symbiosis, plant and bacterial cells differentiate in a coordinated manner, resulting in specialized plant cells that contain nitrogen-fixing bacteroids. Both plant and bacterial genes are required at each developmental stage of symbiosis. We analyzed gene expression in nodules formed by wild type bacteria on six plant mutants with defects in nitrogen fixation (dnf). We observed differential expression of 482 S. meliloti genes with functions in cell envelope homeostasis, cell division, stress response, energy metabolism and nitrogen fixation. We simultaneously analyzed gene expression in M. truncatula and observed differential regulation of host processes that may trigger bacteroid differentiation and control bacterial infection. Our analyses of developmentally arrested plant mutants indicate that plants use distinct means to control bacterial infection during early and late symbiotic stages.
Biswapriya Biswavas Misra's insight:

The bacterium Sinorhizobium meliloti interacts symbiotically with legume plant hosts such as Medicago truncatula to form nitrogen-fixing root nodules. During symbiosis, plant and bacterial cells differentiate in a coordinated manner, resulting in specialized plant cells that contain nitrogen-fixing bacteroids. Both plant and bacterial genes are required at each developmental stage of symbiosis. We analyzed gene expression in nodules formed by wild type bacteria on six plant mutants with defects in nitrogen fixation (dnf). We observed differential expression of 482 S. meliloti genes with functions in cell envelope homeostasis, cell division, stress response, energy metabolism and nitrogen fixation. We simultaneously analyzed gene expression in M. truncatula and observed differential regulation of host processes that may trigger bacteroid differentiation and control bacterial infection. Our analyses of developmentally arrested plant mutants indicate that plants use distinct means to control bacterial infection during early and late symbiotic stages.

 

 

 
more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Transcriptome-wide identification of adenosine-to-inosine editing using the ICE-seq method

This protocol describes a transcriptome-wide approach to detect adenosine-to-inosine editing sites in RNAs using inosine chemical erasing combined with deep sequencing (ICE-seq).
Biswapriya Biswavas Misra's insight:

Inosine (I), a modified base found in the double-stranded regions of RNA in metazoans, has various roles in biological processes by modulating gene expression. Inosine is generated from adenosine (A) catalyzed by ADAR (adenosine deaminase acting on RNA) enzymes in a process called A-to-I RNA editing. As inosine is converted to guanosine (G) by reverse transcription, the editing sites can be identified by simply comparing cDNA sequences with the corresponding genomic sequence. One approach to screening I sites is by deep sequencing based on A-to-G conversion from genomic sequence to cDNA; however, this approach produces a high rate of false positives because it cannot efficiently eliminate G signals arising from inevitable mapping errors. To address this issue, we developed a biochemical method to identify inosines called inosine chemical erasing (ICE), which is based on cyanoethylation combined with reverse transcription. ICE was subsequently combined with deep sequencing (ICE-seq) for the reliable identification of transcriptome-wide A-to-I editing sites. Here we describe a protocol for the practical application of ICE-seq, which can be completed within 22 d, and which allows the accurate identification of transcriptome-wide A-to-I RNA editing sites.

  
more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Transcriptomic Analysis of the Underground Renewal Buds during Dormancy Transition and Release in 'Hangbaishao' Peony (Paeonia lactiflora).

Paeonia lactiflora is one of the most famous species of herbaceous peonies with gorgeous flowers. Bud dormancy is a crucial developmental process that allows P. lactiflora to survive unfavorable environmental conditions. However, little information is available on the molecular mechanism of the bud dormancy in P. lactiflora. We performed de novo transcriptome sequencing using the Illumina RNA sequencing platform for the underground renewal buds of P. lactiflora 'Hangbaishao' to study the molecular mechanism underlying its bud dormancy transition (the period from endodormancy to ecodormancy) and release (the period from ecodormancy to bud elongation and sprouting). Approximately 300 million high-quality clean reads were generated and assembled into 207,827 (mean length = 828 bp) and 51,481 (mean length = 1250 bp) unigenes using two assembly methods named "Trinity" and "Trinity+PRICE", respectively. Based on the data obtained by the latter method, 32,316 unigenes were annotated by BLAST against various databases. Approximately 1,251 putative transcription factors were obtained, of which the largest number of unique transcripts belonged to the basic helix-loop-helix protein (bHLH) transcription factor family, and five of the top ten highly expressed transcripts were annotated as dehydrin (DHN). A total of 17,705 simple sequence repeat (SSR) motifs distributed in 13,797 sequences were obtained. The budbreak morphology, levels of indole-3-acetic acid (IAA) and abscisic acid (ABA), and activities of guaiacol peroxidase (POD) and catalase (CAT) were observed. The expression of 20 interested unigenes, which annotated as DHN, heat shock protein (HSP), histone, late elongated hypocotyl (LHY), and phytochrome (PHY), and so on, were also analyzed. These studies were based on morphological, physiological, biochemical, and molecular levels and provide comprehensive insight into the mechanism of dormancy transition and release in P. lactiflora. Transcriptome dataset can be highly valuable for future investigation on gene expression networks in P. lactiflora as well as research on dormancy in other non-model perennial horticultural crops of commercial significance.
Biswapriya Biswavas Misra's insight:

Paeonia lactiflora is one of the most famous species of herbaceous peonies with gorgeous flowers. Bud dormancy is a crucial developmental process that allows P. lactiflora to survive unfavorable environmental conditions. However, little information is available on the molecular mechanism of the bud dormancy in P. lactiflora. We performed de novo transcriptome sequencing using the Illumina RNA sequencing platform for the underground renewal buds of P. lactiflora 'Hangbaishao' to study the molecular mechanism underlying its bud dormancy transition (the period from endodormancy to ecodormancy) and release (the period from ecodormancy to bud elongation and sprouting). Approximately 300 million high-quality clean reads were generated and assembled into 207,827 (mean length = 828 bp) and 51,481 (mean length = 1250 bp) unigenes using two assembly methods named "Trinity" and "Trinity+PRICE", respectively. Based on the data obtained by the latter method, 32,316 unigenes were annotated by BLAST against various databases. Approximately 1,251 putative transcription factors were obtained, of which the largest number of unique transcripts belonged to the basic helix-loop-helix protein (bHLH) transcription factor family, and five of the top ten highly expressed transcripts were annotated as dehydrin (DHN). A total of 17,705 simple sequence repeat (SSR) motifs distributed in 13,797 sequences were obtained. The budbreak morphology, levels of indole-3-acetic acid (IAA) and abscisic acid (ABA), and activities of guaiacol peroxidase (POD) and catalase (CAT) were observed. The expression of 20 interested unigenes, which annotated as DHN, heat shock protein (HSP), histone, late elongated hypocotyl (LHY), and phytochrome (PHY), and so on, were also analyzed. These studies were based on morphological, physiological, biochemical, and molecular levels and provide comprehensive insight into the mechanism of dormancy transition and release in P. lactiflora. Transcriptome dataset can be highly valuable for future investigation on gene expression networks in P. lactiflora as well as research on dormancy in other non-model perennial horticultural crops of commercial significance.

  
more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Whole-Transcriptome Sequencing for High-Resolution Transcriptomic Analysis in Mycobacterium tuberculosis.

Whole-Transcriptome Sequencing for High-Resolution Transcriptomic Analysis in Mycobacterium tuberculosis. | Plant Genomics | Scoop.it
RNA-seq uses next-generation sequencing technology to determine the transcription profile of an organism in a quantitative manner. With respect to microarrays, this methodology allows greater resolution, increased dynamic range, and identification of new features such as previously unannotated genes and noncoding RNAs. Here we describe how to extract RNA from mycobacterial cultures, how to prepare libraries for Illumina sequencing, and the bioinformatics analysis of the sequencing data to determine the transcription profile.
Biswapriya Biswavas Misra's insight:

RNA-seq uses next-generation sequencing technology to determine the transcription profile of an organism in a quantitative manner. With respect to microarrays, this methodology allows greater resolution, increased dynamic range, and identification of new features such as previously unannotated genes and noncoding RNAs. Here we describe how to extract RNA from mycobacterial cultures, how to prepare libraries for Illumina sequencing, and the bioinformatics analysis of the sequencing data to determine the transcription profile.

  
more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Tissue-specific transcriptome assemblies of the marine medaka Oryzias melastigma and comparative analysis with the freshwater medaka Oryzias latipes.

Abstract
BACKGROUND:
The marine medaka Oryzias melastigma has been demonstrated as a novel model for marine ecotoxicological studies. However, the lack of genome and transcriptome reference has largely restricted the use of O. melastigma in the assessment of in vivo molecular responses to environmental stresses and the analysis of biological toxicity in the marine environment. Although O. melastigma is believed to be phylogenetically closely related to Oryzias latipes, the divergence between these two species is still largely unknown. Using Illumina high-throughput RNA sequencing followed by de novo assembly and comprehensive gene annotation, we provided transcriptomic resources for the brain, liver, ovary and testis of O. melastigma. We also investigated the possible extent of divergence between O. melastigma and O. latipes at the transcriptome level.
RESULTS:
More than 14,000 transcripts across brain, liver, ovary and testis in marine medaka were annotated, of which 5880 transcripts were orthologous between O. melastigma and O. latipes. Tissue-enriched genes were identified in O. melastigma, and Gene Ontology analysis demonstrated the functional specificity of the annotated genes in respective tissue. Lastly, the identification of marine medaka-enriched transcripts suggested the necessity of generating transcriptome dataset of O. melastigma.
CONCLUSIONS:
Orthologous transcripts between O. melastigma and O. latipes, tissue-enriched genes and O. melastigma-enriched transcripts were identified. Genome-wide expression studies of marine medaka require an assembled transcriptome, and this sequencing effort has generated a valuable resource of coding DNA for a non-model species. This transcriptome resource will aid future studies assessing in vivo molecular responses to environmental stresses and those analyzing biological toxicity in the marine environment.
Biswapriya Biswavas Misra's insight:
AbstractBACKGROUND:

The marine medaka Oryzias melastigma has been demonstrated as a novel model for marine ecotoxicological studies. However, the lack of genome and transcriptome reference has largely restricted the use of O. melastigma in the assessment of in vivo molecular responses to environmental stresses and the analysis of biological toxicity in the marine environment. Although O. melastigma is believed to be phylogenetically closely related to Oryzias latipes, the divergence between these two species is still largely unknown. Using Illumina high-throughput RNA sequencing followed by de novo assembly and comprehensive gene annotation, we provided transcriptomic resources for the brain, liver, ovary and testis of O. melastigma. We also investigated the possible extent of divergence between O. melastigma and O. latipes at the transcriptome level.

RESULTS:

More than 14,000 transcripts across brain, liver, ovary and testis in marine medaka were annotated, of which 5880 transcripts were orthologous between O. melastigma and O. latipes. Tissue-enriched genes were identified in O. melastigma, and Gene Ontology analysis demonstrated the functional specificity of the annotated genes in respective tissue. Lastly, the identification of marine medaka-enriched transcripts suggested the necessity of generating transcriptome dataset of O. melastigma.

CONCLUSIONS:

Orthologous transcripts between O. melastigma and O. latipes, tissue-enriched genes and O. melastigma-enriched transcripts were identified. Genome-wide expression studies of marine medaka require an assembled transcriptome, and this sequencing effort has generated a valuable resource of coding DNA for a non-model species. This transcriptome resource will aid future studies assessing in vivo molecular responses to environmental stresses and those analyzing biological toxicity in the marine environment.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Transcriptome comparison of Cabernet Sauvignon grape berries from two regions with distinct climate.

Transcriptome comparison of Cabernet Sauvignon grape berries from two regions with distinct climate. | Plant Genomics | Scoop.it
J Plant Physiol. 2015 Feb 18;178:43-54. doi: 10.1016/j.jplph.2015.01.012. [Epub ahead of print]
Biswapriya Biswavas Misra's insight:

Primary and secondary metabolism in grape berries is under the control of complex interactions among environmental conditions, genotypes, and management practices. To obtain an interpretation from the view of transcriptome on distinct metabolite accumulation between ecologically different regions in China, next-generation sequencing technology was performed on E-L 31, 35, and 38 stages of Cabernet Sauvignon grape berries from Changli (CL, eastern) and Gaotai (GT, western). The transcript abundance of epoxycarotenoid dioxygenase and xanthoxin dehydrogenase required for ABA biosynthesis was significantly higher in the GT berries at E-L 35 and 38 stages compared with the CL berries, which may explain the relatively short maturation period of berries in the western region. Some genes required for carbohydrate metabolism, such as hexose transporter, l-idonate dehydrogenase, and phosphoenolpyruvate carboxylase, were significantly up-regulated in the CL berries in relation to the GT berries, which positively correlated with the sugar and organic acid accumulations. Pathway enrichment analysis of differentially expressed genes revealed that the CL berries had higher levels of phenylpropanoid biosynthesis at E-L 38 stage than the GT berries, which may relate to the quick fading of the GT wines because of weak co-pigmentation. This observation lays a foundation for further study concerning the molecular basis for environmental effects on berry quality formation.

 
more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Transcriptome Sequence Analysis of an Ornamental Plant, Ananas comosus var. bracteatus, Revealed the Potential Unigenes Involved in Terpenoid and Phenylpropanoid Biosynthesis.

Abstract
BACKGROUND:
Ananas comosus var. bracteatus (Red Pineapple) is an important ornamental plant for its colorful leaves and decorative red fruits. Because of its complex genome, it is difficult to understand the molecular mechanisms involved in the growth and development. Thus high-throughput transcriptome sequencing of Ananas comosus var. bracteatus is necessary to generate large quantities of transcript sequences for the purpose of gene discovery and functional genomic studies.
RESULTS:
The Ananas comosus var. bracteatus transcriptome was sequenced by the Illumina paired-end sequencing technology. We obtained a total of 23.5 million high quality sequencing reads, 1,555,808 contigs and 41,052 unigenes. In total 41,052 unigenes of Ananas comosus var. bracteatus, 23,275 unigenes were annotated in the NCBI non-redundant protein database and 23,134 unigenes were annotated in the Swiss-Port database. Out of these, 17,748 and 8,505 unigenes were assigned to gene ontology categories and clusters of orthologous groups, respectively. Functional annotation against Kyoto Encyclopedia of Genes and Genomes Pathway database identified 5,825 unigenes which were mapped to 117 pathways. The assembly predicted many unigenes that were previously unknown. The annotated unigenes were compared against pineapple, rice, maize, Arabidopsis, and sorghum. Unigenes that did not match any of those five sequence datasets are considered to be Ananas comosus var. bracteatus unique. We predicted unigenes encoding enzymes involved in terpenoid and phenylpropanoid biosynthesis.
CONCLUSION:
The sequence data provide the most comprehensive transcriptomic resource currently available for Ananas comosus var. bracteatus. To our knowledge; this is the first report on the de novo transcriptome sequencing of the Ananas comosus var. bracteatus. Unigenes obtained in this study, may help improve future gene expression, genetic and genomics studies in Ananas comosus var. bracteatus.
Biswapriya Biswavas Misra's insight:
AbstractBACKGROUND:

Ananas comosus var. bracteatus (Red Pineapple) is an important ornamental plant for its colorful leaves and decorative red fruits. Because of its complex genome, it is difficult to understand the molecular mechanisms involved in the growth and development. Thus high-throughput transcriptome sequencing of Ananas comosus var. bracteatus is necessary to generate large quantities of transcript sequences for the purpose of gene discovery and functional genomic studies.

RESULTS:

The Ananas comosus var. bracteatus transcriptome was sequenced by the Illumina paired-end sequencing technology. We obtained a total of 23.5 million high quality sequencing reads, 1,555,808 contigs and 41,052 unigenes. In total 41,052 unigenes of Ananas comosus var. bracteatus, 23,275 unigenes were annotated in the NCBI non-redundant protein database and 23,134 unigenes were annotated in the Swiss-Port database. Out of these, 17,748 and 8,505 unigenes were assigned to gene ontology categories and clusters of orthologous groups, respectively. Functional annotation against Kyoto Encyclopedia of Genes and Genomes Pathway database identified 5,825 unigenes which were mapped to 117 pathways. The assembly predicted many unigenes that were previously unknown. The annotated unigenes were compared against pineapple, rice, maize, Arabidopsis, and sorghum. Unigenes that did not match any of those five sequence datasets are considered to be Ananas comosus var. bracteatus unique. We predicted unigenes encoding enzymes involved in terpenoid and phenylpropanoid biosynthesis.

CONCLUSION:

The sequence data provide the most comprehensive transcriptomic resource currently available for Ananas comosus var. bracteatus. To our knowledge; this is the first report on the de novo transcriptome sequencing of the Ananas comosus var. bracteatus. Unigenes obtained in this study, may help improve future gene expression, genetic and genomics studies in Ananas comosus var. bracteatus.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Adaptation and Transcriptome Analysis of Aureobasidium pullulans in Corncob Hydrolysate for Increased Inhibitor Tolerance to Malic Acid Production.

Malic acid is a dicarboxylic acid widely used in the food industry, and is also a potential C4 platform chemical. Corncob is a low-cost renewable feedstock from agricultural industry. However, side-reaction products (furfural, 5-hydroxymethylfurfural (HMF), formic acid, and acetic acid) that severely hinder fermentation are formed during corncob pretreatment. The process for producing malic acid from a hydrolysate of corncob was investigated with a polymalic acid (PMA)-producing Aureobasidium pullulans strain. Under the optimal hydrolysate sugar concentration 110 g/L, A. pullulans was further adapted in an aerobic fibrous bed bioreactor (AFBB) by gradually increasing the sugar concentration of hydrolysate. After nine batches of fermentation, the production and productivity of malic acid reached 38.6 g/L and 0.4 g/L h, respectively, which was higher than that in the first batch (27.6 g/L and 0.29 g/L h, respectively). The adapted strain could grow under the stress of 0.5 g/L furfural, 3 g/L HMF, 2g/L acetic acid, and 0.5 g/L formic acid, whereas the wild type did not. Transcriptome analysis revealed that the differentially expressed genes were related to carbohydrate transport and metabolism, lipid transport and metabolism, signal transduction mechanism, redox metabolism, and energy production and conversion under 0.5 g/L furfural and 3 g/L HMF stress conditions. In total, 42 genes in the adapted strain were upregulated by 15-fold or more, and qRT-PCR also confirmed that the expression levels of key genes (i.e. SIR, GSS, CYS, and GSR) involved in sulfur assimilation pathway were upregulated by over 10-fold in adapted strain for cellular protection against oxidative stress.
Biswapriya Biswavas Misra's insight:

Malic acid is a dicarboxylic acid widely used in the food industry, and is also a potential C4 platform chemical. Corncob is a low-cost renewable feedstock from agricultural industry. However, side-reaction products (furfural, 5-hydroxymethylfurfural (HMF), formic acid, and acetic acid) that severely hinder fermentation are formed during corncob pretreatment. The process for producing malic acid from a hydrolysate of corncob was investigated with a polymalic acid (PMA)-producing Aureobasidium pullulans strain. Under the optimal hydrolysate sugar concentration 110 g/L, A. pullulans was further adapted in an aerobic fibrous bed bioreactor (AFBB) by gradually increasing the sugar concentration of hydrolysate. After nine batches of fermentation, the production and productivity of malic acid reached 38.6 g/L and 0.4 g/L h, respectively, which was higher than that in the first batch (27.6 g/L and 0.29 g/L h, respectively). The adapted strain could grow under the stress of 0.5 g/L furfural, 3 g/L HMF, 2g/L acetic acid, and 0.5 g/L formic acid, whereas the wild type did not. Transcriptome analysis revealed that the differentially expressed genes were related to carbohydrate transport and metabolism, lipid transport and metabolism, signal transduction mechanism, redox metabolism, and energy production and conversion under 0.5 g/L furfural and 3 g/L HMF stress conditions. In total, 42 genes in the adapted strain were upregulated by 15-fold or more, and qRT-PCR also confirmed that the expression levels of key genes (i.e. SIR, GSS, CYS, and GSR) involved in sulfur assimilation pathway were upregulated by over 10-fold in adapted strain for cellular protection against oxidative stress.

  
more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

The transcriptome of Utricularia vulgaris, a rootless plant with minimalist genome, reveals extreme alternative splicing and only moderate sequence... - PubMed - NCBI

The species of Utricularia attract attention not only owing to their carnivorous lifestyle, but also due to an elevated substitution rate and a dynamic evolution of genome size leading to its dramatic reduction. To better understand the evolutionary dynamics of genome size and content as well as the great physiological plasticity in this mostly aquatic carnivorous genus, we analyzed the transcriptome of Utricularia vulgaris, a temperate species with well characterized physiology and ecology. We compared its transcriptome, namely gene content and overall transcript profile, with a previously described transcriptome of Utricularia gibba, a congener possessing one of the smallest angiosperm genomes.
RESULTS:
We sequenced a normalized cDNA library prepared from total RNA extracted from shoots of U. vulgaris including leaves and traps, cultivated under sterile or outdoor conditions. 454 pyrosequencing resulted in more than 1,400,000 reads which were assembled into 41,407 isotigs in 19,522 isogroups. We observed high transcript variation in several isogroups explained by multiple loci and/or alternative splicing. The comparison of U. vulgaris and U. gibba transcriptomes revealed a similar distribution of GO categories among expressed genes, despite the differences in transcriptome preparation. We also found a strong correspondence in the presence or absence of root-associated genes between the U. vulgaris transcriptome and U. gibba genome, which indicated that the loss of some root-specific genes had occurred before the divergence of the two rootless species.
CONCLUSIONS:
The species-rich genus Utricularia offers a unique opportunity to study adaptations related to the environment and carnivorous habit and also evolutionary processes responsible for considerable genome reduction. We show that a transcriptome may approximate the genome for gene content or gene duplication estimation. Our study is the first comparison of two global sequence data sets in Utricularia.
Biswapriya Biswavas Misra's insight:

The species of Utricularia attract attention not only owing to their carnivorous lifestyle, but also due to an elevated substitution rate and a dynamic evolution of genome size leading to its dramatic reduction. To better understand the evolutionary dynamics of genome size and content as well as the great physiological plasticity in this mostly aquatic carnivorous genus, we analyzed the transcriptome of Utricularia vulgaris, a temperate species with well characterized physiology and ecology. We compared its transcriptome, namely gene content and overall transcript profile, with a previously described transcriptome of Utricularia gibba, a congener possessing one of the smallest angiosperm genomes.

RESULTS:

We sequenced a normalized cDNA library prepared from total RNA extracted from shoots of U. vulgaris including leaves and traps, cultivated under sterile or outdoor conditions. 454 pyrosequencing resulted in more than 1,400,000 reads which were assembled into 41,407 isotigs in 19,522 isogroups. We observed high transcript variation in several isogroups explained by multiple loci and/or alternative splicing. The comparison of U. vulgaris and U. gibba transcriptomes revealed a similar distribution of GO categories among expressed genes, despite the differences in transcriptome preparation. We also found a strong correspondence in the presence or absence of root-associated genes between the U. vulgaris transcriptome and U. gibba genome, which indicated that the loss of some root-specific genes had occurred before the divergence of the two rootless species.

CONCLUSIONS:

The species-rich genus Utricularia offers a unique opportunity to study adaptations related to the environment and carnivorous habit and also evolutionary processes responsible for considerable genome reduction. We show that a transcriptome may approximate the genome for gene content or gene duplication estimation. Our study is the first comparison of two global sequence data sets in Utricularia.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Physiological and Comparative Proteomic Analysis Reveals Different Drought Responses in Roots and Leaves of Drought-Tolerant Wild Wheat (Triticum boeoticum) Physiological and Comparative Proteomic

To determine the proteomic-level responses of drought tolerant wild wheat (Triticum boeoticum), physiological and comparative proteomic analyses were conducted using the roots and the leaves of control and short term drought-stressed plants. Drought stress was imposed by transferring hydroponically grown seedlings at the 3-leaf stage into 1/2 Hoagland solution containing 20% PEG-6000 for 48 h. Root and leaf samples were separately collected at 0 (control), 24, and 48 h of drought treatment for analysis. Physiological analysis indicated that abscisic acid (ABA) level was greatly increased in the drought-treated plants, but the increase was greater and more rapid in the leaves than in the roots. The net photosynthetic rate of the wild wheat leaves was significantly decreased under short-term drought stress. The deleterious effects of drought on the studied traits mainly targeted photosynthesis. Comparative proteomic analysis identified 98 and 85 differently changed protein spots (DEPs) (corresponding to 87 and 80 unique proteins, respectively) in the leaves and the roots, respectively, with only 6 mutual unique proteins in the both organs. An impressive 86% of the DEPs were implicated in detoxification and defense, carbon metabolism, amino acid and nitrogen metabolism, proteins metabolism, chaperones, transcription and translation, photosynthesis, nucleotide metabolism, and signal transduction. Further analysis revealed some mutual and tissue-specific responses to short-term drought in the leaves and the roots. The differences of drought-response between the roots and the leaves mainly included that signal sensing and transduction-associated proteins were greatly up-regulated in the roots. Photosynthesis and carbon fixation ability were decreased in the leaves. Glycolysis was down-regulated but PPP pathway enhanced in the roots, resulting in occurrence of complex changes in energy metabolism and establishment of a new homeostasis. Protein metabolism was down-regulated in the roots, but enhanced in the leaves. These results will contribute to the existing knowledge on the complexity of root and leaf protein changes that occur in response to drought, and also provide a framework for further functional studies on the identified proteins.
Biswapriya Biswavas Misra's insight:

To determine the proteomic-level responses of drought tolerant wild wheat (Triticum boeoticum), physiological and comparative proteomic analyses were conducted using the roots and the leaves of control and short term drought-stressed plants. Drought stress was imposed by transferring hydroponically grown seedlings at the 3-leaf stage into 1/2 Hoagland solution containing 20% PEG-6000 for 48 h. Root and leaf samples were separately collected at 0 (control), 24, and 48 h of drought treatment for analysis. Physiological analysis indicated that abscisic acid (ABA) level was greatly increased in the drought-treated plants, but the increase was greater and more rapid in the leaves than in the roots. The net photosynthetic rate of the wild wheat leaves was significantly decreased under short-term drought stress. The deleterious effects of drought on the studied traits mainly targeted photosynthesis. Comparative proteomic analysis identified 98 and 85 differently changed protein spots (DEPs) (corresponding to 87 and 80 unique proteins, respectively) in the leaves and the roots, respectively, with only 6 mutual unique proteins in the both organs. An impressive 86% of the DEPs were implicated in detoxification and defense, carbon metabolism, amino acid and nitrogen metabolism, proteins metabolism, chaperones, transcription and translation, photosynthesis, nucleotide metabolism, and signal transduction. Further analysis revealed some mutual and tissue-specific responses to short-term drought in the leaves and the roots. The differences of drought-response between the roots and the leaves mainly included that signal sensing and transduction-associated proteins were greatly up-regulated in the roots. Photosynthesis and carbon fixation ability were decreased in the leaves. Glycolysis was down-regulated but PPP pathway enhanced in the roots, resulting in occurrence of complex changes in energy metabolism and establishment of a new homeostasis. Protein metabolism was down-regulated in the roots, but enhanced in the leaves. These results will contribute to the existing knowledge on the complexity of root and leaf protein changes that occur in response to drought, and also provide a framework for further functional studies on the identified proteins.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Comparative transcriptome analysis of the petal degeneration mutant pdm in Chinese cabbage (Brassica campestris ssp. pekinensis) using RNA-Seq.

Comparative transcriptome analysis of the petal degeneration mutant pdm in Chinese cabbage (Brassica campestris ssp. pekinensis) using RNA-Seq. | Plant Genomics | Scoop.it
Flowering, which plays a crucial role in the growth and development of flowering plants, is a crucial point from vegetative growth to reproductive growth. The goal of this study was to examine the differences between the transcriptomes of the Chinese cabbage mutant pdm and the corresponding wild-type line 'FT'. We performed transcriptome analysis on mRNA isolated from flower buds of pdm and 'FT' using Illumina RNA sequencing (RNA-Seq) data. A total of 117 differentially expressed genes (DEGs) were detected. Among the DEGs, we identified a number of genes involved in floral development and flowering, including an F-box protein gene, EARLY FLOWERING 4 (ELF4), and transcription factors BIGPETAL (BPE) and MYB21 (v-myb avian myeloblastosis viral oncogene homolog); differential expression of these genes could potentially explain the difference in the flowers between pdm and 'FT'. In addition, the expression patterns of 20 DEGs, including 12 floral development and flowering-related genes and eight randomly selected genes, were validated by qRT-PCR, and the results were highly concordant with the RNA-Seq results. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed to better understand the functions of these DEGs. We also identified a large number of single nucleotide polymorphism and insertion/deletion markers, which will be a rich resource for future marker development and breeding research in Chinese cabbage. Also, our analysis revealed numerous novel transcripts and alternative splicing events. The transcriptome analysis provides valuable information for furthering our understanding of the molecular mechanisms that regulate the flowering process, and establishes a solid foundation for future genetic and functional genomic studies in Chinese cabbage.
Biswapriya Biswavas Misra's insight:

Flowering, which plays a crucial role in the growth and development of flowering plants, is a crucial point from vegetative growth to reproductive growth. The goal of this study was to examine the differences between the transcriptomes of the Chinese cabbage mutant pdm and the corresponding wild-type line 'FT'. We performed transcriptome analysis on mRNA isolated from flower buds of pdm and 'FT' using Illumina RNA sequencing (RNA-Seq) data. A total of 117 differentially expressed genes (DEGs) were detected. Among the DEGs, we identified a number of genes involved in floral development and flowering, including an F-box protein gene, EARLY FLOWERING 4 (ELF4), and transcription factors BIGPETAL (BPE) and MYB21 (v-myb avian myeloblastosis viral oncogene homolog); differential expression of these genes could potentially explain the difference in the flowers between pdm and 'FT'. In addition, the expression patterns of 20 DEGs, including 12 floral development and flowering-related genes and eight randomly selected genes, were validated by qRT-PCR, and the results were highly concordant with the RNA-Seq results. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed to better understand the functions of these DEGs. We also identified a large number of single nucleotide polymorphism and insertion/deletion markers, which will be a rich resource for future marker development and breeding research in Chinese cabbage. Also, our analysis revealed numerous novel transcripts and alternative splicing events. The transcriptome analysis provides valuable information for furthering our understanding of the molecular mechanisms that regulate the flowering process, and establishes a solid foundation for future genetic and functional genomic studies in Chinese cabbage.

  
more...
No comment yet.
Rescooped by Biswapriya Biswavas Misra from Plant pathogens and pests
Scoop.it!

Transcriptome responses to Ralstonia solanacearum infection in the roots of the wild potato Solanum commersonii

Background

Solanum commersonii is a wild potato species that exhibits high tolerance to both biotic and abiotic stresses and has been used as a source of genes for introgression into cultivated potato. Among the interesting features of S. commersonii is resistance to the bacterial wilt caused by Ralstonia solanacearum, one of the most devastating bacterial diseases of crops.
Results

In this study, we used deep sequencing of S. commersonii RNA (RNA-seq) to analyze the below-ground plant transcriptional responses to R. solanacearum. While a majority of S. commersonii RNA-seq reads could be aligned to the Solanum tuberosum Group Phureja DM reference genome sequence, we identified 2,978 S. commersonii novel transcripts through assembly of unaligned S. commersonii RNA-seq reads. We also used RNA-seq to study gene expression in pathogen-challenged roots of S. commersonii accessions resistant (F118) and susceptible (F97) to the pathogen. Expression profiles obtained from read mapping to the S. tuberosum reference genome and the S. commersonii novel transcripts revealed a differential response to the pathogen in the two accessions, with 221 (F118) and 644 (F97) differentially expressed genes including S. commersonii novel transcripts in the resistant and susceptible genotypes. Interestingly, 22.6% of the F118 and 12.8% of the F97 differentially expressed genes had been previously identified as responsive to biotic stresses and half of those up-regulated in both accessions had been involved in plant pathogen responses. Finally, we compared two different methods to eliminate ribosomal RNA from the plant RNA samples in order to allow dual mapping of RNAseq reads to the host and pathogen genomes and provide insights on the advantages and limitations of each technique.
Conclusions

Our work catalogues the S. commersonii transcriptome and strengthens the notion that this species encodes specific genes that are differentially expressed to respond to bacterial wilt. In addition, a high proportion of S. commersonii-specific transcripts were altered by R. solanacearum only in F118 accession, while phythormone-related genes were highly induced in F97, suggesting a markedly different response to the pathogen in the two plant accessions studied.

Via Christophe Jacquet
more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Genome of Rhizobium sp. UR51a, Isolated from Rice Cropped in Southern Brazilian Fields

Genome of Rhizobium sp. UR51a, Isolated from Rice Cropped in Southern Brazilian Fields | Plant Genomics | Scoop.it
ABSTRACT

Rhizobium sp. UR51a is a Gram-negative bacterium isolated from roots of rice plants, and it presents plant growth-promoting abilities. The nutrient uptake in rice plants inoculated with UR51a was satisfactory. The genome of strain UR51a is composed of 5,233,443-bp and harbors 5,079 coding sequences.
Biswapriya Biswavas Misra's insight:
ABSTRACT

Rhizobium sp. UR51a is a Gram-negative bacterium isolated from roots of rice plants, and it presents plant growth-promoting abilities. The nutrient uptake in rice plants inoculated with UR51a was satisfactory. The genome of strain UR51a is composed of 5,233,443-bp and harbors 5,079 coding sequences.

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

fastpassNGS

fastpassNGS | Plant Genomics | Scoop.it
fastpassNGS is firstly designed to analyse RNA editing using NGS RNA Seq analysis.
Biswapriya Biswavas Misra's insight:

fastpassNGS is firstly designed to analyse RNA editing using NGS RNA Seq analysis.

 
more...
No comment yet.
Rescooped by Biswapriya Biswavas Misra from MycorWeb Plant-Microbe Interactions
Scoop.it!

Modular organization of the white spruce (Picea glauca) transcriptome reveals functional organization and evolutionary signatures

Modular organization of the white spruce (Picea glauca) transcriptome reveals functional organization and evolutionary signatures | Plant Genomics | Scoop.it
Transcript profiling has shown the molecular bases of several biological processes in plants but few studies have developed an understanding of overall transcriptome variation. We investigated transcriptome structure in white spruce (Picea glauca), aiming to delineate its modular organization and associated functional and evolutionary attributes.
Microarray analyses were used to: identify and functionally characterize groups of co-expressed genes; investigate expressional and functional diversity of vascular tissue preferential genes which were conserved among Picea species, and identify expression networks underlying wood formation.
We classified 22 857 genes as variable (79%; 22 coexpression groups) or invariant (21%) by profiling across several vegetative tissues. Modular organization and complex transcriptome restructuring among vascular tissue preferential genes was revealed by their assignment to coexpression groups with partially overlapping profiles and partially distinct functions. Integrated analyses of tissue-based and temporally variable profiles identified secondary xylem gene networks, showed their remodelling over a growing season and identified PgNAC-7 (no apical meristerm (NAM), Arabidopsis transcription activation factor (ATAF) and cup-shaped cotyledon (CUC) transcription factor 007 in Picea glauca) as a major hub gene specific to earlywood formation.
Reference profiling identified comprehensive, statistically robust coexpressed groups, revealing that modular organization underpins the evolutionary conservation of the transcriptome structure.

Via Francis Martin
more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

RNA-Seq Transcriptome Analysis of Maize Inbred Carrying Nicosulfuron-Tolerant and Nicosulfuron-Susceptible Alleles.

RNA-Seq Transcriptome Analysis of Maize Inbred Carrying Nicosulfuron-Tolerant and Nicosulfuron-Susceptible Alleles. | Plant Genomics | Scoop.it
Postemergence applications of nicosulfuron can cause great damage to certain maize inbred lines and hybrids. Variation among different responses to nicosulfuron may be attributed to differential rates of herbicide metabolism. We employed RNA-Seq analysis to compare transcriptome responses between nicosulfuron-treated and untreated in both tolerant and susceptible maize plants. A total of 71.8 million paired end Illumina RNA-Seq reads were generated, representing the transcription of around 40,441 unique reads. About 345,171 gene ontology (GO) term assignments were conducted for the annotation in terms of biological process, cellular component and molecular function categories, and 6413 sequences with 108 enzyme commission numbers were assigned to 134 predicted Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways. Digital gene expression profile (DGE) analysis using Solexa sequencing was performed within the susceptible and tolerant maize between the nicosulfuron-treated and untreated conditions, 13 genes were selected as the candidates most likely involved in herbicide metabolism, and quantitative RT-PCR validated the RNA-Seq results for eight genes. This transcriptome data may provide opportunities for the study of sulfonylurea herbicides susceptibility emergence of Zea mays.
Biswapriya Biswavas Misra's insight:

Bipolaris zeicola is a fungal pathogen that causes Northern corn leaf spot (NCLS), which is a serious foliar disease in maize and one of the most significant pathogens affecting global food security. Here, we report a genome-wide transcriptional profile analysis using next-generation sequencing (NGS) of maize leaf development after inoculation with B. zeicola. We performed High-Throughput Digital Gene Expression analysis to identify differentially expressed genes (DEGs) in resistant inbred Mo17 lines after infection with B. zeicola at four successive disease development stages-CP (contact period), PP (penetration period), IP (incubation period), and DP (disease period); the expression of the genes was compared with those in a CK (mock-treatment) control. In addition, a sensitive maize line (Zheng58) was used for the comparisons with the Mo17. Among all tested genes, 466 differentially expressed genes were identified in all libraries, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of these genes suggested that they are involved in many biological processes related to systemic symptom development, such as plant hormone signal transduction, starch and sucrose metabolism, phenylpropanoid biosynthesis and photosynthesis. Our systematic analysis provides comprehensive transcriptomic information regarding systemic symptom development in fungal-infected plants. This information will help in furthering our understanding of the detailed mechanisms of plant responses to fungal infection.

  
more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Cysteine Protease Profiles of the Medicinal Plant Calotropis procera R. Br. Revealed by De Novo Transcriptome Analysis.

PLoS One. 2015 Mar 18;10(3):e0119328. doi: 10.1371/journal.pone.0119328. eCollection 2015.
Biswapriya Biswavas Misra's insight:

Calotropis procera R. Br., a traditional medicinal plant in India, is a promising source of commercial proteases, because the cysteine proteases from the plant exhibit high thermo-stability, broad pH optima, and plasma-clotting activity. Though several proteases such as Procerain, Procerain B, CpCp-1, CpCp-2, and CpCp-3 have been isolated and characterized, the information of their transcripts is limited to cDNAs encoding their mature peptides. Due to this limitation, in this study, to determine the cDNA sequences encoding full open reading frame of these cysteine proteases, transcripts were sequenced with an Illumina Hiseq2000 sequencer. A total of 171,253,393 clean reads were assembled into 106,093 contigs with an average length of 1,614 bp and an N50 of 2,703 bp, and 70,797 contigs with an average length of 1,565 bp and N50 of 2,082 bp using Trinity and Velvet-Oases software, respectively. Among these contigs, we found 20 unigenes related to papain-like cysteine proteases by BLASTX analysis against a non-redundant NCBI protein database. Our expression analysis revealed that the cysteine protease contains an N-terminal pro-peptide domain (inhibitor region), which is necessary for correct folding and proteolytic activity. It was evident that expression yields using an inducible T7 expression system in Escherichia coli were considerably higher with the pro-peptide domain than without the domain, which could contribute to molecular cloning of the Calotropis procera protease as an active form with correct folding.

  
more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Transcriptome analysis highlights preformed defenses and signaling pathways controlled by the prAe1 QTL, conferring partial resistance to Aphanomyces euteiches in Medicago truncatula.

Transcriptome analysis highlights preformed defenses and signaling pathways controlled by the prAe1 QTL, conferring partial resistance to Aphanomyces euteiches in Medicago truncatula. | Plant Genomics | Scoop.it
To gain insights into molecular mechanisms of quantitative disease resistance in Medicago truncatula to the root-infecting oomycete Aphanomyces euteiches, we selected two near isogenic lines (NILs), NR and NS, partially resistant and susceptible, respectively, differing in the allelic state of the quantitative resistance locus (QRL) prAe1 (partially resistant to A. euteiches 1). Complementary molecular and cytological phenotyping methods showed that prAe1 alone confers quantitative resistance to A. euteiches. Root and stem tissues were colonized in NS plants and 80% of NS plants died by 21 days post inoculation (dpi). In contrast, A. euteiches mycelium was restricted to the root cortex and spread of symptoms was arrested in aerial parts of NR plants. A transcriptome analysis performed 0, 1 and 6 dpi identified 1,198 differentially expressed genes (DEGs) between NR and NS lines. More than 87% of the DEGs were significantly more expressed in NR. The highest number of DEGs was found in control conditions, with 723 genes over-expressed in NR vs. 85 in NS. Genes belonging to secondary metabolism, PR-proteins and kinases were significantly enriched. The significant role of the flavonoid pathway in resistance was corroborated by detection of higher amounts of flavonoids in NR roots and inhibition of A. euteiches zoospore germination by 2'-O-methyl-isoliquiritigenin, a compound synthesized by enzymes specifically induced in NR. Our study revealed that prAe1-dependent resistance relies mainly on constitutive expression of defense-related pathways and signaling elements, which can be re-amplified in later time-points of the infection.
Biswapriya Biswavas Misra's insight:

To gain insights into molecular mechanisms of quantitative disease resistance in Medicago truncatula to the root-infecting oomycete Aphanomyces euteiches, we selected two near isogenic lines (NILs), NR and NS, partially resistant and susceptible, respectively, differing in the allelic state of the quantitative resistance locus (QRL) prAe1 (partially resistant to A. euteiches 1). Complementary molecular and cytological phenotyping methods showed that prAe1 alone confers quantitative resistance to A. euteiches. Root and stem tissues were colonized in NS plants and 80% of NS plants died by 21 days post inoculation (dpi). In contrast, A. euteiches mycelium was restricted to the root cortex and spread of symptoms was arrested in aerial parts of NR plants. A transcriptome analysis performed 0, 1 and 6 dpi identified 1,198 differentially expressed genes (DEGs) between NR and NS lines. More than 87% of the DEGs were significantly more expressed in NR. The highest number of DEGs was found in control conditions, with 723 genes over-expressed in NR vs. 85 in NS. Genes belonging to secondary metabolism, PR-proteins and kinases were significantly enriched. The significant role of the flavonoid pathway in resistance was corroborated by detection of higher amounts of flavonoids in NR roots and inhibition of A. euteiches zoospore germination by 2'-O-methyl-isoliquiritigenin, a compound synthesized by enzymes specifically induced in NR. Our study revealed that prAe1-dependent resistance relies mainly on constitutive expression of defense-related pathways and signaling elements, which can be re-amplified in later time-points of the infection.

 
more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Transcriptomic profiling of linolenic acid-responsive genes in ROS signaling from RNA-seq data in Arabidopsis

Linolenic acid (Ln) released from chloroplast membrane galactolipids is a precursor of the phytohormone jasmonic acid (JA). The involvement of this hormone in different plant biological processes, such as responses to biotic stress conditions, has been extensively studied. However, the role of Ln in the regulation of gene expression during abiotic stress situations mediated by cellular redox changes and/or by oxidative stress processes remains poorly understood. An RNA-seq approach has increased our knowledge of the interplay among Ln, oxidative stress and ROS signaling that mediates abiotic stress conditions. Transcriptome analysis with the aid of RNA-seq in the absence of oxidative stress revealed that the incubation of Arabidopsis thaliana cell suspension cultures (ACSC) with Ln resulted in the modulation of 7525 genes, of which 3034 genes had a 2-fold-change, being 533 up- and 2501 down-regulated genes, respectively. Thus, RNA-seq data analysis showed that an important set of these genes were associated with the jasmonic acid biosynthetic pathway including lypoxygenases (LOXs) and Allene oxide cyclases (AOCs). In addition, several transcription factor families involved in the response to biotic stress conditions (pathogen attacks or herbivore feeding), such as WRKY, JAZ, MYC, and LRR were also modified in response to Ln. However, this study also shows that Ln has the capacity to modulate the expression of genes involved in the response to abiotic stress conditions, particularly those mediated by ROS signaling. In this regard, we were able to identify new targets such as galactinol synthase 1 (GOLS1), methionine sulfoxide reductase (MSR) and alkenal reductase in ACSC. It is therefore possible to suggest that, in the absence of any oxidative stress, Ln is capable of modulating new sets of genes involved in the signaling mechanism mediated by additional abiotic stresses (salinity, UV and high light intensity) and especially in stresses mediated by ROS.
Biswapriya Biswavas Misra's insight:

Linolenic acid (Ln) released from chloroplast membrane galactolipids is a precursor of the phytohormone jasmonic acid (JA). The involvement of this hormone in different plant biological processes, such as responses to biotic stress conditions, has been extensively studied. However, the role of Ln in the regulation of gene expression during abiotic stress situations mediated by cellular redox changes and/or by oxidative stress processes remains poorly understood. An RNA-seq approach has increased our knowledge of the interplay among Ln, oxidative stress and ROS signaling that mediates abiotic stress conditions. Transcriptome analysis with the aid of RNA-seq in the absence of oxidative stress revealed that the incubation of Arabidopsis thaliana cell suspension cultures (ACSC) with Ln resulted in the modulation of 7525 genes, of which 3034 genes had a 2-fold-change, being 533 up- and 2501 down-regulated genes, respectively. Thus, RNA-seq data analysis showed that an important set of these genes were associated with the jasmonic acid biosynthetic pathway including lypoxygenases (LOXs) and Allene oxide cyclases (AOCs). In addition, several transcription factor families involved in the response to biotic stress conditions (pathogen attacks or herbivore feeding), such as WRKY, JAZ, MYC, and LRR were also modified in response to Ln. However, this study also shows that Ln has the capacity to modulate the expression of genes involved in the response to abiotic stress conditions, particularly those mediated by ROS signaling. In this regard, we were able to identify new targets such as galactinol synthase 1 (GOLS1), methionine sulfoxide reductase (MSR) and alkenal reductase in ACSC. It is therefore possible to suggest that, in the absence of any oxidative stress, Ln is capable of modulating new sets of genes involved in the signaling mechanism mediated by additional abiotic stresses (salinity, UV and high light intensity) and especially in stresses mediated by ROS.

  
more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Evolution of the bamboos (Bambusoideae; Poaceae): a full plastome phylogenomic analysis

Bambusoideae (Poaceae) comprise three distinct and well-supported lineages: tropical woody bamboos (Bambuseae), temperate woody bamboos (Arundinarieae) and herbaceous bamboos (Olyreae). Phylogenetic studies using chloroplast markers have generally supported a sister relationship between Bambuseae and Olyreae. This suggests either at least two origins of the woody bamboo syndrome in this subfamily or its loss in Olyreae.
Biswapriya Biswavas Misra's insight:

Bambusoideae (Poaceae) comprise three distinct and well-supported lineages: tropical woody bamboos (Bambuseae), temperate woody bamboos (Arundinarieae) and herbaceous bamboos (Olyreae). Phylogenetic studies using chloroplast markers have generally supported a sister relationship between Bambuseae and Olyreae. This suggests either at least two origins of the woody bamboo syndrome in this subfamily or its loss in Olyreae. Results Here a full chloroplast genome (plastome) phylogenomic study is presented using the coding and noncoding regions of 13 complete plastomes from the Bambuseae, eight from Olyreae and 10 from Arundinarieae. Trees generated using full plastome sequences support the previously recovered monophyletic relationship between Bambuseae and Olyreae. In addition to these relationships, several unique plastome features are uncovered including the first mitogenome-to-plastome horizontal gene transfer observed in monocots. Conclusions Phylogenomic agreement with previous published phylogenies reinforces the validity of these studies. Additionally, this study presents the first published plastomes from Neotropical woody bamboos and the first full plastome phylogenomic study performed within the herbaceous bamboos. Although the phylogenomic tree presented in this study is largely robust, additional studies using nuclear genes support monophyly in woody bamboos as well as hybridization among previous woody bamboo lineages. The evolutionary history of the Bambusoideae could be further clarified using transcriptomic techniques to increase sampling among nuclear orthologues and investigate the molecular genetics underlying the development of woody and floral tissues.

 

more...
No comment yet.
Scooped by Biswapriya Biswavas Misra
Scoop.it!

Transcriptome assembly, gene annotation and tissue gene expression atlas of the rainbow trout.

PLoS One. 2015 Mar 20;10(3):e0121778. doi: 10.1371/journal.pone.0121778. eCollection 2015.
Biswapriya Biswavas Misra's insight:

Efforts to obtain a comprehensive genome sequence for rainbow trout are ongoing and will be complemented by transcriptome information that will enhance genome assembly and annotation. Previously, transcriptome reference sequences were reported using data from different sources. Although the previous work added a great wealth of sequences, a complete and well-annotated transcriptome is still needed. In addition, gene expression in different tissues was not completely addressed in the previous studies. In this study, non-normalized cDNA libraries were sequenced from 13 different tissues of a single doubled haploid rainbow trout from the same source used for the rainbow trout genome sequence. A total of ~1.167 billion paired-end reads were de novo assembled using the Trinity RNA-Seq assembler yielding 474,524 contigs > 500 base-pairs. Of them, 287,593 had homologies to the NCBI non-redundant protein database. The longest contig of each cluster was selected as a reference, yielding 44,990 representative contigs. A total of 4,146 contigs (9.2%), including 710 full-length sequences, did not match any mRNA sequences in the current rainbow trout genome reference. Mapping reads to the reference genome identified an additional 11,843 transcripts not annotated in the genome. A digital gene expression atlas revealed 7,678 housekeeping and 4,021 tissue-specific genes. Expression of about 16,000-32,000 genes (35-71% of the identified genes) accounted for basic and specialized functions of each tissue. White muscle and stomach had the least complex transcriptomes, with high percentages of their total mRNA contributed by a small number of genes. Brain, testis and intestine, in contrast, had complex transcriptomes, with a large numbers of genes involved in their expression patterns. This study provides comprehensive de novo transcriptome information that is suitable for functional and comparative genomics studies in rainbow trout, including annotation of the genome.

  
more...
No comment yet.